Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
diet.ml1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146(* (c) MirageOS developers *) type t = Empty | Node : node -> t and node = { x: int; y: int; l: t; r: t; h: int } let empty = Empty let is_empty = function Empty -> true | _ -> false let height = function Empty -> 0 | Node n -> n.h let create x y l r = let h = Int.max (height l) (height r) + 1 in Node { x; y; l; r; h } let rec node x y l r = let hl = height l and hr = height r in if hl > hr + 2 then begin match l with | Empty -> assert false | Node { x= lx; y= ly; l= ll; r= lr; _ } -> ( if height ll >= height lr then node lx ly ll (node x y lr r) else match lr with | Empty -> assert false | Node { x= lrx; y= lry; l= lrl; r= lrr; _ } -> node lrx lry (node lx ly ll lrl) (node x y lrr r)) end else if hr > hl + 2 then begin match r with | Empty -> assert false | Node { x= rx; y= ry; l= rl; r= rr; _ } -> ( if height rr >= height rl then node rx ry (node x y l rl) rr else match rl with | Empty -> assert false | Node { x= rlx; y= rly; l= rll; r= rlr; _ } -> node rlx rly (node x y l rll) (node rx ry rlr rr)) end else create x y l r let rec splitMax = function | { x; y; l; r= Empty; _ } -> (x, y, l) | { r= Node r; _ } as n -> let u, v, r' = splitMax r in (u, v, node n.x n.y n.l r') let rec splitMin = function | { x; y; l= Empty; r; _ } -> (x, y, r) | { l= Node l; _ } as n -> let u, v, l' = splitMin l in (u, v, node n.x n.y l' n.r) let addL = function | { l= Empty; _ } as n -> n | { l= Node l; _ } as n -> let x', y', l' = splitMax l in if succ y' = n.x then { n with x= x'; l= l' } else n let addR = function | { r= Empty; _ } as n -> n | { r= Node r; _ } as n -> let x', y', r' = splitMin r in if succ n.y = x' then { n with y= y'; r= r' } else n let rec add x y t = match t with | Empty -> node x y Empty Empty (* completely to the left *) | Node n when y < pred n.x -> let l = add x y n.l in node n.x n.y l n.r (* completely to the right *) | Node n when succ n.y < x -> let r = add x y n.r in node n.x n.y n.l r (* overlap on the left only *) | Node n when x < n.x && y <= n.y -> let l = add x (pred n.x) n.l in let n = addL { n with l } in node n.x n.y n.l n.r (* overlap on the right only *) | Node n when y > n.y && x >= n.x -> let r = add (succ n.y) y n.r in let n = addR { n with r } in node n.x n.y n.l n.r (* overlap on both sides *) | Node n when x < n.x && y > n.y -> let l = add x (pred n.x) n.l in let r = add (succ n.y) y n.r in let n = addL { (addR { n with r }) with l } in node n.x n.y n.l n.r (* completely within *) | Node n -> Node n let singleton x y = add x y Empty let merge l r = match (l, r) with | l, Empty -> l | Empty, r -> r | Node l, r -> let x, y, l' = splitMax l in node x y l' r let rec remove (x, y) t = match t with | Empty -> Empty (* completely to the left *) | Node n when y < n.x -> let l = remove (x, y) n.l in node n.x n.y l n.r (* completely to the right *) | Node n when n.y < x -> let r = remove (x, y) n.r in node n.x n.y n.l r (* overlap on the left only *) | Node n when x < n.x && y < n.y -> let n' = node (succ y) n.y n.l n.r in remove (x, pred n.x) n' (* overlap on the right only *) | Node n when y > n.y && x > n.x -> let n' = node n.x (pred x) n.l n.r in remove (succ n.y, y) n' (* overlap on both sides *) | Node n when x <= n.x && y >= n.y -> let l = remove (x, n.x) n.l in let r = remove (n.y, y) n.r in merge l r (* completely within *) | Node n when y = n.y -> node n.x (pred x) n.l n.r | Node n when x = n.x -> node (succ y) n.y n.l n.r | Node n -> assert (n.x <= pred x); assert (succ y <= n.y); let r = node (succ y) n.y Empty n.r in node n.x (pred x) n.l r let rec fold fn t acc = match t with | Empty -> acc | Node n -> let acc = fold fn n.l acc in let acc = fn (n.x, n.y) acc in fold fn n.r acc let diff a b = fold remove b a let inter a b = diff a (diff a b)