package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
dune-project
Dependency
Authors
Maintainers
Sources
caisar-0.2.1.tbz
sha256=a9a704f1e4e255eee2e9b0333e6c7b0e3e002293ce0068faa1c3d7c18d209997
sha512=7e35bd5527f82c5c6f62452c88e2971907a4eab89fd4efb699b99eb95f730d752908d51c47e104dcff5ceb58cf24c87d3399cb42e09a47691440927463168abb
doc/src/caisar.ir/nier_cfg.ml.html
Source file nier_cfg.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
open Base open Stdio open Bigarray module Tensor = struct type ('a, 'b) t = ('a, 'b, c_layout) Genarray.t type shape = int array [@@deriving show] type ('a, 'b) t_kind = | K_int : (int64, int64_elt) t_kind | K_float : (float, float64_elt) t_kind let create : type a b. shape -> (a, b) t_kind -> (a, b) t = fun shape -> function | K_float -> Genarray.create float64 c_layout shape | K_int -> Genarray.create int64 c_layout shape let unsqueeze ~sh1 ~sh2 = let sh1, sh2 = (Array.to_list sh1, Array.to_list sh2) in let longest, shortest = match List.length sh1 > List.length sh2 with | true -> (sh1, sh2) | false -> (sh2, sh1) in (*find the index of the potential additional dimension*) let where_zero = match List.nth_exn longest 0 with | 0 -> Some 0 | _ -> ( match List.last_exn longest with | 0 -> Some (List.length longest - 1) | _ -> None) in match where_zero with | Some idx -> ( match List.sub longest ~pos:idx ~len:(List.length shortest) with | [] -> None | _ -> Some (Array.of_list longest)) | None -> None let get t idx = Genarray.get t idx let set t idx v = Genarray.set t idx v let all_coords sh = let sh = Array.to_list sh in let rec ranges acc shape = match shape with | x :: y -> ranges (List.init x ~f:(fun i -> i) :: acc) y | [] -> acc (* a list containing a list of all possible indexes, for each dimension *) in let xxs = ranges [] sh in (* add to each element of the list of all possible coordinates all*) (* * possible indexes ... *) let aux acc xs = List.concat @@ List.map xs ~f:(fun x -> List.map ~f:(fun lt -> x :: lt) acc) (* ... for each dimension, starting from an empty list of*) (* * possible coordinates *) in List.fold xxs ~init:[ [] ] ~f:aux let flatten t = let shape = Genarray.dims t in let all_idxs = all_coords shape in List.init (List.length all_idxs) ~f:(fun i -> get t (Array.of_list @@ List.nth_exn all_idxs i)) let get_shape t = Genarray.dims t let equal f t1 t2 = let t1_sh = get_shape t1 and t2_sh = get_shape t2 in if Array.equal ( = ) t1_sh t2_sh then let all_idxs = all_coords (get_shape t1) in List.fold ~f:(fun acc x -> if acc then f (get t1 (Array.of_list x)) (get t2 (Array.of_list x)) else false) all_idxs ~init:true else false let num_neurons sh = Array.fold ~init:1 ~f:(fun x y -> x * y) sh let get_flatnd_idx ~idx ~sh flt = let sh = Array.to_list sh in let pop_sh = List.tl_exn sh @ [ 1 ] in let rec get_factors_from_sh sh_f l = match sh_f with | [] -> List.rev l | _ -> get_factors_from_sh (List.tl_exn sh_f) (List.fold ~f:(fun x y -> x * y) ~init:1 sh_f :: l) in let factors = get_factors_from_sh pop_sh [] in let coord_in_data = match List.fold2 ~f:(fun x y z -> x + (y * z)) ~init:0 (Array.to_list idx) factors with | List.Or_unequal_lengths.Ok i -> i | List.Or_unequal_lengths.Unequal_lengths -> failwith "Unequal lengths in get_flatnd_idx" in List.nth_exn flt coord_in_data let transpose_2d _t = assert false end (* TODO: maybe add markers for special nodes, to reflect they are the inputs and outputs of the neural network? *) module Node = struct type shape = int array let show_shape sh = let sh = Array.to_list sh in match sh with | [] -> "[]" | x :: y -> "[" ^ Int.to_string x ^ List.fold ~init:"" ~f:(fun str e -> str ^ ";" ^ Int.to_string e) y ^ "]" type operator = | Add | Sub | Mul | Div | Matmul | Gemm | LogSoftmax | ReLu | Transpose | Squeeze | MaxPool | Conv | Reshape | Flatten | Identity | Constant | NO_OP | RW_Linearized_ReLu let str_op o = match o with | Add -> "Add" | Sub -> "Sub" | Mul -> "Mul" | Div -> "Div" | Matmul -> "Matmul" | Gemm -> "Gemm" | LogSoftmax -> "LogSoftmax" | ReLu -> "ReLu" | Transpose -> "Transpose" | Squeeze -> "Squeeze" | MaxPool -> "MaxPool" | Conv -> "Conv" | Reshape -> "Reshape" | Flatten -> "Flatten" | Identity -> "Identity" | Constant -> "Constant" | NO_OP -> "NO_OP" | RW_Linearized_ReLu -> "RW_Linearized_ReLu" type ksize = Ksize of shape type stride = Stride of shape type pads = Pads of shape type dilations = Dilations of shape type operator_parameters = | Pool_params of (ksize * stride option * pads option * dilations option) | Conv_params of (ksize * stride option * pads option * dilations option) | Transpose_params of shape | RW_Linearized_ReLu_params of (bool list list * ((string, float) Base.Hashtbl.t list * int)) let str_op_params p = match p with | Transpose_params s -> let str_sh = show_shape s in "Transpose params: " ^ str_sh | Pool_params (Ksize k, s, p, d) | Conv_params (Ksize k, s, p, d) -> let str_k = show_shape k and str_s = match s with None -> "" | Some (Stride ss) -> show_shape ss and str_p = match p with None -> "" | Some (Pads pp) -> show_shape pp and str_d = match d with None -> "" | Some (Dilations dd) -> show_shape dd in "Pool params: KSIZE: " ^ str_k ^ ", Pads: " ^ str_p ^ ", Stride: " ^ str_s ^ ", Dilations: " ^ str_d | RW_Linearized_ReLu_params l -> (* Only displays the activation scheme on the ReLU node *) let activations = fst l in let act' = List.map ~f:(fun l1 -> List.map ~f:(fun b -> match b with true -> "true" | false -> "false") l1) activations in let act'' = List.map ~f:(fun l -> "[" ^ String.concat ~sep:";" l ^ "]") act' in let act''' = "[" ^ String.concat ~sep:";" act'' ^ "]" in "RW_Linearized_ReLu_params: " ^ act''' type ('a, 'b) t = { id : int; name : string option; shape : shape; operator : operator; operator_parameters : operator_parameters option; pred : string list; succ : string list; tensor : ('a, 'b) Tensor.t option; } let compare v1 v2 = Stdlib.compare v1.id v2.id let hash (v : ('a, 'b) t) = v.id let equal v1 v2 = v1.id = v2.id let create ~id ~name ~sh ~op ~op_p ~pred ~succ ~tensor = { id; name; shape = sh; operator = op; operator_parameters = op_p; pred; succ; tensor; } let get_name t = match t.name with Some n -> n | None -> "C_NODE" let get_shape t = t.shape let get_op t = t.operator let get_tensor t = t.tensor let get_pred_list t = t.pred let get_succ_list t = t.succ let is_data_node t = match get_tensor t with None -> false | Some _ -> true (* TODO: some flags on the node would be cleaner than this*) let is_input_node t = List.equal String.equal t.pred [ "NO_INPUT" ] let is_output_node t = List.equal String.equal t.succ [ "NO_OUTPUT" ] let num_neurons t = match get_shape t with | [||] -> 0 | l -> Array.fold ~init:1 ~f:(fun x acc -> x * acc) l let show n f = let id = Int.to_string n.id in let name = get_name n and operator = str_op n.operator and operator_parameters = match n.operator_parameters with | Some p -> str_op_params p | None -> "no parameters" and shape = show_shape n.shape and prevs = List.fold_left ~f:(fun x y -> x ^ "," ^ y) ~init:"" (get_pred_list n) and nexts = List.fold_left ~f:(fun x y -> x ^ "," ^ y) ~init:"" (get_succ_list n) and tensor = match n.tensor with (*limit of size for tensor strings, complying with * dot string size limit of 16Ko *) | Some t -> let display_indices = let all_indices = Tensor.all_coords (Tensor.get_shape t) in if List.length all_indices > 10 then let rec firstk k xs = match xs with | [] -> failwith "firstk" | x :: xs -> if k = 1 then [ x ] else x :: firstk (k - 1) xs in firstk 10 all_indices else all_indices in let t_value_string f = List.fold_left ~f:(fun acc l -> acc ^ show_shape (Array.of_list l) ^ ": " ^ f (Tensor.get t (Array.of_list l)) ^ "\n") ~init:"" display_indices in "Tensor value\n: " ^ t_value_string f ^ "\nShape: " ^ show_shape (Tensor.get_shape t) | None -> "No tensor in node" in "ID :" ^ id ^ "\nNAME: " ^ name ^ "\nOP: " ^ operator ^ "\nOP PARAMS:" ^ operator_parameters ^ "\nSHAPE: " ^ shape ^ "\nPREVS: " ^ prevs ^ "\nNEXTS: " ^ nexts ^ "\nTENSORS INFOS:" ^ tensor end module type VInput = sig type l type r val convert_f : l -> string end module MakeVertex (I : VInput) = struct type t = (I.l, I.r) Node.t let compare = Node.compare let hash = Node.hash let equal = Node.equal let convert_f = I.convert_f type label = string let label (n : t) = match n.Node.name with Some n -> n | None -> "" let create _name = assert false end module Edge = struct type t = string let compare = Stdlib.compare let equal = phys_equal let default = "" end module NierCFG (I : VInput) = struct module Vertex = MakeVertex (I) include Graph.Imperative.Digraph.ConcreteBidirectionalLabeled (Vertex) (Edge) let convert_f = Vertex.convert_f let vertex_list g = fold_vertex (fun x l -> x :: l) g [] let input_nodes g = let input_criterion (v : ('a, 'b) Node.t) acc = match v.id with 0 -> Some v | _ -> acc in match fold_vertex (fun v acc -> input_criterion v acc) g None with | Some r -> [ r ] | None -> failwith "Something strange, no node for describing inputs found" let preds g v = pred g v let preds_names g v = let preds_list = pred_e g v in List.fold ~init:[] ~f:(fun acc (_, n, _) -> n :: acc) preds_list let succs_names g v = let succs_list = succ_e g v in List.fold ~init:[] ~f:(fun acc (_, n, _) -> n :: acc) succs_list let succs g v = succ g v let init_cfg = create () let find_vertices g f = fold_vertex (fun x l -> if f x then x :: l else l) g [] let data_node_of n g = fold_pred (fun v _ -> if Node.is_data_node v then Some v else None) g n None let infer_shape g n in_shape ~on_backward = let op = Node.get_op n in match op with | Node.Add -> ( match data_node_of n g with | Some d_n -> Node.get_shape d_n | None -> failwith "Error, Add operator lacks a data node") | Node.ReLu -> in_shape | Node.Matmul -> let pad_left = function | [] -> failwith "Impossible to pad empty shape" | [ a ] -> [ 1; a ] | x -> x in let pad_right = function | [] -> failwith "Impossible to pad empty shape" | [ a ] -> [ a; 1 ] | x -> x in let rec one_padding l i = if i <= 0 then l else one_padding (1 :: l) (i - 1) in let dn_shape = match data_node_of n g with | Some dn -> Node.get_shape dn | None -> failwith "Error, MatMul operator lacks a data node" in (* Expected semantic: * Matrix multiplication C = AB * A (shape [n;m]); B (shape [m;p]); C (shape [n;p]) * shape of b: b_sh * shape of a: a_sh * shape of c: c_sh * It is expected here that B is the shape of the node * yielding the data tensor in the NIER *) let check_matmul_size_ba ~b_sh ~a_sh = let bdim2 = pad_left b_sh in let adim2 = pad_right a_sh in let bdim = one_padding bdim2 (List.length adim2 - List.length bdim2) in let adim = one_padding adim2 (List.length bdim2 - List.length adim2) in let rec infer_csize acc ad bd = match (ad, bd) with | [ m; n ], [ nn; p ] -> if nn = n then (n, List.append (List.rev acc) [ m; p ]) else failwith "size of matrices not adequate" | a :: la, b :: lb -> if a = b then infer_csize (a :: acc) la lb else if a = 1 then infer_csize (b :: acc) la lb else if b = 1 then infer_csize (a :: acc) la lb else failwith "Checking matmul_size failed: one discordance" | _, _ -> failwith "Checking matmul_size failed" in infer_csize [] bdim adim in let check_matmul_size_bc ~b_sh ~c_sh = let bdim2 = pad_left b_sh in let cdim2 = pad_right c_sh in let bdim = one_padding bdim2 (List.length cdim2 - List.length bdim2) in let cdim = one_padding cdim2 (List.length bdim2 - List.length cdim2) in let rec infer_asize acc bd cd = match (bd, cd) with | [ m; p ], [ n; pp ] -> if pp = p then (n, List.append (List.rev acc) [ n; m ]) else failwith "size of matrices not adequate" | b :: lb, c :: lc -> if b = c then infer_asize (b :: acc) lb lc else if b = 1 then infer_asize (b :: acc) lb lc else if c = 1 then infer_asize (c :: acc) lb lc else failwith "Checking matmul_size failed: one discordance" | _, _ -> failwith "Checking matmul_size failed" in infer_asize [] bdim cdim in if on_backward then Array.of_list @@ snd (check_matmul_size_bc ~b_sh:(Array.to_list dn_shape) ~c_sh:(Array.to_list in_shape)) else Array.of_list @@ snd (check_matmul_size_ba ~b_sh:(Array.to_list in_shape) ~a_sh:(Array.to_list dn_shape)) | a -> failwith (Printf.sprintf "operator %s not supported" (Node.str_op a)) end module NierCFGInt = NierCFG (struct type l = int64 type r = int64_elt let convert_f = Int64.to_string end) module NierCFGFloat = NierCFG (struct type l = float type r = float64_elt let convert_f = Float.to_string end) module NierCFGDot = Graph.Graphviz.Dot (struct include NierCFGFloat (* use the graph module from above *) let node_label (v : vertex) = Node.show v convert_f let edge_attributes (_, e, _) = [ `Label e; `Color 4711 ] let default_edge_attributes _ = [] let get_subgraph _ = None let vertex_attributes v = [ `Shape `Box; `Label (node_label v) ] let vertex_name (v : vertex) = Int.to_string v.id let default_vertex_attributes _ = [] let graph_attributes _ = [] end) let print_cfg_graph g = NierCFGDot.fprint_graph Stdlib.Format.std_formatter g let out_cfg_graph g = let file = Out_channel.create "cfg.dot" in NierCFGDot.output_graph file g
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>