package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
dune-project
Dependency
Authors
Maintainers
Sources
caisar-0.2.1.tbz
sha256=a9a704f1e4e255eee2e9b0333e6c7b0e3e002293ce0068faa1c3d7c18d209997
sha512=7e35bd5527f82c5c6f62452c88e2971907a4eab89fd4efb699b99eb95f730d752908d51c47e104dcff5ceb58cf24c87d3399cb42e09a47691440927463168abb
doc/src/caisar.onnx/onnx.ml.html
Source file onnx.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2023 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Base module Format = Stdlib.Format module Fun = Stdlib.Fun module Oproto = Onnx_protoc (* Autogenerated during compilation *) module Oprotom = Oproto.Onnx.ModelProto module NCFG = Ir.Nier_cfg module G = NCFG.NierCFGFloat exception ParseError of string type t = { n_inputs : int; (* Number of inputs. *) n_outputs : int; (* Number of outputs. *) nier : (G.t, string) Result.t; (* Intermediate representation. *) } (* ONNX format handling. *) type op_attribute = Oproto.Onnx.AttributeProto.t type tensordata = | Raw of bytes | Float of float list let (no_attr : op_attribute) = { name = None; ref_attr_name = None; doc_string = None; type' = None; f = None; i = None; s = None; t = None; g = None; floats = []; ints = []; strings = []; tensors = []; graphs = []; sparse_tensor = None; tp = None; sparse_tensors = []; type_protos = []; } let get_nested_dims (s : Oproto.Onnx.ValueInfoProto.t list) = match List.nth s 0 with | Some { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ } -> v | _ -> [] let flattened_dim (dim : Oproto.Onnx.TensorShapeProto.Dimension.t list) = List.fold ~init:1 dim ~f:(fun acc x -> match x.value with | `Dim_value v -> acc * v | `Dim_param _ -> acc | `not_set -> acc) let get_input_output_dim (model : Oprotom.t) = let input_shape, output_shape = match model.graph with | Some g -> (get_nested_dims g.input, get_nested_dims g.output) | _ -> ([], []) in (* TODO: here we only get the flattened dimension of inputs and outputs, but more interesting parsing could be done later on. *) let input_flat_dim = flattened_dim input_shape in let output_flat_dim = flattened_dim output_shape in (input_flat_dim, output_flat_dim) let produce_cfg (g : Oproto.Onnx.GraphProto.t) = let open Oproto.Onnx in let nodes = g.node and inputs = g.input and outputs = g.output and initi = g.initializer' in let fold_vip_names acc n = match n.ValueInfoProto.name with | Some str -> Some str :: acc | None -> None :: acc in let i_nodes, o_nodes = ( List.fold inputs ~init:[] ~f:fold_vip_names, List.fold outputs ~init:[] ~f:fold_vip_names ) and c_nodes = List.init (List.length nodes) ~f:(fun _ -> None) in let fold_nodes_ops_cfg ns = let get_node_operator_cfg x = match x.NodeProto.op_type with | None -> NCFG.Node.NO_OP | Some o -> ( match o with | "Add" -> NCFG.Node.Add | "Sub" -> NCFG.Node.Sub | "Mul" -> NCFG.Node.Mul | "Div" -> NCFG.Node.Div | "Relu" -> NCFG.Node.ReLu | "MatMul" -> NCFG.Node.Matmul | "Gemm" -> NCFG.Node.Gemm | "LogSoftmax" -> NCFG.Node.LogSoftmax | "Transpose" -> NCFG.Node.Transpose | "Squeeze" -> NCFG.Node.Squeeze | "MaxPool" -> NCFG.Node.MaxPool | "Constant" -> NCFG.Node.Constant | "Conv" -> NCFG.Node.Conv | "Reshape" -> NCFG.Node.Reshape | "Flatten" -> NCFG.Node.Flatten | "Identity" -> NCFG.Node.Identity | _ -> raise (ParseError ("Unsupported ONNX operator " ^ o))) in List.fold ~f:(fun acc n -> get_node_operator_cfg n :: acc) ~init:[] ns in let c_ops = List.rev @@ fold_nodes_ops_cfg nodes and i_ops, o_ops = ( List.init ~f:(fun _ -> NCFG.Node.NO_OP) (List.length i_nodes), List.init ~f:(fun _ -> NCFG.Node.NO_OP) (List.length o_nodes) ) in let fold_nodes_attr ns = let get_node_attr n = n.NodeProto.attribute in List.fold ~f:(fun acc n -> get_node_attr n :: acc) ~init:[] ns in let c_attr = List.rev @@ fold_nodes_attr nodes and i_attr, o_attr = ( List.init ~f:(fun _ -> [ no_attr ]) (List.length i_nodes), List.init ~f:(fun _ -> [ no_attr ]) (List.length o_nodes) ) in let c_nodes_inputs, c_nodes_outputs = List.unzip @@ List.fold ~f:(fun acc n -> (n.NodeProto.input, n.NodeProto.output) :: acc) ~init:[] (List.rev nodes) and i_nodes_inputs, i_nodes_outputs, o_nodes_inputs, o_nodes_outputs = ( List.init ~f:(fun _ -> [ "NO_INPUT" ]) (List.length i_nodes), List.init ~f:(fun _ -> [ "" ]) (List.length i_nodes), List.init ~f:(fun _ -> [ "" ]) (List.length o_nodes), List.init ~f:(fun _ -> [ "NO_OUTPUT" ]) (List.length o_nodes) ) in let data_dict = let dict_tensors_cfg ts = let get_float_from_index index data sh = let index = Array.to_list index and sh = Array.to_list sh in let pop_sh = List.tl_exn sh @ [ 1 ] in (* Returns the factors by which multiply each coordinate *) let rec get_factors_from_sh sh_f l = match sh_f with | [] -> List.rev l | _ -> get_factors_from_sh (List.tl_exn sh_f) (List.fold ~f:(fun x y -> x * y) ~init:1 sh_f :: l) in let factors = get_factors_from_sh pop_sh [] in let coord_in_data = List.fold2_exn ~f:(fun x y z -> x + (y * z)) ~init:0 index factors in match data with | Raw raw -> let offset = 4 * coord_in_data in (* Each float is coded on 4 bytes*) let res = EndianBytes.LittleEndian.get_float raw offset in res | Float f -> List.nth_exn f coord_in_data in let build_tensor_from_data sh data = let open NCFG.Tensor in let sh = Array.of_list @@ sh in let tensor = create sh K_float in let coords = all_coords (get_shape tensor) in let rec init_tensor t idx r = match idx with | x :: y -> let value = get_float_from_index (Array.of_list x) r (get_shape t) in set t (Array.of_list x) value; init_tensor t y r | [] -> t in init_tensor tensor coords data in let t_name x = match x.TensorProto.name with Some n -> n | None -> "C_NODE" in let t_dim x = x.TensorProto.dims in let t_data x = match x.TensorProto.raw_data with | Some rd -> Some (build_tensor_from_data (t_dim x) (Raw rd)) | None -> ( match x.TensorProto.float_data with | [] -> None | f -> Some (build_tensor_from_data (t_dim x) (Float f))) in List.fold ~f:(fun m x -> Map.add_exn m ~key:(t_name x) ~data:(t_data x)) ~init:(Map.empty (module String)) ts in dict_tensors_cfg initi in let unpack v = match v with | Some v -> v | None -> failwith "Unpack found an unexpected None" in let tensor_list = List.init ~f:(fun i -> match Map.find data_dict (unpack (List.nth_exn i_nodes i)) with | Some v -> v | None -> None) (List.length i_nodes) in let tensor_list_full = Map.to_alist data_dict in let tensor_list_rev = List.rev tensor_list in let vip_dims v = let val_t = match v.ValueInfoProto.type' with | Some t -> t | None -> failwith "No type in value info" in let tns_t = match val_t.TypeProto.value with | `Tensor_type t -> t | `not_set -> failwith "No tensor type in value info" (* TODO: support more tensor types *) | _ -> raise (ParseError "Unknown tensor type") in let tns_s = match tns_t.shape with | Some s -> s | None -> failwith "No tensor shape in value info" in List.rev @@ List.fold tns_s ~init:[] ~f:(fun acc d -> match d.value with | `Dim_value d -> d :: acc | `not_set | _ -> 0 :: acc) in let c_tensordim_list = List.init (List.length nodes) ~f:(fun _ -> []) and c_tensorraw_list = List.init (List.length nodes) ~f:(fun _ -> None) and o_tensordim_list = List.fold ~f:(fun acc n -> vip_dims n :: acc) ~init:[] outputs and o_tensorraw_list = List.init (List.length o_nodes) ~f:(fun _ -> None) and i_tensordim_list = List.fold ~f:(fun acc n -> vip_dims n :: acc) ~init:[] inputs and i_tensorraw_list = tensor_list_rev in let nodes_names = i_nodes @ c_nodes @ o_nodes in let ops = i_ops @ c_ops @ o_ops in let attrs = i_attr @ c_attr @ o_attr in let prevs_list = i_nodes_inputs @ c_nodes_inputs @ o_nodes_inputs in let nexts_list = i_nodes_outputs @ c_nodes_outputs @ o_nodes_outputs in let tensor_dims = i_tensordim_list @ c_tensordim_list @ o_tensordim_list in let tensors = i_tensorraw_list @ c_tensorraw_list @ o_tensorraw_list in let operator_parameters (attr : AttributeProto.t list) op = match op with | NCFG.Node.Transpose -> let ints_params = Array.of_list (List.nth_exn attr 0).ints in Some (NCFG.Node.Transpose_params ints_params) (*TODO: maxpool and conv operators: match attr.name in attributes to * create the correct value for each attribute*) (* | NCFG.Vertex.MaxPool -> *) (* | NCFG.Vertex.Conv -> *) | _ -> None in let rec build_op_param_list attrs ops l = match (attrs, ops) with | a :: b, c :: d -> build_op_param_list b d (operator_parameters a c :: l) | [], [] -> List.rev l (*All other list constructions are folding right, so we need to put a final revert *) | _ -> raise (ParseError "Operator and attribute lists have not the same size") in let op_params_cfg = build_op_param_list attrs ops [] in let cfg = G.init_cfg in (* adding inputs, outputs and cnodes to the cfg *) let unkerasize l = List.map ~f:(fun x -> if x = 0 then 1 else x) l in for i = 0 to List.length nodes_names - 1 do let (v : G.V.t) = NCFG.Node.create ~id:i ~name:(List.nth_exn nodes_names i) ~sh:(Array.of_list @@ unkerasize (List.nth_exn tensor_dims i)) ~op:(List.nth_exn ops i) ~op_p:(List.nth_exn op_params_cfg i) ~pred:(List.nth_exn prevs_list i) ~succ:(List.nth_exn nexts_list i) ~tensor:(List.nth_exn tensors i) in G.add_vertex cfg v done; (* Adding edges between vertices *) (* For each unnamed vertex (= a calculation node) in the cfg ... *) (* return true if l1 has at least one common element wih l2 *) let rec l1 l2 = match l1 with | x :: y -> List.mem l2 x ~equal:String.equal || shared_elm y l2 | [] -> false in List.iter ~f:(fun (v : G.V.t) -> match v.name with | None -> let pred = v.pred and succ = v.succ in let prev_v = (* ... get all vertices in cfg that have the current vertex preds * in their succ (at least one of their succ is inside our preds )*) G.find_vertices cfg (fun (x : G.V.t) -> if shared_elm pred x.succ then true else false) (* ... get all vertices in cfg that have the current vertex preds * in their name (they are named the same as one of our preds )*) and named_pred = G.find_vertices cfg (fun (x : G.V.t) -> match x.name with | Some name -> if shared_elm pred [ name ] then true else false | None -> false) (* ... get all vertices in cfg that have the current vertex succ * in their name (they are named the same as one of our succs )*) and named_succ = G.find_vertices cfg (fun (x : G.V.t) -> match x.name with | Some name -> if shared_elm succ [ name ] then true else false | None -> false) (* get all vertices in cfg that have the current vertex succs * in their preds (at least one of their preds is inside our succ )*) and next_v = G.find_vertices cfg (fun (x : G.V.t) -> if shared_elm succ x.pred then true else false) in (* add edges between current vertex and identified preds and succs *) let v_predecessors = prev_v @ named_pred and v_successors = next_v @ named_succ in let unpack_tname (x : G.V.t) = match x.NCFG.Node.name with Some n -> n | None -> "" in List.iter ~f:(fun (x : G.V.t) -> let label = match List.nth x.succ 0 with | Some "NO_OUTPUT" -> let pred_name = unpack_tname x in if List.mem ~equal:String.equal v.NCFG.Node.pred pred_name then pred_name else "" | Some l -> l | None -> "" in G.add_edge_e cfg (x, label, v)) v_predecessors; (* add successors edges after filtering those * that are already an edge*) List.iter ~f:(fun (x : G.V.t) -> let all_preds = G.preds cfg x and all_succs = G.succs cfg x in if List.mem ~equal:NCFG.Node.equal all_preds v || List.mem ~equal:NCFG.Node.equal all_succs v then () else let label = match List.nth_exn x.pred 0 with | "NO_INPUT" -> let succ_name = unpack_tname x in if List.mem ~equal:String.equal v.NCFG.Node.succ succ_name then succ_name else "" | l -> l in G.add_edge_e cfg (v, label, x)) v_successors | _ -> ()) (G.vertex_list cfg); (*rationale of the following: * PyTorch stores network nodes in the field "inputs" of * the ONNX graph g, and network parameters as a list of tensors * in the ONNX initializer_. * To make the two correspond, elements of g.inputs and g.initializer_ * share the same value in the field "name". * In Keras, elements of g.initializer_ have a name, but they do not * correspond to any name in g.inputs. * What we did before was then to create the actual nier cfg following the * PyTorch way. * Below, we complete the cfg with keras data by doing the following: * * create a node for NIER for each tensor in onnx initializer_ * * for each NIER node, check if there is a node sharing the same name * pred * * if yes, remove the one with highest ID (those are initi nodes, but since * there is already a node in CFG with this name we do not * need those) * * if not, for each NIER node, chck if there is a node * which name is contained in prevs. add it to the prev * *) (* adding initi vertices to the cfg *) for i = 0 to List.length tensor_list_full - 1 do let shape = match snd (List.nth_exn tensor_list_full i) with | Some t -> unkerasize (Array.to_list @@ NCFG.Tensor.get_shape t) | None -> [] in let (v : G.V.t) = NCFG.Node.create ~id:(i + List.length nodes_names) ~name:(Some (fst (List.nth_exn tensor_list_full i))) ~sh:(Array.of_list @@ unkerasize shape) ~op:NO_OP ~op_p:None ~pred:[] ~succ:[] ~tensor:(snd (List.nth_exn tensor_list_full i)) in G.add_vertex cfg v done; (* build a list of nodes * sharing name but with different ids *) let same_name_diff_ids = let aux (x : G.V.t) = G.fold_vertex (fun y acc -> match (x.name, y.name) with | Some xa, Some ya -> if (not (y.id = x.id)) && String.equal xa ya then (x, y) :: acc else acc | _ -> acc) cfg [] in G.fold_vertex (fun x l -> aux x :: l) cfg [] in let highest_ids = List.fold ~f:(fun acc x -> match x with | a :: _ -> let maxval = max (fst a).NCFG.Node.id (snd a).NCFG.Node.id in maxval :: acc | [] -> acc) ~init:[] same_name_diff_ids in (* (* removing nodes with highest id, those are the*) (* * ones we just added *)*) List.iter ~f:(fun x -> match x with | l :: _ -> let v1 = fst l in if List.mem ~equal:( = ) highest_ids v1.NCFG.Node.id then (* Printf.printf "Removing id %d \n%!" *) (* v1.NCFG.Vertex.id; *) G.remove_vertex cfg v1 else () | [] -> ()) same_name_diff_ids; (* Now it is Keras time. * Look for nodes sharing name and preds, * then create edge *) let = let aux (x : G.V.t) = match x.name with (* look in other vertices if name is among * predecessors *) | Some n -> G.find_vertices cfg (fun x -> shared_elm [ n ] x.pred) | None -> [] in G.fold_vertex (fun x l -> (x, aux x) :: l) cfg [] in List.iter ~f:(fun x -> let orgn = fst x and to_edge = snd x in List.iter ~f:(fun t -> if not (G.mem_edge cfg orgn t) then G.add_edge_e cfg (orgn, unpack orgn.NCFG.Node.name, t) else ()) to_edge) shared_name_preds; (* else (); *) cfg let nier_of_onnx_protoc (model : Oprotom.t) = match model.graph with | Some g -> produce_cfg g | None -> raise (ParseError "No graph in ONNX input file found") let parse_in_channel in_channel = let open Result in try let buf = Stdio.In_channel.input_all in_channel in let reader = Ocaml_protoc_plugin.Reader.create buf in match Oprotom.from_proto reader with | Ok r -> let n_inputs, n_outputs = get_input_output_dim r in let nier = try Ok (nier_of_onnx_protoc r) with | ParseError s | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) in Ok { n_inputs; n_outputs; nier } | _ -> Error "Cannot read protobuf" with | Sys_error s -> Error s | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg) let parse filename = let in_channel = Stdlib.open_in filename in Fun.protect ~finally:(fun () -> Stdlib.close_in in_channel) (fun () -> parse_in_channel in_channel)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>