package caisar

  1. Overview
  2. Docs

Source file onnx.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
(**************************************************************************)
(*                                                                        *)
(*  This file is part of CAISAR.                                          *)
(*                                                                        *)
(*  Copyright (C) 2023                                                    *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  You can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

open Base
module Format = Stdlib.Format
module Fun = Stdlib.Fun
module Oproto = Onnx_protoc (* Autogenerated during compilation *)
module Oprotom = Oproto.Onnx.ModelProto
module NCFG = Ir.Nier_cfg
module G = NCFG.NierCFGFloat

exception ParseError of string

type t = {
  n_inputs : int; (* Number of inputs. *)
  n_outputs : int; (* Number of outputs. *)
  nier : (G.t, string) Result.t; (* Intermediate representation. *)
}

(* ONNX format handling. *)
type op_attribute = Oproto.Onnx.AttributeProto.t

type tensordata =
  | Raw of bytes
  | Float of float list

let (no_attr : op_attribute) =
  {
    name = None;
    ref_attr_name = None;
    doc_string = None;
    type' = None;
    f = None;
    i = None;
    s = None;
    t = None;
    g = None;
    floats = [];
    ints = [];
    strings = [];
    tensors = [];
    graphs = [];
    sparse_tensor = None;
    tp = None;
    sparse_tensors = [];
    type_protos = [];
  }

let get_nested_dims (s : Oproto.Onnx.ValueInfoProto.t list) =
  match List.nth s 0 with
  | Some { type' = Some { value = `Tensor_type { shape = Some v; _ }; _ }; _ }
    ->
    v
  | _ -> []

let flattened_dim (dim : Oproto.Onnx.TensorShapeProto.Dimension.t list) =
  List.fold ~init:1 dim ~f:(fun acc x ->
    match x.value with
    | `Dim_value v -> acc * v
    | `Dim_param _ -> acc
    | `not_set -> acc)

let get_input_output_dim (model : Oprotom.t) =
  let input_shape, output_shape =
    match model.graph with
    | Some g -> (get_nested_dims g.input, get_nested_dims g.output)
    | _ -> ([], [])
  in
  (* TODO: here we only get the flattened dimension of inputs and outputs, but
     more interesting parsing could be done later on. *)
  let input_flat_dim = flattened_dim input_shape in
  let output_flat_dim = flattened_dim output_shape in
  (input_flat_dim, output_flat_dim)

let produce_cfg (g : Oproto.Onnx.GraphProto.t) =
  let open Oproto.Onnx in
  let nodes = g.node
  and inputs = g.input
  and outputs = g.output
  and initi = g.initializer' in
  let fold_vip_names acc n =
    match n.ValueInfoProto.name with
    | Some str -> Some str :: acc
    | None -> None :: acc
  in
  let i_nodes, o_nodes =
    ( List.fold inputs ~init:[] ~f:fold_vip_names,
      List.fold outputs ~init:[] ~f:fold_vip_names )
  and c_nodes = List.init (List.length nodes) ~f:(fun _ -> None) in
  let fold_nodes_ops_cfg ns =
    let get_node_operator_cfg x =
      match x.NodeProto.op_type with
      | None -> NCFG.Node.NO_OP
      | Some o -> (
        match o with
        | "Add" -> NCFG.Node.Add
        | "Sub" -> NCFG.Node.Sub
        | "Mul" -> NCFG.Node.Mul
        | "Div" -> NCFG.Node.Div
        | "Relu" -> NCFG.Node.ReLu
        | "MatMul" -> NCFG.Node.Matmul
        | "Gemm" -> NCFG.Node.Gemm
        | "LogSoftmax" -> NCFG.Node.LogSoftmax
        | "Transpose" -> NCFG.Node.Transpose
        | "Squeeze" -> NCFG.Node.Squeeze
        | "MaxPool" -> NCFG.Node.MaxPool
        | "Constant" -> NCFG.Node.Constant
        | "Conv" -> NCFG.Node.Conv
        | "Reshape" -> NCFG.Node.Reshape
        | "Flatten" -> NCFG.Node.Flatten
        | "Identity" -> NCFG.Node.Identity
        | _ -> raise (ParseError ("Unsupported ONNX operator " ^ o)))
    in
    List.fold ~f:(fun acc n -> get_node_operator_cfg n :: acc) ~init:[] ns
  in
  let c_ops = List.rev @@ fold_nodes_ops_cfg nodes
  and i_ops, o_ops =
    ( List.init ~f:(fun _ -> NCFG.Node.NO_OP) (List.length i_nodes),
      List.init ~f:(fun _ -> NCFG.Node.NO_OP) (List.length o_nodes) )
  in
  let fold_nodes_attr ns =
    let get_node_attr n = n.NodeProto.attribute in
    List.fold ~f:(fun acc n -> get_node_attr n :: acc) ~init:[] ns
  in

  let c_attr = List.rev @@ fold_nodes_attr nodes
  and i_attr, o_attr =
    ( List.init ~f:(fun _ -> [ no_attr ]) (List.length i_nodes),
      List.init ~f:(fun _ -> [ no_attr ]) (List.length o_nodes) )
  in
  let c_nodes_inputs, c_nodes_outputs =
    List.unzip
    @@ List.fold
         ~f:(fun acc n -> (n.NodeProto.input, n.NodeProto.output) :: acc)
         ~init:[] (List.rev nodes)
  and i_nodes_inputs, i_nodes_outputs, o_nodes_inputs, o_nodes_outputs =
    ( List.init ~f:(fun _ -> [ "NO_INPUT" ]) (List.length i_nodes),
      List.init ~f:(fun _ -> [ "" ]) (List.length i_nodes),
      List.init ~f:(fun _ -> [ "" ]) (List.length o_nodes),
      List.init ~f:(fun _ -> [ "NO_OUTPUT" ]) (List.length o_nodes) )
  in
  let data_dict =
    let dict_tensors_cfg ts =
      let get_float_from_index index data sh =
        let index = Array.to_list index and sh = Array.to_list sh in
        let pop_sh = List.tl_exn sh @ [ 1 ] in
        (* Returns the factors by which multiply each coordinate *)
        let rec get_factors_from_sh sh_f l =
          match sh_f with
          | [] -> List.rev l
          | _ ->
            get_factors_from_sh (List.tl_exn sh_f)
              (List.fold ~f:(fun x y -> x * y) ~init:1 sh_f :: l)
        in
        let factors = get_factors_from_sh pop_sh [] in
        let coord_in_data =
          List.fold2_exn ~f:(fun x y z -> x + (y * z)) ~init:0 index factors
        in
        match data with
        | Raw raw ->
          let offset = 4 * coord_in_data in
          (* Each float is coded on 4 bytes*)
          let res = EndianBytes.LittleEndian.get_float raw offset in
          res
        | Float f -> List.nth_exn f coord_in_data
      in
      let build_tensor_from_data sh data =
        let open NCFG.Tensor in
        let sh = Array.of_list @@ sh in
        let tensor = create sh K_float in
        let coords = all_coords (get_shape tensor) in
        let rec init_tensor t idx r =
          match idx with
          | x :: y ->
            let value =
              get_float_from_index (Array.of_list x) r (get_shape t)
            in
            set t (Array.of_list x) value;
            init_tensor t y r
          | [] -> t
        in
        init_tensor tensor coords data
      in
      let t_name x =
        match x.TensorProto.name with Some n -> n | None -> "C_NODE"
      in
      let t_dim x = x.TensorProto.dims in
      let t_data x =
        match x.TensorProto.raw_data with
        | Some rd -> Some (build_tensor_from_data (t_dim x) (Raw rd))
        | None -> (
          match x.TensorProto.float_data with
          | [] -> None
          | f -> Some (build_tensor_from_data (t_dim x) (Float f)))
      in
      List.fold
        ~f:(fun m x -> Map.add_exn m ~key:(t_name x) ~data:(t_data x))
        ~init:(Map.empty (module String))
        ts
    in
    dict_tensors_cfg initi
  in
  let unpack v =
    match v with
    | Some v -> v
    | None -> failwith "Unpack found an unexpected None"
  in
  let tensor_list =
    List.init
      ~f:(fun i ->
        match Map.find data_dict (unpack (List.nth_exn i_nodes i)) with
        | Some v -> v
        | None -> None)
      (List.length i_nodes)
  in
  let tensor_list_full = Map.to_alist data_dict in
  let tensor_list_rev = List.rev tensor_list in
  let vip_dims v =
    let val_t =
      match v.ValueInfoProto.type' with
      | Some t -> t
      | None -> failwith "No type in value info"
    in
    let tns_t =
      match val_t.TypeProto.value with
      | `Tensor_type t -> t
      | `not_set ->
        failwith "No tensor type in value info"
        (* TODO: support more tensor types *)
      | _ -> raise (ParseError "Unknown tensor type")
    in
    let tns_s =
      match tns_t.shape with
      | Some s -> s
      | None -> failwith "No tensor shape in value info"
    in
    List.rev
    @@ List.fold tns_s ~init:[] ~f:(fun acc d ->
         match d.value with
         | `Dim_value d -> d :: acc
         | `not_set | _ -> 0 :: acc)
  in

  let c_tensordim_list = List.init (List.length nodes) ~f:(fun _ -> [])
  and c_tensorraw_list = List.init (List.length nodes) ~f:(fun _ -> None)
  and o_tensordim_list =
    List.fold ~f:(fun acc n -> vip_dims n :: acc) ~init:[] outputs
  and o_tensorraw_list = List.init (List.length o_nodes) ~f:(fun _ -> None)
  and i_tensordim_list =
    List.fold ~f:(fun acc n -> vip_dims n :: acc) ~init:[] inputs
  and i_tensorraw_list = tensor_list_rev in
  let nodes_names = i_nodes @ c_nodes @ o_nodes in
  let ops = i_ops @ c_ops @ o_ops in
  let attrs = i_attr @ c_attr @ o_attr in
  let prevs_list = i_nodes_inputs @ c_nodes_inputs @ o_nodes_inputs in
  let nexts_list = i_nodes_outputs @ c_nodes_outputs @ o_nodes_outputs in
  let tensor_dims = i_tensordim_list @ c_tensordim_list @ o_tensordim_list in
  let tensors = i_tensorraw_list @ c_tensorraw_list @ o_tensorraw_list in
  let operator_parameters (attr : AttributeProto.t list) op =
    match op with
    | NCFG.Node.Transpose ->
      let ints_params = Array.of_list (List.nth_exn attr 0).ints in
      Some (NCFG.Node.Transpose_params ints_params)
    (*TODO: maxpool and conv operators: match attr.name in attributes to
     * create the correct value for each attribute*)
    (* | NCFG.Vertex.MaxPool -> *)
    (* | NCFG.Vertex.Conv -> *)
    | _ -> None
  in
  let rec build_op_param_list attrs ops l =
    match (attrs, ops) with
    | a :: b, c :: d -> build_op_param_list b d (operator_parameters a c :: l)
    | [], [] ->
      List.rev l
      (*All other list constructions are folding right, so we need to put a
        final revert *)
    | _ ->
      raise (ParseError "Operator and attribute lists have not the same size")
  in
  let op_params_cfg = build_op_param_list attrs ops [] in
  let cfg = G.init_cfg in
  (* adding inputs, outputs and cnodes to the cfg *)
  let unkerasize l = List.map ~f:(fun x -> if x = 0 then 1 else x) l in
  for i = 0 to List.length nodes_names - 1 do
    let (v : G.V.t) =
      NCFG.Node.create ~id:i
        ~name:(List.nth_exn nodes_names i)
        ~sh:(Array.of_list @@ unkerasize (List.nth_exn tensor_dims i))
        ~op:(List.nth_exn ops i)
        ~op_p:(List.nth_exn op_params_cfg i)
        ~pred:(List.nth_exn prevs_list i)
        ~succ:(List.nth_exn nexts_list i)
        ~tensor:(List.nth_exn tensors i)
    in
    G.add_vertex cfg v
  done;
  (* Adding edges between vertices *)
  (* For each unnamed vertex (= a calculation node) in the cfg ... *)
  (* return true if l1 has at least one common element wih l2 *)
  let rec shared_elm l1 l2 =
    match l1 with
    | x :: y -> List.mem l2 x ~equal:String.equal || shared_elm y l2
    | [] -> false
  in
  List.iter
    ~f:(fun (v : G.V.t) ->
      match v.name with
      | None ->
        let pred = v.pred and succ = v.succ in
        let prev_v =
          (* ... get all vertices in cfg that have the current vertex preds
           * in their succ (at least one of their succ is inside our preds )*)
          G.find_vertices cfg (fun (x : G.V.t) ->
            if shared_elm pred x.succ then true else false)
        (* ... get all vertices in cfg that have the current vertex preds
         * in their name (they are named the same as one of our preds )*)
        and named_pred =
          G.find_vertices cfg (fun (x : G.V.t) ->
            match x.name with
            | Some name -> if shared_elm pred [ name ] then true else false
            | None -> false)
        (* ... get all vertices in cfg that have the current vertex succ
         * in their name (they are named the same as one of our succs )*)
        and named_succ =
          G.find_vertices cfg (fun (x : G.V.t) ->
            match x.name with
            | Some name -> if shared_elm succ [ name ] then true else false
            | None -> false)
        (* get all vertices in cfg that have the current vertex succs
         * in their preds (at least one of their preds is inside our succ )*)
        and next_v =
          G.find_vertices cfg (fun (x : G.V.t) ->
            if shared_elm succ x.pred then true else false)
        in
        (* add edges between current vertex and identified preds and succs *)
        let v_predecessors = prev_v @ named_pred
        and v_successors = next_v @ named_succ in
        let unpack_tname (x : G.V.t) =
          match x.NCFG.Node.name with Some n -> n | None -> ""
        in
        List.iter
          ~f:(fun (x : G.V.t) ->
            let label =
              match List.nth x.succ 0 with
              | Some "NO_OUTPUT" ->
                let pred_name = unpack_tname x in
                if List.mem ~equal:String.equal v.NCFG.Node.pred pred_name
                then pred_name
                else ""
              | Some l -> l
              | None -> ""
            in
            G.add_edge_e cfg (x, label, v))
          v_predecessors;
        (* add successors edges after filtering those
         * that are already an edge*)
        List.iter
          ~f:(fun (x : G.V.t) ->
            let all_preds = G.preds cfg x and all_succs = G.succs cfg x in
            if List.mem ~equal:NCFG.Node.equal all_preds v
               || List.mem ~equal:NCFG.Node.equal all_succs v
            then ()
            else
              let label =
                match List.nth_exn x.pred 0 with
                | "NO_INPUT" ->
                  let succ_name = unpack_tname x in
                  if List.mem ~equal:String.equal v.NCFG.Node.succ succ_name
                  then succ_name
                  else ""
                | l -> l
              in
              G.add_edge_e cfg (v, label, x))
          v_successors
      | _ -> ())
    (G.vertex_list cfg);

  (*rationale of the following:
   * PyTorch stores network nodes in the field "inputs" of
   * the ONNX graph g, and network parameters as a list of tensors
   * in the ONNX initializer_.
   * To make the two correspond, elements of g.inputs and g.initializer_
   * share the same value in the field "name".
   * In Keras, elements of g.initializer_ have a name, but they do not
   * correspond to any name in g.inputs.
   * What we did before was then to create the actual nier cfg following the
   * PyTorch way.
   * Below, we complete the cfg with keras data by doing the following:
   *  * create a node for NIER for each tensor in onnx initializer_
   *  * for each NIER node, check if there is a node sharing the same name
   *    pred
   *  * if yes, remove the one with highest ID (those are initi nodes, but since
   *  there is already a node in CFG with this name we do not
   *  need those)
   *  * if not, for each NIER node, chck if there is a node
   *  which name is contained in prevs. add it to the prev
   * *)

  (* adding initi vertices to the cfg *)
  for i = 0 to List.length tensor_list_full - 1 do
    let shape =
      match snd (List.nth_exn tensor_list_full i) with
      | Some t -> unkerasize (Array.to_list @@ NCFG.Tensor.get_shape t)
      | None -> []
    in
    let (v : G.V.t) =
      NCFG.Node.create
        ~id:(i + List.length nodes_names)
        ~name:(Some (fst (List.nth_exn tensor_list_full i)))
        ~sh:(Array.of_list @@ unkerasize shape)
        ~op:NO_OP ~op_p:None ~pred:[] ~succ:[]
        ~tensor:(snd (List.nth_exn tensor_list_full i))
    in
    G.add_vertex cfg v
  done;
  (* build a list of nodes
   * sharing name but with different ids *)
  let same_name_diff_ids =
    let aux (x : G.V.t) =
      G.fold_vertex
        (fun y acc ->
          match (x.name, y.name) with
          | Some xa, Some ya ->
            if (not (y.id = x.id)) && String.equal xa ya
            then (x, y) :: acc
            else acc
          | _ -> acc)
        cfg []
    in
    G.fold_vertex (fun x l -> aux x :: l) cfg []
  in
  let highest_ids =
    List.fold
      ~f:(fun acc x ->
        match x with
        | a :: _ ->
          let maxval = max (fst a).NCFG.Node.id (snd a).NCFG.Node.id in
          maxval :: acc
        | [] -> acc)
      ~init:[] same_name_diff_ids
  in
  (* (* removing nodes with highest id, those are the*) (* * ones we just added
     *)*)
  List.iter
    ~f:(fun x ->
      match x with
      | l :: _ ->
        let v1 = fst l in
        if List.mem ~equal:( = ) highest_ids v1.NCFG.Node.id
        then
          (* Printf.printf "Removing id %d \n%!" *)
          (*   v1.NCFG.Vertex.id; *)
          G.remove_vertex cfg v1
        else ()
      | [] -> ())
    same_name_diff_ids;
  (* Now it is Keras time.
   * Look for nodes sharing name and preds,
   * then create edge *)
  let shared_name_preds =
    let aux (x : G.V.t) =
      match x.name with
      (* look in other vertices if name is among
       * predecessors *)
      | Some n -> G.find_vertices cfg (fun x -> shared_elm [ n ] x.pred)
      | None -> []
    in
    G.fold_vertex (fun x l -> (x, aux x) :: l) cfg []
  in
  List.iter
    ~f:(fun x ->
      let orgn = fst x and to_edge = snd x in
      List.iter
        ~f:(fun t ->
          if not (G.mem_edge cfg orgn t)
          then G.add_edge_e cfg (orgn, unpack orgn.NCFG.Node.name, t)
          else ())
        to_edge)
    shared_name_preds;
  (* else (); *)
  cfg

let nier_of_onnx_protoc (model : Oprotom.t) =
  match model.graph with
  | Some g -> produce_cfg g
  | None -> raise (ParseError "No graph in ONNX input file found")

let parse_in_channel in_channel =
  let open Result in
  try
    let buf = Stdio.In_channel.input_all in_channel in
    let reader = Ocaml_protoc_plugin.Reader.create buf in
    match Oprotom.from_proto reader with
    | Ok r ->
      let n_inputs, n_outputs = get_input_output_dim r in
      let nier =
        try Ok (nier_of_onnx_protoc r) with
        | ParseError s | Sys_error s -> Error s
        | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg)
      in
      Ok { n_inputs; n_outputs; nier }
    | _ -> Error "Cannot read protobuf"
  with
  | Sys_error s -> Error s
  | Failure msg -> Error (Format.sprintf "Unexpected error: %s" msg)

let parse filename =
  let in_channel = Stdlib.open_in filename in
  Fun.protect
    ~finally:(fun () -> Stdlib.close_in in_channel)
    (fun () -> parse_in_channel in_channel)
OCaml

Innovation. Community. Security.