package bitwuzla-cxx
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=420672d1ae103d5920881fa5844c38d2913d4deb8e39e328c2d51bd05f8137a7
sha512=99fb414c9bba4f120d10696f83a915c6bd14661f7e424792e0a30f0ff2bd4a59832207d83ad4004bed36da827023c54e588de566d3ec97ed305b7f2e121f611e
README.md.html
README.md
ocaml-bitwuzla
Bitwuzla is a Satisfiability Modulo Theories (SMT) solvers for the theories of fixed-size bit-vectors, floating-point arithmetic, arrays, uninterpreted functions and their combinations.
This library provides an API for using Bitwuzla in OCaml code. Online documentation is available at https://bitwuzla.github.io/docs/ocaml.
Quickstart
First, create a Options
instance:
let options = Options.default () in
This instance can be configured via Options.set
. For example, to enable model generation (SMT-LIB: (set-option :produce-models true)):
Options.set options Produce_models true;
Then, create a Bitwuzla instance (configuration options are now frozen and cannot be changed for this instance):
let bitwuzla = Solver.create options in
Next, you will want to create some expressions and assert formulas. For example, consider the following SMT-LIB input:
(set-logic QF_ABV)
(set-option :produce-models true)
(declare-const x (_ BitVec 8))
(declare-const y (_ BitVec 8))
(declare-fun f ((_ BitVec 8) (_ BitVec 4)) (_ BitVec 8))
(declare-const a (Array (_ BitVec 8) (_ BitVec 8)))
(assert
(distinct
((_ extract 3 0) (bvsdiv x (_ bv2 8)))
((_ extract 3 0) (bvashr y (_ bv1 8)))))
(assert (= (f x ((_ extract 6 3) x)) y))
(assert (= (select a x) y))
(check-sat)
(get-model)
(get-value (x y f a (bvmul x x)))
(exit)
This input is created and asserted as follows:
(* Create bit-vector sorts of size 4 and 8. *)
let sortbv4 = mk_bv_sort 4 and sortbv8 = mk_bv_sort 8 in
(* Create function sort. *)
let sortfun = mk_fun_sort [| sortbv8; sortbv4 |] sortbv8 in
(* Create array sort. *)
let sortarr = mk_array_sort sortbv8 sortbv8 in
(* Create two bit-vector constants of that sort. *)
let x = mk_const sortbv8 ~symbol:"x" and y = mk_const sortbv8 ~symbol:"y" in
(* Create fun const. *)
let f = mk_const sortfun ~symbol:"f" in
(* Create array const. *)
let a = mk_const sortarr ~symbol:"a" in
(* Create bit-vector values one and two of the same sort. *)
let one = mk_bv_one sortbv8 in
(* Alternatively, you can create bit-vector value one with: *)
(* let one = mk_bv_value sortbv8 "1" 2 in *)
(* let one = mk_bv_value_int sortbv8 1 in *)
let two = mk_bv_value_int sortbv8 2 in
(* (bvsdiv x (_ bv2 8)) *)
let sdiv = mk_term2 Bv_sdiv x two in
(* (bvashr y (_ bv1 8)) *)
let ashr = mk_term2 Bv_ashr y one in
(* ((_ extract 3 0) (bvsdiv x (_ bv2 8))) *)
let sdive = mk_term1_indexed2 Bv_extract sdiv 3 0 in
(* ((_ extract 3 0) (bvashr x (_ bv1 8))) *)
let ashre = mk_term1_indexed2 Bv_extract ashr 3 0 in
(* (assert *)
(* (distinct *)
(* ((_ extract 3 0) (bvsdiv x (_ bv2 8))) *)
(* ((_ extract 3 0) (bvashr y (_ bv1 8))))) *)
Solver.assert_formula bitwuzla (mk_term2 Distinct sdive ashre);
(* (assert (= (f x ((_ extract 6 3) x)) y)) *)
Solver.assert_formula bitwuzla
(mk_term2 Equal (mk_term3 Apply f x (mk_term1_indexed2 Bv_extract x 6 3)) y);
(* (assert (= (select a x) y)) *)
Solver.assert_formula bitwuzla (mk_term2 Equal (mk_term2 Select a x) y);
After asserting formulas, satisfiability can be determined via check_sat
.
let result = Solver.check_sat bitwuzla in
If the formula is satisfiable and model generation has been enabled, the resulting model can be printed via Solver.get_value
and Term.pp
. An example implementation illustrating how to print the current model via declared symbols (in this case x
, y
, f
and a
) is below:
Format.open_vbox 0;
Format.printf "Expect: sat@,";
Format.printf "Bitwuzla: %s@," (Result.to_string result);
Format.print_space ();
(* Print model in SMT-LIBv2 format. *)
Format.printf "@[<v>Model:@,@[<v 2>(@,%a@]@,)@]"
(Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf term ->
let sort = Term.sort term in
Format.fprintf ppf "(define-fun %a ("
(fun ppf term ->
try Format.pp_print_string ppf (Term.symbol term)
with Not_found -> Format.fprintf ppf "%@t%Ld" (Term.id term))
term;
if Sort.is_fun sort then (
let value = Solver.get_value bitwuzla term in
assert (Term.kind value = Lambda);
assert (Term.num_children value = 2);
let rec unroll value =
let value1 = Term.get value 1 in
if Term.kind value1 = Lambda then (
let value0 = Term.get value 0 in
assert (Term.is_variable value0);
Format.fprintf ppf "(%a %a) " Term.pp value0 Sort.pp
(Term.sort value0);
unroll value1)
else value
in
let value = unroll value in
let value0 = Term.get value 0 in
assert (Term.is_variable value0);
Format.fprintf ppf "(%a %a)) %a %a)" Term.pp value0 Sort.pp
(Term.sort value0) Sort.pp (Sort.fun_codomain sort) Term.pp
(Term.get value 1))
else
Format.fprintf ppf ") %a %a)" Sort.pp sort Term.pp
(Solver.get_value bitwuzla term)))
[ x; y; f; a ];
Format.print_space ();
Format.print_space ();
This will output a possible model, in this case:
(
(define-fun x () (_ BitVec 8) #b10011111)
(define-fun y () (_ BitVec 8) #b11111111)
(define-fun f ((@bzla.var_71 (_ BitVec 8)) (@bzla.var_72 (_ BitVec 4)))
(_ BitVec 8) (ite (and (= @bzla.var_71 #b10011111) (= @bzla.var_72 #b0011)) #b11111111 #b00000000))
(define-fun a () (Array (_ BitVec 8) (_ BitVec 8)) (store ((as const (Array (_ BitVec 8) (_ BitVec 8))) #b00000000) #b10011111 #b11111111))
)
Alternatively, it is possible to query the value of terms as assignment string via Term.value
, or as a term via Solver.get_value
.
In our case, we can query the assignments of x
and y
, both bit-vector terms, as binary strings:
Format.printf "value of x: %s@,"
(Term.value (String { base = 2 }) (Solver.get_value bitwuzla x));
Format.printf "value of y: %s@,"
(Term.value (String { base = 2 }) (Solver.get_value bitwuzla y));
Format.print_space ();
This will print:
value of x: 10011111
value of y: 11111111
The value of f
(a function term) and a
(an array term), on the other hand, cannot be represented with a simple type. Thus, function values are given as Lambda
, and array values are given as Store
. We can retrieve an SMT-LIB2 string representation of the values via Term.pp
:
Format.printf "str() representation of value of x:@,%a@," Term.pp
(Solver.get_value bitwuzla x);
Format.printf "str() representation of value of y:@,%a@," Term.pp
(Solver.get_value bitwuzla y);
Format.print_space ();
This will print:
str() representation of value of f:
(lambda ((@bzla.var_71 (_ BitVec 8))) (lambda ((@bzla.var_72 (_ BitVec 4))) (ite (and (= @bzla.var_71 #b10011111) (= @bzla.var_72 #b0011)) #b11111111 #b00000000)))
str() representation of value of a:
(store ((as const (Array (_ BitVec 8) (_ BitVec 8))) #b00000000) #b10011111 #b11111111)
Note that the string representation of values representable as simple type (bit-vectors, boolean, floating-point, rounding mode) are given as pure value string (in the given number format) via Term.value
. Their string representation retrieved via Term.pp
, however, is given in SMT-LIB2 format. For example,
Format.printf "str() representation of value of x:@,%a@," Term.pp
(Solver.get_value bitwuzla x);
Format.printf "str() representation of value of y:@,%a@," Term.pp
(Solver.get_value bitwuzla y);
Format.print_space ();
This will print:
str() representation of value of x:
#b10011111
str() representation of value of y:
#b11111111
It is also possible to query the model value of expressions that do not occur in the input formula:
let v = Solver.get_value bitwuzla (mk_term2 Bv_mul x x) in
Format.printf "value of v = x * x: %s@," (Term.value (String { base = 2 }) v)
This will print:
value of v = x * x: 11000001
Examples
Other examples together with their SMT-LIB input can be found in directory examples:
an incremental example with
push
andpop
(pushpop);an incremental example with
check-sat-assuming
(checksatassuming);an unsatisfiable example with unsat core generation (unsatcore);
an unsatisfiable example with unsat assumption query (unsatassumptions)
an example with termination callback (terminator).
Installation
Bitwuzla sources and dependencies are repackaged for convenient use with opam.
From Opam
opam install bitwuzla-cxx
From source
The latest version of ocaml-bitwuzla
is available on GitHub: https://github.com/bitwuzla/ocaml-bitwuzla.
:information_source: Dealing with submodules
In order to checkout the complete source tree, run the following at clone
time:
git clone --recurse-submodules https://github.com/bitwuzla/ocaml-bitwuzla.git
or at any time:
git submodule init # first time
git submodule update
:warning: Do not download the source archive (.zip
, .tar.gz
). Download instead the tarball from release panel.
tar -xjf bitwuzla-cxx-0.2.0.tbz
Dependencies
GMP v6.1 (GNU Multi-Precision arithmetic library) (required)
OCaml >= 4.12 (required)
dune >= 3.7 (required)
zarith (required)
odoc (documentation)
ppx_expect (tests)
:information_source: Handling dependencies with opam
Dependencies can be automatically installed via opam.
opam pin add -n . # read the package definition
opam install --deps-only bitwuzla-cxx # install OCaml dependencies
opam install --deps-only --with-doc bitwuzla-cxx # optional, for documentation
opam install --deps-only --with-test bitwuzla-cxx # optional, for tests
Build
dune build @install
Running examples
dune exec -- examples/quickstart.exe # replace quickstart by other examples
Building the API documentation
dune build @doc
An index page containing examples and links to modules can be found in _build/default/_doc/_html/index.html
.
Running tests
dune build @runtest
:memo: No output is the expected behavior.