Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
BitMaskSet.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
(* ********************************************************************************************** * * MetaStack Solutions Ltd. * * ********************************************************************************************** * * BitMask Sets * * ********************************************************************************************** * * Copyright (c) 2013-17 MetaStack Solutions Ltd. * * ********************************************************************************************** * * Author: David Allsopp * * 27-Dec-2013 * * ********************************************************************************************** * * Redistribution and use in source and binary forms, with or without modification, are permitted * * provided that the following two conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * * conditions and the following disclaimer. * * 2. Neither the name of MetaStack Solutions Ltd. nor the names of its contributors may be * * used to endorse or promote products derived from this software without specific prior * * written permission. * * * * This software is provided by the Copyright Holder 'as is' and any express or implied * * warranties, including, but not limited to, the implied warranties of merchantability and * * fitness for a particular purpose are disclaimed. In no event shall the Copyright Holder be * * liable for any direct, indirect, incidental, special, exemplary, or consequential damages * * (including, but not limited to, procurement of substitute goods or services; loss of use, * * data, or profits; or business interruption) however caused and on any theory of liability, * * whether in contract, strict liability, or tort (including negligence or otherwise) arising in * * any way out of the use of this software, even if advised of the possibility of such damage. * * ********************************************************************************************** *) (* ********************************************************************************************** * * Copied from header. * * ********************************************************************************************** *) module type S = sig include Set.S val map : (elt -> elt) -> t -> t val min_elt_opt : t -> elt option val max_elt_opt : t -> elt option val choose_opt : t -> elt option val find : elt -> t -> elt val find_opt : elt -> t -> elt option val find_first : (elt -> bool) -> t -> elt val find_first_opt : (elt -> bool) -> t -> elt option val find_last : (elt -> bool) -> t -> elt val find_last_opt : (elt -> bool) -> t -> elt option val of_list : elt list -> t val to_seq_from : elt -> t -> elt Seq.t val to_seq : t -> elt Seq.t val add_seq : elt Seq.t -> t -> t val of_seq : elt Seq.t -> t val disjoint : t -> t -> bool type storage val invalid : t -> t end module type Storage = sig type storage val zero : storage val one : storage val logand : storage -> storage -> storage val logor : storage -> storage -> storage val lognot : storage -> storage val shift_left : storage -> int -> storage val shift_right_logical : storage -> int -> storage val compare : storage -> storage -> int val toString : storage -> string end module type BitMask = sig include Storage type t val mask : storage end (* ********************************************************************************************** * * Implementations of Storage for types int and int64. * * ********************************************************************************************** *) module Int = struct type storage = int let zero = 0 let one = 1 let shift_left = (lsl) let shift_right_logical = (lsr) let logand = (land) let logor = (lor) let lognot = lnot let compare = compare let toString = string_of_int end module Int64 = struct type storage = int64 let zero = 0L let one = 1L let shift_left = Int64.shift_left let shift_right_logical = Int64.shift_right_logical let logand = Int64.logand let logor = Int64.logor let lognot = Int64.lognot let compare = Int64.compare let toString = Int64.to_string end (* ********************************************************************************************** * * Make functor. * * ********************************************************************************************** *) module Make(Mask : BitMask) = struct type storage = Mask.storage type t = Mask.storage (* ****************************************************************************************** * * Convert the supplied mask in the functor into the various required values. * * ****************************************************************************************** *) let (storage_of_flag, shifts, shiftsInv, topbit, highest, lowest) = let (shifts, shiftsInv, topbit, highest, lowest) = let rec f shiftsInv topbit highest lowest l c i = let v = Mask.shift_left Mask.one i in if i > 0 && Mask.compare v Mask.one = 0 then (List.rev shiftsInv, shiftsInv, topbit, highest, lowest) else if Mask.compare (Mask.logand v Mask.mask) Mask.zero <> 0 then let shiftsInv = if l > 0 then (c, l)::shiftsInv else shiftsInv in if Mask.compare lowest Mask.zero = 0 then f shiftsInv 0 v v 0 0 (succ i) else f shiftsInv (succ topbit) v lowest 0 0 (succ i) else if l > 0 then f shiftsInv topbit highest lowest (succ l) c (succ i) else f shiftsInv topbit highest lowest 1 (succ topbit) (succ i) in f [] (-1) Mask.zero Mask.zero 0 0 0 in let compute_shift shifts offset = let rec f a = function (point, amount)::shifts -> if offset >= point then f (a + amount) shifts else a | [] -> a in f offset shifts in let (storage_of_flag, shifts) = match shifts with [] -> ((fun (flag : Mask.t) -> Mask.shift_left Mask.one (Obj.magic flag : int)), []) | [(0, n)] -> ((fun (flag : Mask.t) -> Mask.shift_left Mask.one (n + (Obj.magic flag : int))), []) | (0, n)::shifts -> ((fun (flag : Mask.t) -> let shift = n + compute_shift shifts (Obj.magic flag : int) in Mask.shift_left Mask.one shift), shifts) | _ -> ((fun (flag : Mask.t) -> Mask.shift_left Mask.one (compute_shift shifts (Obj.magic flag : int))), shifts) in (storage_of_flag, shifts, shiftsInv, topbit, highest, lowest) (* ****************************************************************************************** * * create, invalid, empty and is_empty are straightforward. * * ****************************************************************************************** *) let create mask = mask let invalid set = Mask.logand (Mask.lognot Mask.mask) set let empty = Mask.zero let is_empty set = (Mask.compare set Mask.zero = 0) (* ****************************************************************************************** * * Another sequence of straightforward functions. * * ****************************************************************************************** *) let mem flag set = Mask.compare (Mask.logand set (storage_of_flag flag)) Mask.zero <> 0 let find flag set = if Mask.compare (Mask.logand set (storage_of_flag flag)) Mask.zero = 0 then raise Not_found else flag let find_opt flag set = if Mask.compare (Mask.logand set (storage_of_flag flag)) Mask.zero = 0 then None else Some flag let add flag set = let set' = Mask.logor set (storage_of_flag flag) in if Mask.compare set set' = 0 then set else set' let of_list l = List.fold_left (fun s f -> add f s) empty l let singleton = storage_of_flag let remove flag set = let set' = Mask.logand set (Mask.lognot (storage_of_flag flag)) in if Mask.compare set set' = 0 then set else set' let union = Mask.logor let inter = Mask.logand let disjoint a b = Mask.logand a b = Mask.zero let diff a b = Mask.logand b (Mask.lognot a) let compare = Mask.compare let equal a b = Mask.compare a b = 0 let subset a b = Mask.compare (Mask.logand a b) a = 0 (* ****************************************************************************************** * * deltaShift and deltaShiftInv are used to calculate bit values for the iterators. * * ****************************************************************************************** *) let deltaShift i = function (point, amount)::shifts when i >= point -> (succ amount, shifts) | _ as shifts -> (1, shifts) let deltaShiftInv i = function (point, amount)::shifts when i < point -> (succ amount, shifts) | _ as shifts -> (1, shifts) (* ****************************************************************************************** * * The iterators count over the bit positions -- for the iterator itself, [i] is the * * constructor number, [v] is the bit value for that constructor and [s] is the shifts. * * ****************************************************************************************** *) let find_first g set = let set = Mask.logand set Mask.mask in let rec f i v s = let elt = (Obj.magic i : Mask.t) in if Mask.compare (Mask.logand set v) Mask.zero <> 0 && g elt then elt else if Mask.compare v highest = 0 then raise Not_found else let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s in f 0 lowest shifts let find_first_opt g set = let set = Mask.logand set Mask.mask in let rec f i v s = let elt = (Obj.magic i : Mask.t) in if Mask.compare (Mask.logand set v) Mask.zero <> 0 && g elt then Some elt else if Mask.compare v highest = 0 then None else let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s in f 0 lowest shifts let find_last g set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare v Mask.zero <> 0 then let elt = (Obj.magic i : Mask.t) in if Mask.compare (Mask.logand v set) Mask.zero <> 0 && g elt then elt else let i = pred i in let (shift, s) = deltaShiftInv i s in f i (Mask.shift_right_logical v shift) s else raise Not_found in f topbit highest shiftsInv let find_last_opt g set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare v Mask.zero <> 0 then let elt = (Obj.magic i : Mask.t) in if Mask.compare (Mask.logand v set) Mask.zero <> 0 && g elt then Some elt else let i = pred i in let (shift, s) = deltaShiftInv i s in f i (Mask.shift_right_logical v shift) s else None in f topbit highest shiftsInv let iter g set = let set = Mask.logand set Mask.mask in let rec f i v s = let _ = if Mask.compare (Mask.logand set v) Mask.zero <> 0 then g (Obj.magic i : Mask.t) in if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s in f 0 lowest shifts let fold g set acc = let set = Mask.logand set Mask.mask in let rec f a i v s = let a = if Mask.compare (Mask.logand set v) Mask.zero <> 0 then g (Obj.magic i : Mask.t) a else a in if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f a i (Mask.shift_left v shift) s else a in f acc 0 lowest shifts let map g set' = let set = Mask.logand set' Mask.mask in let rec f a i v s = if Mask.compare v highest <> 0 then let a = if Mask.compare (Mask.logand set v) Mask.zero <> 0 then Mask.logor a (storage_of_flag (g (Obj.magic i : Mask.t))) else a and i = succ i in let (shift, s) = deltaShift i s in f a i (Mask.shift_left v shift) s else if Mask.compare a set' = 0 then set' else a in f Mask.zero 0 lowest shifts let for_all p set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare (Mask.logand set v) Mask.zero = 0 || p (Obj.magic i : Mask.t) then if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s else true else false in f 0 lowest shifts let exists p set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare (Mask.logand set v) Mask.zero = 0 || not (p (Obj.magic i : Mask.t)) then if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s else false else true in f 0 lowest shifts let filter p set = let set = Mask.logand set Mask.mask in let rec f a i v s = let a = if Mask.compare (Mask.logand v set) Mask.zero <> 0 && p (Obj.magic i : Mask.t) then Mask.logor a v else a in if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f a i (Mask.shift_left v shift) s else a in f Mask.zero 0 lowest shifts let partition p set = let set = Mask.logand set Mask.mask in let rec f ((l, r) as a) i v s = let a = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then if p (Obj.magic i : Mask.t) then (Mask.logor l v, r) else (l, Mask.logor r v) else a in if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f a i (Mask.shift_left v shift) s else a in f (Mask.zero, Mask.zero) 0 lowest shifts let cardinal set = let set = Mask.logand set Mask.mask in let rec f a i v = let a = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then succ a else a in if Mask.compare v highest = 0 then a else f a (succ i) (Mask.shift_left v 1) in f 0 0 lowest let elements set = let set = Mask.logand set Mask.mask in let rec f a i v s = if Mask.compare v Mask.zero <> 0 then let a = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then (Obj.magic i : Mask.t)::a else a and i = pred i in let (shift, s) = deltaShiftInv i s in f a i (Mask.shift_right_logical v shift) s else a in f [] topbit highest shiftsInv let min_elt set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then (Obj.magic i : Mask.t) else if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s else raise Not_found in f 0 lowest shifts let min_elt_opt set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then Some (Obj.magic i : Mask.t) else if Mask.compare v highest = 0 then let i = succ i in let (shift, s) = deltaShift i s in f i (Mask.shift_left v shift) s else None in f 0 lowest shifts let max_elt set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare v Mask.zero <> 0 then if Mask.compare (Mask.logand v set) Mask.zero <> 0 then (Obj.magic i : Mask.t) else let i = pred i in let (shift, s) = deltaShiftInv i s in f i (Mask.shift_right_logical v shift) s else raise Not_found in f topbit highest shiftsInv let max_elt_opt set = let set = Mask.logand set Mask.mask in let rec f i v s = if Mask.compare v Mask.zero <> 0 then if Mask.compare (Mask.logand v set) Mask.zero <> 0 then Some (Obj.magic i : Mask.t) else let i = pred i in let (shift, s) = deltaShiftInv i s in f i (Mask.shift_right_logical v shift) s else None in f topbit highest shiftsInv let choose = min_elt let choose_opt = min_elt_opt let split (flag : Mask.t) set = let flag = (Obj.magic flag : int) and set = Mask.logand set Mask.mask in let rec f ((l, p, r) as a) i v s = let a = if Mask.compare (Mask.logand v set) Mask.zero <> 0 then let c = Stdlib.compare i flag in if c = 0 then (l, true, r) else if c < 0 then (Mask.logor v l, p, r) else (l, p, Mask.logor v r) else a in if Mask.compare v highest <> 0 then let i = succ i in let (shift, s) = deltaShift i s in f a i (Mask.shift_left v shift) s else a in f (Mask.zero, false, Mask.zero) 0 lowest shifts let to_seq_from x set = let set = Mask.logand set Mask.mask and x = (Obj.magic x : int) in let rec f i v s () = let tail = if Mask.compare v highest = 0 then Seq.empty else let j = succ i in let (shift, s) = deltaShift j s in f j (Mask.shift_left v shift) s in if i >= x && Mask.compare (Mask.logand v set) Mask.zero <> 0 then Seq.Cons((Obj.magic i : Mask.t), tail) else tail () in f 0 lowest shifts let to_seq set = to_seq_from (Obj.magic 0 : Mask.t) set let add_seq s set = Seq.fold_left (fun set flag -> add flag set) set s let of_seq s = add_seq s empty end