package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file from_lcalc.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2021 Inria, contributor:
   Denis Merigoux <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Catala_utils
open Shared_ast
module A = Ast
module L = Lcalc.Ast
module D = Dcalc.Ast

type translation_config = {
  keep_special_ops : bool;
  dead_value_assignment : bool;
  no_struct_literals : bool;
  keep_module_names : bool;
  renaming_context : Renaming.context;
}

type 'm ctxt = {
  func_dict : ('m L.expr, A.FuncName.t) Var.Map.t;
  var_dict : ('m L.expr, A.VarName.t) Var.Map.t;
  context_name : string;
  config : translation_config;
  program_ctx : A.ctx;
  ren_ctx : Renaming.context;
  poly_funcs : 'm L.expr Var.Set.t;
}

(** Blocks are constructed as reverse ordered lists. This module abstracts this
    and avoids confusion in ordering of statements (also opening the opportunity
    for more optimisations) *)
module RevBlock : sig
  type t = private A.block

  val empty : t
  val append : t -> A.stmt Mark.pos -> t
  val make : A.block -> t
  val seq : t -> t -> t
  val rebuild : ?tail:A.block -> t -> A.block
end = struct
  type t = A.block

  let empty = []
  let append t st = st :: t
  let make st = List.rev st
  let seq t1 t2 = t2 @ t1
  let rebuild ?(tail = []) t = List.rev_append t tail
end

let ( ++ ) = RevBlock.seq
let ( +> ) = RevBlock.append

let unbind ctxt bnd =
  let v, body, ren_ctx = Renaming.unbind_in ctxt.ren_ctx bnd in
  v, body, { ctxt with ren_ctx }

let unmbind ctxt bnd =
  let vs, body, ren_ctx = Renaming.unmbind_in ctxt.ren_ctx bnd in
  vs, body, { ctxt with ren_ctx }

let get_name ctxt s =
  let name, ren_ctx = Renaming.new_var_id ctxt.ren_ctx s in
  name, { ctxt with ren_ctx }

let fresh_var ~pos ctxt name =
  let v, ctxt = get_name ctxt name in
  A.VarName.fresh (v, pos), ctxt

let register_fresh_var ~pos ctxt x =
  let v = A.VarName.fresh (Bindlib.name_of x, pos) in
  let var_dict = Var.Map.add x v ctxt.var_dict in
  v, { ctxt with var_dict }

let register_fresh_func ~pos ~poly ctxt x =
  let f = A.FuncName.fresh (Bindlib.name_of x, pos) in
  let func_dict = Var.Map.add x f ctxt.func_dict in
  let poly_funcs =
    if poly then Var.Set.add x ctxt.poly_funcs else ctxt.poly_funcs
  in
  f, { ctxt with func_dict; poly_funcs }

let register_fresh_arg ~pos ctxt (x, _) =
  let _, ctxt = register_fresh_var ~pos ctxt x in
  ctxt

(* These operators, since they can raise, have an added first argument giving
   the position of the error if it happens, so they need special treatment *)
let op_can_raise op =
  let open Op in
  match Mark.remove op with
  | HandleExceptions | Div_int_int | Div_rat_rat | Div_mon_mon | Div_mon_int
  | Div_mon_rat | Div_dur_dur | Add_dat_dur _ | Sub_dat_dur _ | Gte_dur_dur
  | Gt_dur_dur | Lte_dur_dur | Lt_dur_dur | Eq_dur_dur | Map2 ->
    true
  | _ -> false

let lift_pos ctxt pos =
  let v, ctxt = fresh_var ~pos ctxt "pos" in
  ( (A.EVar v, pos),
    ( A.SLocalInit
        {
          name = v, pos;
          typ = TStruct Expr.source_pos_struct, pos;
          expr = A.EPosLit, pos;
        },
      pos ),
    ctxt )

let rec translate_expr_list ctxt args =
  let stmts, args, ren_ctx =
    List.fold_left
      (fun (args_stmts, new_args, ren_ctx) arg ->
        let arg_stmts, new_arg, ren_ctx =
          translate_expr { ctxt with ren_ctx } arg
        in
        args_stmts ++ arg_stmts, new_arg :: new_args, ren_ctx)
      (RevBlock.empty, [], ctxt.ren_ctx)
      args
  in
  stmts, List.rev args, ren_ctx

and translate_struct_literal ctxt expr =
  match Mark.remove expr with
  | EStruct { fields; name } ->
    let args_stmts, new_args, ren_ctx =
      StructField.Map.fold
        (fun field arg (args_stmts, new_args, ren_ctx) ->
          let arg_stmts, new_arg, ren_ctx =
            translate_expr { ctxt with ren_ctx } arg
          in
          ( args_stmts ++ arg_stmts,
            StructField.Map.add field new_arg new_args,
            ren_ctx ))
        fields
        (RevBlock.empty, StructField.Map.empty, ctxt.ren_ctx)
    in
    args_stmts, (A.EStruct { fields = new_args; name }, Expr.pos expr), ren_ctx
  | EInj { e = e1; cons; name } ->
    let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
    ( e1_stmts,
      ( A.EInj
          { e1 = new_e1; cons; name; expr_typ = Expr.maybe_ty (Mark.get expr) },
        Expr.pos expr ),
      ren_ctx )
  | ETuple args ->
    let args_stmts, new_args, ren_ctx = translate_expr_list ctxt args in
    args_stmts, (A.ETuple new_args, Expr.pos expr), ren_ctx
  | EArray args ->
    let args_stmts, new_args, ren_ctx = translate_expr_list ctxt args in
    args_stmts, (A.EArray new_args, Expr.pos expr), ren_ctx
  | _ -> invalid_arg "translate_struct_literal"

and translate_expr (ctxt : 'm ctxt) (expr : 'm L.expr) :
    RevBlock.t * A.expr * Renaming.context =
  match Mark.remove expr with
  | EVar v ->
    let local_var =
      try A.EVar (Var.Map.find v ctxt.var_dict)
      with Var.Map.Not_found _ -> (
        try A.EFunc (Var.Map.find v ctxt.func_dict)
        with Var.Map.Not_found _ ->
          Message.error ~pos:(Expr.pos expr)
            "Var not found in lambda→scalc: %a@\nknown: @[<hov>%a@]@\n"
            Print.var_debug v
            (Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf v ->
                 Print.var_debug ppf v))
            (Var.Map.keys ctxt.var_dict))
    in
    RevBlock.empty, (local_var, Expr.pos expr), ctxt.ren_ctx
  | EStruct _ | EInj _ | ETuple _ | EArray _ ->
    (* In C89, struct literals have to be initialized at variable
       definition... *)
    if ctxt.config.no_struct_literals then spill_expr ctxt expr
    else translate_struct_literal ctxt expr
  | EStructAccess { e = e1; field; name } ->
    let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
    ( e1_stmts,
      (A.EStructFieldAccess { e1 = new_e1; field; name }, Expr.pos expr),
      ren_ctx )
  | ETupleAccess { e = e1; index; _ } ->
    let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
    let typ = Expr.maybe_ty (Mark.get expr) in
    ( e1_stmts,
      (A.ETupleAccess { e1 = new_e1; index; typ }, Expr.pos expr),
      ren_ctx )
  | EAppOp
      {
        op = Op.HandleExceptions, pos;
        tys = [t_arr];
        args = [(EArray exceptions, _)];
      } ->
    let stmts, new_exceptions, ren_ctx = translate_expr_list ctxt exceptions in
    let ctxt = { ctxt with ren_ctx } in
    let stmts, excs, ctxt =
      if not ctxt.config.no_struct_literals then
        stmts, (A.EArray new_exceptions, pos), ctxt
      else
        let arr_var_name, ctxt =
          fresh_var ~pos ctxt ("exc_" ^ ctxt.context_name)
        in
        let stmts =
          stmts
          +> ( A.SLocalInit
                 {
                   name = arr_var_name, pos;
                   typ = t_arr;
                   expr = A.EArray new_exceptions, pos;
                 },
               pos )
        in
        stmts, (A.EVar arr_var_name, pos), ctxt
    in
    ( stmts,
      ( A.EAppOp { op = Op.HandleExceptions, pos; args = [excs]; tys = [t_arr] },
        pos ),
      ctxt.ren_ctx )
  | EAppOp { op; args; tys } ->
    let pos = Mark.get op in
    let stmts, args, ren_ctx = translate_expr_list ctxt args in
    let ctxt = { ctxt with ren_ctx } in
    let stmts, args, tys, ctxt =
      if op_can_raise op then
        let epos, vposdef, ctxt = lift_pos ctxt pos in
        ( RevBlock.append stmts vposdef,
          epos :: args,
          (TLit TPos, pos) :: tys,
          ctxt )
      else stmts, args, tys, ctxt
    in
    (* FIXME: what happens if [arg] is not a tuple but reduces to one ? *)
    stmts, (A.EAppOp { op; args; tys }, Expr.pos expr), ctxt.ren_ctx
  | EApp { f = EAbs { binder; _ }, binder_mark; args; tys } ->
    (* This defines multiple local variables at the time *)
    let binder_pos = Expr.mark_pos binder_mark in
    let vars, body, ctxt = unmbind ctxt binder in
    let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in
    let ctxt =
      List.fold_left (register_fresh_arg ~pos:binder_pos) ctxt vars_tau
    in
    let vars_args =
      List.map2
        (fun (x, tau) arg ->
          (Var.Map.find x ctxt.var_dict, binder_pos), tau, arg)
        vars_tau args
    in
    let local_defs, ctxt =
      List.fold_left
        (fun (defs, ctxt) (var, typ, arg) ->
          let decl = A.SLocalDecl { name = var; typ }, binder_pos in
          let stmts, ren_ctx = translate_assignment ctxt (Some var) arg in
          defs +> decl ++ stmts, { ctxt with ren_ctx })
        (RevBlock.empty, ctxt) vars_args
    in
    let rest_of_expr_stmts, rest_of_expr, ren_ctx = translate_expr ctxt body in
    local_defs ++ rest_of_expr_stmts, rest_of_expr, ren_ctx
  | EApp { f; args; tys = _ } ->
    let f_stmts, new_f, ren_ctx = translate_expr ctxt f in
    let args_stmts, new_args, ren_ctx =
      translate_expr_list { ctxt with ren_ctx } args
    in
    let poly =
      match Mark.remove f with
      | EExternal { name = External_value name, _ } ->
        let typ, _ =
          TopdefName.Map.find name ctxt.program_ctx.decl_ctx.ctx_topdefs
        in
        not
          (Type.Var.Set.is_empty
             (Type.free_vars (Type.arrow_return (Type.unquantify typ))))
      | EVar v -> Var.Set.mem v ctxt.poly_funcs
      | _ -> false
    in
    (* FIXME: what happens if [arg] is not a tuple but reduces to one ? *)
    ( f_stmts ++ args_stmts,
      ( A.EApp
          {
            f = new_f;
            args = new_args;
            typ = Expr.maybe_ty (Mark.get expr);
            poly;
          },
        Expr.pos expr ),
      ren_ctx )
  | ELit l -> RevBlock.empty, (A.ELit l, Expr.pos expr), ctxt.ren_ctx
  | EPos p ->
    let epos, vposdef, ctxt = lift_pos ctxt p in
    RevBlock.empty +> vposdef, epos, ctxt.ren_ctx
  | EExternal { name } ->
    let path, name =
      match Mark.remove name with
      | External_value name -> TopdefName.(path name, get_info name)
      | External_scope name -> ScopeName.(path name, get_info name)
    in
    let modname =
      ( ModuleName.Map.find
          (Option.get (Uid.Path.last_member path))
          ctxt.program_ctx.modules,
        Expr.pos expr )
    in
    RevBlock.empty, (EExternal { modname; name }, Expr.pos expr), ctxt.ren_ctx
  | EAbs _ | EIfThenElse _ | EMatch _ | EAssert _ | EFatalError _ ->
    spill_expr ctxt expr
  | _ -> .

(** Used when an lcalc expression needs to be translated, but doesn't fit in a
    single statement: creates a temporary variable that gets assigned to by a
    block of statements, and an expression containing the variable holding the
    result *)
and spill_expr ctxt expr =
  let pos = Expr.pos expr in
  let typ = Expr.maybe_ty (Mark.get expr) in
  let tmp_var, ctxt = fresh_var ctxt ctxt.context_name ~pos in
  let ctxt =
    { ctxt with context_name = Mark.remove (A.VarName.get_info tmp_var) }
  in
  match Mark.remove expr with
  | (EArray _ | EStruct _ | EInj _ | ETuple _)
    when ctxt.config.no_struct_literals ->
    (* We want [SLocalInit] for these constructs requiring malloc *)
    let stmts, expr, ren_ctx = translate_struct_literal ctxt expr in
    ( stmts +> (A.SLocalInit { name = tmp_var, pos; expr; typ }, pos),
      (A.EVar tmp_var, pos),
      ren_ctx )
  | _ ->
    let tmp_stmts, ren_ctx =
      translate_assignment ctxt (Some (tmp_var, Expr.pos expr)) expr
    in
    let stmts =
      RevBlock.make
        [
          ( A.SLocalDecl
              { name = tmp_var, pos; typ = Expr.maybe_ty (Mark.get expr) },
            pos );
        ]
      ++ tmp_stmts
    in
    stmts, (A.EVar tmp_var, pos), ren_ctx

(** This translates an expression [block_expr] to a series of statements that
    compute its value, and either assign to the given variable, or return it. *)
and translate_assignment
    (ctxt : 'm ctxt)
    (assign_to : A.VarName.t Mark.pos option)
    (block_expr : 'm L.expr) : RevBlock.t * Renaming.context =
  let pos = Expr.pos block_expr in
  let ctxt =
    match assign_to with
    | Some (v, _) ->
      { ctxt with context_name = Mark.remove (A.VarName.get_info v) }
    | None -> ctxt
  in
  match Mark.remove block_expr with
  | EAssert e ->
    let e_stmts, expr, ren_ctx = translate_expr ctxt e in
    let pos_expr, vposdef, ctxt = lift_pos { ctxt with ren_ctx } pos in
    e_stmts +> vposdef +> (A.SAssert { pos_expr; expr }, pos), ctxt.ren_ctx
  | EFatalError error ->
    let pos_expr, vposdef, ctxt = lift_pos ctxt pos in
    RevBlock.make [vposdef; SFatalError { pos_expr; error }, pos], ctxt.ren_ctx
  | EApp { f = EAbs { binder; _ }, binder_mark; args; tys } ->
    (* This defines multiple local variables at the time *)
    let binder_pos = Expr.mark_pos binder_mark in
    let vars, body, ctxt = unmbind ctxt binder in
    let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in
    let ctxt =
      List.fold_left (register_fresh_arg ~pos:binder_pos) ctxt vars_tau
    in
    let local_decls =
      List.map
        (fun (x, tau) ->
          ( A.SLocalDecl
              { name = Var.Map.find x ctxt.var_dict, binder_pos; typ = tau },
            binder_pos ))
        vars_tau
      |> RevBlock.make
    in
    let vars_args =
      List.map2
        (fun (x, tau) arg ->
          (Var.Map.find x ctxt.var_dict, binder_pos), tau, arg)
        vars_tau args
    in
    let def_blocks, ren_ctx =
      List.fold_left
        (fun (def_blocks, ren_ctx) (x, _tau, arg) ->
          let ctxt = { ctxt with ren_ctx } in
          let stmts, ren_ctx = translate_assignment ctxt (Some x) arg in
          def_blocks ++ stmts, ren_ctx)
        (RevBlock.empty, ctxt.ren_ctx)
        vars_args
    in
    let rest_of_block, ren_ctx =
      translate_assignment { ctxt with ren_ctx } assign_to body
    in
    local_decls ++ def_blocks ++ rest_of_block, ren_ctx
  | EAbs { binder; pos = _; tys } ->
    let vars, body, ctxt = unmbind ctxt binder in
    let binder_pos = Expr.pos block_expr in
    let vars_tau = List.combine (Array.to_list vars) tys in
    let ctxt =
      List.fold_left (register_fresh_arg ~pos:binder_pos) ctxt vars_tau
    in
    let stmts_body, ren_ctx = translate_assignment ctxt None body in
    let name =
      match assign_to with
      | Some v -> v
      | None -> assert false (* it's not allowed to [return] a function *)
    in
    ( RevBlock.make
        [
          ( A.SInnerFuncDef
              {
                name;
                func =
                  {
                    func_params =
                      List.map
                        (fun (var, tau) ->
                          (Var.Map.find var ctxt.var_dict, binder_pos), tau)
                        vars_tau;
                    func_body = RevBlock.rebuild stmts_body ~tail:[];
                    func_return_typ =
                      (match
                         Type.unquantify (Expr.maybe_ty (Mark.get block_expr))
                       with
                      | TArrow (_, t2), _ -> t2
                      | TVar _, pos_any -> Type.any pos_any
                      | _ -> assert false);
                  };
              },
            binder_pos );
        ],
      ren_ctx )
  | EMatch { e = e1; cases; name } ->
    let typ = Expr.maybe_ty (Mark.get e1) in
    let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
    let ctxt = { ctxt with ren_ctx } in
    let e1_stmts, switch_var, ctxt =
      match new_e1 with
      | A.EVar v, _ -> e1_stmts, v, ctxt
      | _ ->
        let v, ctxt = fresh_var ctxt ctxt.context_name ~pos:(Expr.pos e1) in
        ( RevBlock.append e1_stmts
            ( A.SLocalInit { name = v, Expr.pos e1; expr = new_e1; typ },
              Expr.pos e1 ),
          v,
          ctxt )
    in
    let new_cases =
      EnumConstructor.Map.fold
        (fun _ arg new_args ->
          match Mark.remove arg with
          | EAbs { binder; pos = _; tys = typ :: _ } ->
            let vars, body, ctxt = unmbind ctxt binder in
            assert (Array.length vars = 1);
            let var = vars.(0) in
            let scalc_var, ctxt =
              register_fresh_var ctxt var ~pos:(Expr.pos arg)
            in
            let new_arg, _ren_ctx = translate_assignment ctxt assign_to body in
            {
              A.case_block = RevBlock.rebuild new_arg;
              payload_var_name = scalc_var;
              payload_var_typ = typ;
            }
            :: new_args
          | _ -> assert false)
        cases []
    in
    ( e1_stmts
      +> ( A.SSwitch
             {
               switch_var;
               switch_var_typ = Type.unquantify typ;
               enum_name = name;
               switch_cases = List.rev new_cases;
             },
           Expr.pos block_expr ),
      ctxt.ren_ctx )
  | EIfThenElse { cond; etrue; efalse } ->
    let cond_stmts, s_cond, ren_ctx = translate_expr ctxt cond in
    let ctxt = { ctxt with ren_ctx } in
    let s_e_true, _ = translate_assignment ctxt assign_to etrue in
    let s_e_false, _ = translate_assignment ctxt assign_to efalse in
    ( cond_stmts
      +> ( A.SIfThenElse
             {
               if_expr = s_cond;
               then_block = RevBlock.rebuild s_e_true;
               else_block = RevBlock.rebuild s_e_false;
             },
           Expr.pos block_expr ),
      ren_ctx )
  | EArray _ | EStruct _ | EInj _ | ETuple _ | ELit _ | EPos _ | EAppOp _
  | EVar _ | ETupleAccess _ | EStructAccess _ | EExternal _ | EApp _ ->
    let stmts, expr, ren_ctx =
      match Mark.remove block_expr with
      | (EArray _ | EStruct _ | EInj _ | ETuple _) as e ->
        let is_option =
          match e with
          | EInj { name; _ } -> EnumName.equal name Expr.option_enum
          | _ -> false
        in
        if ctxt.config.no_struct_literals && not is_option then
          spill_expr ctxt block_expr
        else translate_struct_literal ctxt block_expr
      | _ -> translate_expr ctxt block_expr
    in
    ( (stmts
      +>
      match assign_to with
      | None -> A.SReturn expr, pos
      | Some name ->
        ( A.SLocalDef
            {
              name;
              expr;
              typ = Mark.remove (Expr.maybe_ty (Mark.get block_expr)), pos;
            },
          pos )),
      ren_ctx )
  | _ -> .

let rec translate_scope_body_expr ctx (scope_expr : 'm L.expr scope_body_expr) :
    A.block =
  match scope_expr with
  | Last e ->
    let block, new_e, _ren_ctx = translate_expr ctx e in
    RevBlock.rebuild block ~tail:[A.SReturn new_e, Mark.get new_e]
  | Cons (scope_let, next_bnd) ->
    let let_var, scope_let_next, ctx = unbind ctx next_bnd in
    let pos = scope_let.scope_let_pos in
    let let_var_id, ctx = register_fresh_var ctx let_var ~pos in
    let decl, assign_to =
      if scope_let.scope_let_kind = Assertion then RevBlock.empty, None
      else
        ( RevBlock.make
            [
              ( A.SLocalDecl
                  { name = let_var_id, pos; typ = scope_let.scope_let_typ },
                pos );
            ],
          Some (let_var_id, pos) )
    in
    let statements, ren_ctx =
      translate_assignment ctx assign_to scope_let.scope_let_expr
    in
    RevBlock.rebuild (decl ++ statements)
      ~tail:(translate_scope_body_expr { ctx with ren_ctx } scope_let_next)

let translate_program ~(config : translation_config) (p : 'm L.program) :
    A.program =
  let ctxt =
    {
      func_dict = Var.Map.empty;
      var_dict = Var.Map.empty;
      context_name = "top";
      config;
      program_ctx = { A.decl_ctx = p.decl_ctx; modules = ModuleName.Map.empty };
      ren_ctx = config.renaming_context;
      poly_funcs = Var.Set.empty;
    }
  in
  let modules, ctxt =
    List.fold_left
      (fun (modules, ctxt) (m, _) ->
        let name, pos = ModuleName.get_info m in
        let vname, ctxt =
          if config.keep_module_names then
            ( name,
              { ctxt with ren_ctx = Renaming.reserve_name ctxt.ren_ctx name } )
          else get_name ctxt name
        in
        ModuleName.Map.add m (A.VarName.fresh (vname, pos)) modules, ctxt)
      (ModuleName.Map.empty, ctxt)
      (Program.modules_to_list p.decl_ctx.ctx_modules)
  in
  let program_ctx = { ctxt.program_ctx with A.modules } in
  let ctxt = { ctxt with program_ctx } in
  let translate_code_item (ctxt, rev_items) code_item var =
    match code_item with
    | ScopeDef (name, body) ->
      let scope_input_var, scope_body_expr, outer_ctx =
        unbind ctxt body.scope_body_expr
      in
      let input_pos = Mark.get (ScopeName.get_info name) in
      let scope_input_var_id, inner_ctx =
        register_fresh_var ctxt scope_input_var ~pos:input_pos
      in
      let new_scope_body =
        translate_scope_body_expr
          { inner_ctx with context_name = ScopeName.base name }
          scope_body_expr
      in
      let func_id, outer_ctx =
        register_fresh_func outer_ctx var ~pos:input_pos ~poly:false
      in
      ( outer_ctx,
        A.SScope
          {
            Ast.scope_body_name = name;
            Ast.scope_body_var = func_id;
            scope_body_func =
              {
                A.func_params =
                  [
                    ( (scope_input_var_id, input_pos),
                      (TStruct body.scope_body_input_struct, input_pos) );
                  ];
                A.func_body = new_scope_body;
                func_return_typ =
                  TStruct body.scope_body_output_struct, input_pos;
              };
            scope_body_visibility = body.scope_body_visibility;
          }
        :: rev_items )
    | Topdef (name, topdef_ty, visibility, (EAbs abs, m)) ->
      (* Toplevel function def *)
      let (block, expr, _ren_ctx_inner), args_id =
        let args_a, expr, ctxt_inner = unmbind ctxt abs.binder in
        let args = Array.to_list args_a in
        let rargs_id, ctxt_inner =
          List.fold_left2
            (fun (rargs_id, ctxt_inner) v ty ->
              let pos = Mark.get ty in
              let id, ctxt_inner = register_fresh_var ctxt_inner v ~pos in
              ((id, pos), ty) :: rargs_id, ctxt_inner)
            ([], ctxt_inner) args abs.tys
        in
        let ctxt_inner =
          { ctxt_inner with context_name = TopdefName.base name }
        in
        translate_expr ctxt_inner expr, List.rev rargs_id
      in
      let body_block =
        RevBlock.rebuild block ~tail:[A.SReturn expr, Mark.get expr]
      in
      let poly =
        not
          (Type.Var.Set.is_empty
             (Type.free_vars (Type.arrow_return (Type.unquantify topdef_ty))))
      in
      let func_id, ctxt_outer =
        register_fresh_func ctxt var ~pos:(Expr.mark_pos m) ~poly
      in
      ( ctxt_outer,
        A.SFunc
          {
            var = func_id;
            func =
              {
                A.func_params = args_id;
                A.func_body = body_block;
                A.func_return_typ =
                  (match Type.unquantify topdef_ty with
                  | TArrow (_, t2), _ -> t2
                  | TVar _, pos_any -> Type.any pos_any
                  | _ -> failwith "should not happen");
              };
            visibility;
          }
        :: rev_items )
    | Topdef (name, topdef_ty, visibility, expr) ->
      (* Toplevel constant def *)
      let block, expr, _ren_ctx_inner =
        let ctxt = { ctxt with context_name = TopdefName.base name } in
        translate_expr ctxt expr
      in
      let var_id, ctxt =
        register_fresh_var ctxt var ~pos:(Mark.get (TopdefName.get_info name))
      in
      (* If the evaluation of the toplevel expr requires preliminary statements,
         we lift its computation into an auxiliary function *)
      let rev_items, ctxt =
        if (block :> (A.stmt * Pos.t) list) = [] then
          ( A.SVar { var = var_id; expr; typ = topdef_ty; visibility }
            :: rev_items,
            ctxt )
        else
          let pos = Mark.get expr in
          let func_name, ctxt =
            get_name ctxt (A.VarName.to_string var_id ^ "_init")
          in
          let func_id = A.FuncName.fresh (func_name, pos) in
          (* The list is being built in reverse order *)
          (* Note: this pattern is matched in the C backend to make allocations
             permanent. *)
          ( A.SVar
              {
                var = var_id;
                expr =
                  ( A.EApp
                      {
                        f = EFunc func_id, pos;
                        args = [];
                        typ = topdef_ty;
                        poly = false;
                      },
                    pos );
                typ = topdef_ty;
                visibility;
              }
            :: A.SFunc
                 {
                   var = func_id;
                   func =
                     {
                       A.func_params = [];
                       A.func_body =
                         RevBlock.rebuild block
                           ~tail:[A.SReturn expr, Mark.get expr];
                       A.func_return_typ = topdef_ty;
                     };
                   visibility = Private;
                 }
            :: rev_items,
            ctxt )
      in
      ( ctxt,
        (* No need to add func_id since the function will only be called right
           here *)
        rev_items )
  in
  let (ctxt, rev_items), exports =
    BoundList.fold_left ~init:(ctxt, []) ~f:translate_code_item p.code_items
  in
  let _, rev_tdefs, rev_tests =
    List.fold_left
      (fun (ctxt, rev_tdefs, rev_tests) -> function
        | KTest scope, e ->
          let var, ctxt =
            fresh_var ~pos:(Expr.pos e) ctxt
              (ScopeName.to_string scope ^ "_test")
          in
          (* The expression here may contain leading closure definitions that
             should be local to the test *)
          let rec unlet ctxt rev_tdefs = function
            | ( EApp
                  {
                    tys = [((TArrow ((TClosureEnv, _) :: _, _), _) as ty)];
                    f = EAbs { binder; _ }, _;
                    args = [closure];
                  },
                m ) ->
              let pos = Expr.mark_pos m in
              let vars, body = Bindlib.unmbind binder in
              let v = vars.(0) in
              let ctxt, rev_tdefs =
                translate_code_item (ctxt, rev_tdefs)
                  (Topdef
                     ( TopdefName.fresh [] (Bindlib.name_of v, pos),
                       ty,
                       Private,
                       closure ))
                  v
              in
              unlet ctxt rev_tdefs body
            | e ->
              let pos = Mark.get (ScopeName.get_info scope) in
              let block, expr, _ren_ctx = translate_expr ctxt e in
              let exec =
                ( A.SLocalInit
                    { name = var, pos; typ = Expr.maybe_ty (Mark.get e); expr },
                  pos )
              in
              ( ctxt,
                rev_tdefs,
                (scope, RevBlock.rebuild (block +> exec)) :: rev_tests )
          in
          unlet ctxt rev_tdefs e
        | _ -> ctxt, rev_tdefs, rev_tests)
      (ctxt, [], []) exports
  in
  {
    ctx = program_ctx;
    code_items = List.rev rev_items;
    module_name = p.module_name;
    tests = List.rev rev_tdefs, List.rev rev_tests;
  }