package caisar
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
type shape = Base.int Base.array
Type describing the different operations handled. Those operations are inspired by those defined in the ONNX documentation.
val str_op : operator -> Base.string
val show_shape : shape -> Base.string
type operator_parameters =
| Pool_params of ksize * stride Base.option * pads Base.option * dilations Base.option
| Conv_params of ksize * stride Base.option * pads Base.option * dilations Base.option
| Transpose_params of shape
| RW_Linearized_ReLu_params of Base.bool Base.list Base.list * ((Base.string, Base.float) Base.Hashtbl.t Base.list * Base.int)
val str_op_params : operator_parameters -> Base.string
type ('a, 'b) t = {
id : Base.int;
name : Base.string Base.option;
shape : shape;
operator : operator;
operator_parameters : operator_parameters Base.option;
pred : Base.string Base.list;
succ : Base.string Base.list;
tensor : ('a, 'b) Tensor.t Base.option;
}
Type encapsulating parameters for operations. For Convolutions and Pooling, kernel size, padding, strides For Transpose, shape
val create :
id:Base.int ->
name:Base.string Base.option ->
sh:shape ->
op:operator ->
op_p:operator_parameters Base.option ->
pred:Base.string Base.list ->
succ:Base.string Base.list ->
tensor:('a, 'b) Tensor.t Base.option ->
('a, 'b) t
val get_name : ('a, 'b) t -> Base.string
val get_pred_list : ('a, 'b) t -> Base.string Base.list
val get_succ_list : ('a, 'b) t -> Base.string Base.list
val get_tensor : ('a, 'b) t -> ('a, 'b) Tensor.t Base.option
val show : ('a, 'b) t -> ('a -> Base.string) -> Base.string
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>