package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_kernel_dba/dhunk.ml.html
Source file dhunk.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* A block is a small CFG consisting of DBAs *) type t = { instructions : Dba.Instr.t array; predecessors : int list array; exits : int list; } let = Share.create 128 module G : sig include Graph.Sig.G with type t = t and type V.t = int val empty : t val singleton : Dba.Instr.t -> t val init : int -> (int -> Dba.Instr.t) -> t end = struct type nonrec t = t let empty = { instructions = [||]; predecessors = [||]; exits = [] } let singleton instr = let instr = Share.merge share instr in match instr with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> { instructions = [| instr |]; predecessors = [| [] |]; exits = [ 0 ] } | Dba.Instr.Assert (Cst bv, 0) when Bitvector.is_zero bv -> { instructions = [| instr |]; predecessors = [| [ 0 ] |]; exits = [ 0 ]; } | Dba.Instr.Assert _ | Dba.Instr.Assign _ | Dba.Instr.Assume _ | Dba.Instr.If _ | Dba.Instr.Nondet _ | Dba.Instr.SJump _ | Dba.Instr.Undef _ -> raise (Invalid_argument "Instruction is not a terminator") let init n f = let exits = ref [] in let predecessors = Array.make n [] in let instructions = Array.init n (fun i -> let instr = Share.merge share (f i) in match instr with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> exits := i :: !exits; instr | Dba.Instr.If (_, JOuter _, fallthrough) -> exits := i :: !exits; predecessors.(fallthrough) <- i :: predecessors.(fallthrough); instr | Dba.Instr.If (_, JInner target, fallthrough) -> predecessors.(target) <- i :: predecessors.(target); predecessors.(fallthrough) <- i :: predecessors.(fallthrough); instr | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> predecessors.(fallthrough) <- i :: predecessors.(fallthrough); instr) in { instructions; predecessors; exits = !exits } module V : Graph.Sig.VERTEX with type t = int = struct type t = int let compare a b = a - b let equal a b = a == b let hash = Fun.id type label = t let create = Fun.id let label = Fun.id end type vertex = V.t module E : Graph.Sig.EDGE with type t = V.t * V.t and type vertex = V.t = struct type t = V.t * V.t let compare = compare type vertex = V.t let src = fst let dst = snd type label = unit let create src () dst = (src, dst) let label _ = () end type edge = E.t let is_directed = true let is_empty = function { instructions = [||]; _ } -> true | _ -> false let nb_vertex { instructions; _ } = Array.length instructions let nb_edges { predecessors; _ } = Array.fold_left (fun edges preds -> edges + List.length preds) 0 predecessors let out_degree { instructions; _ } v = match instructions.(v) with | Dba.Instr.If (_, JInner _, _) -> 2 | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> 0 | Dba.Instr.Assert _ | Dba.Instr.Assign _ | Dba.Instr.Assume _ | Dba.Instr.If _ | Dba.Instr.Nondet _ | Dba.Instr.SJump _ | Dba.Instr.Undef _ -> 1 let in_degree { predecessors; _ } v = List.length predecessors.(v) let mem_vertex { instructions; _ } v = v < Array.length instructions let mem_edge { instructions; _ } src dst = match instructions.(src) with | exception Invalid_argument _ -> false | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> false | Dba.Instr.If (_, JInner target, fallthrough) -> dst = target || dst = fallthrough | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> dst = fallthrough let mem_edge_e t (src, dst) = mem_edge t src dst let find_edge t src dst = if mem_edge t src dst then (src, dst) else raise Not_found let find_all_edges t src dst = if mem_edge t src dst then [ (src, dst) ] else [] let succ { instructions; _ } v = match instructions.(v) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> [] | Dba.Instr.If (_, JInner target, fallthrough) -> [ target; fallthrough ] | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> [ fallthrough ] let pred { predecessors; _ } v = predecessors.(v) let succ_e t v = List.map (fun dst -> (v, dst)) (succ t v) let pred_e t v = List.map (fun src -> (src, v)) (pred t v) let iter_vertex f { instructions; _ } = for i = 0 to Array.length instructions - 1 do f i done let fold_vertex = let rec loop f n i x = if i < n then loop f n (i + 1) (f i x) else x in fun f { instructions; _ } x -> loop f (Array.length instructions) 0 x let iter_edges f { instructions; _ } = for i = 0 to Array.length instructions - 1 do match instructions.(i) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> () | Dba.Instr.If (_, JInner target, fallthrough) -> f i target; f i fallthrough | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f i fallthrough done let fold_edges = let rec loop instructions f n i x = if i < n then loop instructions f n (i + 1) (match instructions.(i) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> x | Dba.Instr.If (_, JInner target, fallthrough) -> f i target (f i fallthrough x) | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f i fallthrough x) else x in fun f { instructions; _ } x -> loop instructions f (Array.length instructions) 0 x let iter_edges_e f t = iter_edges (fun src dst -> f (src, dst)) t let fold_edges_e f t x = fold_edges (fun src dst x -> f (src, dst) x) t x let map_vertex f { instructions; _ } = let size = Array.length instructions in let transient = Array.make size (Dba.Instr.stop (Some Dba.KO)) in for i = 0 to size - 1 do transient.(f i) <- Share.merge share (Dba_types.Instruction.reloc ~inner:f instructions.(i)) done; init size (fun i -> transient.(i)) let iter_succ f { instructions; _ } v = match instructions.(v) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> () | Dba.Instr.If (_, JInner target, fallthrough) -> f target; f fallthrough | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f fallthrough let iter_pred f { predecessors; _ } v = List.iter f predecessors.(v) let fold_succ f { instructions; _ } v x = match instructions.(v) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> x | Dba.Instr.If (_, JInner target, fallthrough) -> f target (f fallthrough x) | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f fallthrough x let fold_pred f { predecessors; _ } v x = List.fold_left (fun x src -> f src x) x predecessors.(v) let iter_succ_e f { instructions; _ } v = match instructions.(v) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> () | Dba.Instr.If (_, JInner target, fallthrough) -> f (v, target); f (v, fallthrough) | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f (v, fallthrough) let fold_succ_e f { instructions; _ } v x = match instructions.(v) with | Dba.Instr.DJump _ | Dba.Instr.SJump (JOuter _, _) | Dba.Instr.Stop _ -> x | Dba.Instr.If (_, JInner target, fallthrough) -> f (v, target) (f (v, fallthrough) x) | Dba.Instr.Assert (_, fallthrough) | Dba.Instr.Assign (_, _, fallthrough) | Dba.Instr.Assume (_, fallthrough) | Dba.Instr.If (_, _, fallthrough) | Dba.Instr.Nondet (_, fallthrough) | Dba.Instr.SJump (JInner fallthrough, _) | Dba.Instr.Undef (_, fallthrough) -> f (v, fallthrough) x let iter_pred_e f { predecessors; _ } v = List.iter (fun src -> f (src, v)) predecessors.(v) let fold_pred_e f { predecessors; _ } v x = List.fold_left (fun x src -> f (src, v) x) x predecessors.(v) end module DI = Dba_types.Instruction let stop_ok = Share.merge share (Dba.Instr.stop (Some Dba.OK)) (* pred and succ are aliases *) let pred = G.pred let succ = G.succ let empty = G.empty let stop = G.singleton stop_ok let inst_exn { instructions; _ } n = instructions.(n) let inst g n = try Some (inst_exn g n) with Invalid_argument _ -> None let init = G.init let singleton = G.singleton let goto vaddr = G.singleton (Share.merge share (Dba.Instr.static_outer_jump vaddr)) let unlink { instructions; predecessors; _ } i = let n = match Array.get instructions i with | DJump _ | SJump (JOuter _, _) | Stop _ | If _ -> raise (Invalid_argument "unlink") | Assert (_, n) | Assume (_, n) | Assign (_, _, n) | Nondet (_, n) | SJump (JInner n, _) | Undef (_, n) -> n in if i = 0 then Array.set instructions 0 (Share.merge share (Dba.Instr.static_inner_jump n)) else let inner j = if j = i then n else j in Array.set predecessors n (List.fold_left (fun ps p -> Array.set instructions p (Dba_types.Instruction.reloc ~inner (Array.get instructions p)); p :: ps) (List.filter (( <> ) i) (Array.get predecessors n)) (Array.get predecessors i)); Array.set predecessors i []; Array.set instructions i stop_ok let length = G.nb_vertex let is_empty = G.is_empty let start _ = 0 let exits { exits; _ } = exits let beginning_inst g = inst_exn g 0 let fold f acc { instructions; _ } = Array.fold_left f acc instructions let of_list l = let a = Array.of_list l in init (Array.length a) (fun i -> a.(i)) let of_labelled_list l = let a = Array.of_list l in init (Array.length a) (fun i -> let j, instr = a.(i) in assert (i == j); instr) let flatten { instructions; _ } = Array_utils.fold_righti (fun i list instr -> (i, instr) :: list) [] instructions let to_list { instructions; _ } = Array.to_list instructions let iteri ~f { instructions; _ } = Array.iteri f instructions let iter ~f g = iteri ~f:(fun _ inst -> f inst) g let copy { instructions; predecessors; exits } = { instructions = Array.copy instructions; predecessors = Array.copy predecessors; exits; } let mapi ~f { instructions; _ } = init (Array.length instructions) (fun i -> f i instructions.(i)) exception Done let for_all p g = try iter ~f:(fun i -> if not (p i) then raise_notrace Done) g; true with Done -> false let pp ppf t = let open Format in fprintf ppf "@[<v 0>"; flatten t |> List.iter (fun (addr, instr) -> fprintf ppf "@[<h>%2d: %a@]@ " addr (Dba_printer.Ascii.pp_instruction_maybe_goto ~current_id:addr) instr); fprintf ppf "@]" let to_stmts t (address : Virtual_address.t) = let base = Dba_types.Caddress.block_start address in let l = to_list t in List.mapi (fun i e -> Dba_types.Statement.create (Dba_types.Caddress.reid base i) e) l let no_inner_reference instr = function | Dba.JOuter _ -> true | Dba.JInner _ as jt -> not (List.mem jt (DI.successors instr)) let _no_block_inner_references t n = let jt = Dba.Jump_target.inner n in for_all (fun instr -> no_inner_reference instr jt) t let outer_jumps = fold (fun hwset instr -> let jset = DI.outer_jumps instr in Virtual_address.Set.union hwset jset) Virtual_address.Set.empty let callees = fold (fun hwset dinstr -> let open Dba in match dinstr with | Instr.SJump (JOuter dst, Call _) -> (* Only this pattern marks a call instruction of which we know the target *) let a = Dba_types.Caddress.to_virtual_address dst in Virtual_address.Set.add a hwset | _ -> hwset) Virtual_address.Set.empty module Var = struct include Dba.Var let compare (t : t) (t' : t) = t.id - t'.id module Set = struct include Set.Make (struct type nonrec t = t let compare = compare end) let _pp ppf t = if is_empty t then Format.pp_print_string ppf "{}" else let v = choose t in let t = remove v t in Format.pp_print_string ppf "{ "; Format.pp_print_string ppf v.name; iter (fun v -> Format.pp_print_string ppf ", "; Format.pp_print_string ppf v.name) t; Format.pp_print_string ppf " }" end let rec collect (e : Dba.Expr.t) (d : Set.t) : Set.t = match e with | Cst _ -> d | Var v -> Set.add v d | Load (_, _, e, _) | Unary (_, e) -> collect e d | Binary (_, e, e') -> collect e (collect e' d) | Ite (e, e', e'') -> collect e (collect e' (collect e'' d)) let rec contains (v : t) (e : Dba.Expr.t) : bool = match e with | Cst _ -> false | Var v' -> equal v v' | Load (_, _, e, _) | Unary (_, e) -> contains v e | Binary (_, e, e') -> contains v e || contains v e' | Ite (e, e', e'') -> contains v e || contains v e' || contains v e'' module Map = Map.Make (struct type nonrec t = t let compare = compare end) end module Int = Basic_types.Integers.Int module Leader = Graph.Leaderlist.Make (G) let optimize ?(inplace = false) t = let t = if inplace then t else copy t in let outs = Var.Set.filter (fun (var : Var.t) -> var.info <> Var.Tag.Temp) (fold (fun d (i : DI.t) -> match i with | Assign ((Var var | Restrict (var, _)), exp, _) -> Var.(collect exp (Set.add var d)) | Assign (Store (_, _, addr, _), exp, _) -> Var.(collect addr (collect exp d)) | Undef ((Var var | Restrict (var, _)), _) | Nondet ((Var var | Restrict (var, _)), _) -> Var.Set.add var d | Undef (Store (_, _, addr, _), _) | Nondet (Store (_, _, addr, _), _) -> Var.collect addr d | Assume (exp, _) | Assert (exp, _) | If (exp, _, _) | DJump (exp, _) -> Var.collect exp d | SJump _ | Stop _ -> d) Var.Set.empty t) in let module Analyze = struct type data = Var.Set.t type edge = G.E.t type vertex = G.E.vertex type g = G.t let direction = Graph.Fixpoint.Backward let join = Var.Set.union let equal = Var.Set.equal let analyze e d = match inst_exn t (G.E.dst e) with | Assign (Var var, exp, _) -> if Var.Set.mem var d then Var.collect exp (Var.Set.remove var d) else d | Assign (Restrict (var, _), exp, _) -> if Var.Set.mem var d then Var.collect exp d else d | Assign (Store (_, _, addr, _), exp, _) -> Var.(collect addr (collect exp d)) | Undef (Var var, _) | Nondet (Var var, _) -> Var.Set.remove var d | Undef (Restrict _, _) | Nondet (Restrict _, _) -> d | Undef (Store (_, _, addr, _), _) | Nondet (Store (_, _, addr, _), _) -> Var.collect addr d | Assume (exp, _) | Assert (exp, _) | If (exp, _, _) | DJump (exp, _) -> Var.collect exp d | SJump _ | Stop _ -> d end in let module Liveness = Graph.Fixpoint.Make (G) (Analyze) in let liveness = Liveness.analyze (fun i -> match inst_exn t i with | DJump _ | SJump (JOuter _, _) | Stop _ | If (_, JOuter _, _) -> outs | Assign _ | Undef _ | Nondet _ | Assume _ | Assert _ | If _ | SJump _ -> Var.Set.empty) t in iteri ~f:(fun i (k : DI.t) -> match k with | Assign ((Var v | Restrict (v, _)), _, _) | Undef ((Var v | Restrict (v, _)), _) | Nondet ((Var v | Restrict (v, _)), _) when Var.Set.mem v (liveness i) = false -> unlink t i | _ -> ()) t; let rec associate o u i (e : Dba.Expr.t) = match e with | Cst _ -> u | Var v -> ( try let j = Var.Map.find v o in if Int.Map.mem j u then Int.Map.add j None u else Int.Map.add j (Some i) u with Not_found -> u) | Load (_, _, e, _) | Unary (_, e) -> associate o u i e | Binary (_, e, e') -> associate o (associate o u i e) i e' | Ite (e, e', e'') -> associate o (associate o (associate o u i e) i e') i e'' in List.iter (fun block -> let last = ref 0 in let origin, use = List.fold_left (fun (o, u) i -> last := i; match inst_exn t i with | Assign (Var var, exp, _) -> (Var.Map.add var i o, associate o u i exp) | Assign (Restrict (var, _), exp, _) -> let o = Var.Map.remove var o and u = try let j = Var.Map.find var o in Int.Map.add j None u with Not_found -> u in (o, Int.Map.add i None (associate o u i exp)) | Assign (Store (_, _, addr, _), exp, _) -> (o, associate o (associate o u i addr) i exp) | Undef (Var var, _) | Nondet (Var var, _) -> (Var.Map.remove var o, u) | Undef (Restrict (var, _), _) | Nondet (Restrict (var, _), _) -> ( Var.Map.remove var o, try let j = Var.Map.find var o in Int.Map.add j None u with Not_found -> u ) | Undef (Store (_, _, addr, _), _) | Nondet (Store (_, _, addr, _), _) -> (o, associate o u i addr) | Assume (exp, _) | Assert (exp, _) | If (exp, _, _) | DJump (exp, _) -> (o, associate o u i exp) | SJump _ | Stop _ -> (o, u)) (Var.Map.empty, Int.Map.empty) block in let use = Var.Set.fold (fun v u -> try let j = Var.Map.find v origin in Int.Map.add j None u with Not_found -> u) (liveness !last) use in let rec subs_exp var value (e : Dba.Expr.t) = match e with | Cst _ -> e | Var var' -> if Var.equal var var' then value else e | Load (sz, en, e, array) -> Dba.Expr.load (Size.Byte.create sz) en (subs_exp var value e) ?array | Unary (f, e) -> Dba.Expr.unary f (subs_exp var value e) | Binary (f, e, e') -> Dba.Expr.binary f (subs_exp var value e) (subs_exp var value e') | Ite (e, e', e'') -> Dba.Expr.ite (subs_exp var value e) (subs_exp var value e') (subs_exp var value e'') in let subs_lval var value (lv : Dba.LValue.t) = match lv with | Var _ -> lv | Restrict _ -> lv | Store (sz, en, addr, array) -> Dba.LValue.store (Size.Byte.create sz) en (subs_exp var value addr) ?array in let rec contains_mem (e : Dba.Expr.t) = match e with | Cst _ -> false | Var _ -> false | Load _ -> true | Unary (_, e) -> contains_mem e | Binary (_, e, e') -> contains_mem e || contains_mem e' | Ite (e, e', e'') -> contains_mem e || contains_mem e' || contains_mem e'' in Int.Map.iter (fun o u -> match u with | None -> () | Some i -> ( match inst_exn t o with | Assign (Var var, exp, n) -> let mem_barrier = contains_mem exp in let rec inline n = if n = i then ( Array.set t.instructions i (match inst_exn t n with | Assign (lv, rv, n) -> Dba.Instr.assign (subs_lval var exp lv) (subs_exp var exp rv) n | Undef (lv, n) -> Dba.Instr.undefined (subs_lval var exp lv) n | Nondet (lv, n) -> Dba.Instr.non_deterministic (subs_lval var exp lv) n | Assert (test, n) -> Dba.Instr._assert (subs_exp var exp test) n | Assume (test, n) -> Dba.Instr.assume (subs_exp var exp test) n | If (test, branch, n) -> Dba.Instr.ite (subs_exp var exp test) branch n | DJump (target, tag) -> Dba.Instr.dynamic_jump (subs_exp var exp target) ~tag | SJump _ | Stop _ -> assert false); unlink t o) else match inst_exn t n with | DJump _ | SJump (JOuter _, _) | Stop _ | If _ -> assert false | Assign ((Var var | Restrict (var, _)), _, n) | Nondet ((Var var | Restrict (var, _)), n) | Undef ((Var var | Restrict (var, _)), n) -> if Var.contains var exp then () else inline n | Assign (Store _, _, n) | Nondet (Store _, n) | Undef (Store _, n) -> if not mem_barrier then inline n | Assert (_, n) | Assume (_, n) | SJump (JInner n, _) -> inline n in inline n | _ -> assert false)) use) (Leader.leader_lists t 0); t module Logger = Logger.Make (struct let name = "hunk" end) (* TODO: take possible failures into account *) let export_to_file g = let filename = Filename.temp_file "dba" ".dot" in Logger.debug ~level:4 "Exporting graph to file %s" filename; let oc = open_out_bin filename in let module C_dot = struct include G let graph_attributes _g = [] let default_vertex_attributes _ = [ `Shape `Box ] let vertex_name v = Format.asprintf "\"%d: %a\"" v Dba_printer.Ascii.pp_instruction (inst_exn g v) let vertex_attributes _v = [] let get_subgraph _ = None let default_edge_attributes _ = [] let edge_attributes _ = [] end in let module D = Graph.Graphviz.Dot (C_dot) in D.output_graph oc g; close_out oc; filename let view ~viewer filename = let svg_filename = Filename.chop_extension filename ^ ".svg" in Logger.debug ~level:4 "Exporting graph to SVG file %s" svg_filename; let cmd = Printf.sprintf "dot -T svg %s > %s" filename svg_filename in ignore (Sys.command cmd); let view_cmd = Printf.sprintf "%s %s" viewer svg_filename in ignore (Sys.command view_cmd) let export_and_view ?(cmd = "firefox") g = export_to_file g |> view ~viewer:cmd (* [is_return] actually checks if the graph is a linear suite of instruction terminated by a return jump. *) let is_return g = let rec aux node = let dinst = inst_exn g node in DI.is_return dinst || match G.succ g node with [ v ] -> aux v | _ -> false in (not (G.is_empty g)) && aux 0 let has_indirect_jump { instructions; exits; _ } = List.exists (fun i -> match instructions.(i) with Dba.Instr.DJump _ -> true | _ -> false) exits module Check = struct let inner_jump_inside_bound t label = label >= 0 && label < length t let get_inner_jumps = let open Dba in let aux acc = function | Instr.SJump (JInner id, _) | Instr.If (_, JInner id, _) -> id :: acc | Instr.If _ | Instr.SJump _ | Instr.DJump _ | Instr.Assign _ | Instr.Stop _ | Instr.Assert _ | Instr.Assume _ | Instr.Nondet _ | Instr.Undef _ -> acc in fold aux [] let has_inbound_inner_jumps t = get_inner_jumps t |> List.for_all (inner_jump_inside_bound t) exception Undeclared_Variable of string * Dba.Instr.t let no_undeclared_variables decls t = let no_undeclared_at_instr i = let du = DI.variables i in let vset = let open Dba_types in Basic_types.String.Set.union du.uses du.defs in try Basic_types.String.Set.iter (fun vname -> if not (Basic_types.String.Map.mem vname decls) then raise (Undeclared_Variable (vname, i))) vset; true with Undeclared_Variable (vname, instr) -> Logger.fatal "Undeclared variable %s at instruction %a" vname Dba_printer.Ascii.pp_instruction instr in for_all no_undeclared_at_instr t exception Temporaries_undefined of Basic_types.String.Set.t * Dba.Instr.t let no_temporary_leak g = let module Strg = Basic_types.String in let start = 0 in let init v = (v = start, (DI.temporaries (inst_exn g v)).Dba_types.defs) in let module N = Graph.Fixpoint.Make (G) (struct type g = G.t type edge = G.E.t type vertex = G.V.t (* fact = reachable flag * defined temporaries *) type data = bool * Basic_types.String.Set.t let direction = Graph.Fixpoint.Forward let join (r, s) (r', s') = (r || r', Basic_types.String.Set.union s s') let equal (r, s) (r', s') = r = r' && Basic_types.String.Set.equal s s' let analyze e (r, s) = let src = G.E.src e in ( r, Basic_types.String.Set.union (DI.temporaries (inst_exn g src)).Dba_types.defs s ) end) in let f = N.analyze init g in Logger.debug ~level:6 "@[<v 0>%a@]" (fun ppf g -> G.iter_vertex (fun v -> Format.fprintf ppf "%d: %a [%a]@ " v Dba_printer.Ascii.pp_instruction (inst_exn g v) (fun ppf s -> Strg.Set.iter (fun name -> Format.fprintf ppf "%s; " name) s) (snd (f v))) g) g; try Array.iteri (fun v inst -> let reachable, defined = f v in if not reachable then g.instructions.(v) <- stop.instructions.(0) else let du = DI.temporaries inst in let undefined_temporaries = Strg.Set.diff du.Dba_types.uses defined in if not (Strg.Set.is_empty undefined_temporaries) then raise (Temporaries_undefined (undefined_temporaries, inst))) g.instructions; true with Temporaries_undefined (tset, instr) -> export_and_view g; Logger.fatal "@[<h>Temporaries %a were previously undefined but used at instruction \ %a@]" (fun ppf set -> Basic_types.String.Set.iter (fun s -> Format.fprintf ppf "%s;@ " s) set) tset Dba_printer.Ascii.pp_instruction instr end type conditional = { condition : Dba.Expr.t; consequent : Virtual_address.t; alternative : Virtual_address.t; } let conditional g = if length g <> 2 then None else match beginning_inst g with | Dba.Instr.If (condition, Dba.JOuter consequent, fallthrough) -> ( match inst_exn g fallthrough with | Dba.Instr.SJump (Dba.JOuter alternative, _) -> let open Dba_types.Caddress in Some { condition; consequent = to_virtual_address consequent; alternative = to_virtual_address alternative; } | _ -> None) | _ -> None module Constant_propagation = struct open Dba module Env = struct include Basic_types.String.Map let eq = ( = ) (* Maybe this is not the right equality for region * Bv.t type *) (* Test if env1 contains env2 *) let contains env1 env2 = let mem vname cst = match find vname env1 with | v -> eq v cst | exception Not_found -> false in for_all mem env2 let add vname cst env = match find vname env with | v -> if eq v cst then env else remove vname env | exception Not_found -> add vname cst env end let rec eval_expr env = function | Dba.Expr.Var v as e -> ( match Basic_types.String.Map.find v.name env with | bv -> Expr.constant bv | exception Not_found -> e) | Dba.Expr.Load (sz, en, e, array) -> let sz = Size.Byte.create sz in Expr.load sz en (eval_expr env e) ?array | Dba.Expr.Cst _ as e -> e | Dba.Expr.Unary (uop, e) -> Expr.unary uop (eval_expr env e) | Dba.Expr.Binary (bop, e1, e2) -> Expr.binary bop (eval_expr env e1) (eval_expr env e2) | Dba.Expr.Ite (c, e1, e2) -> Expr.ite (eval_expr env c) (eval_expr env e1) (eval_expr env e2) let eval_instruction penv i = match i with | Dba.Instr.Assign (lv, e, id) -> Instr.assign lv (eval_expr penv e) id | Dba.Instr.DJump (e, tag) -> Instr.dynamic_jump ~tag (eval_expr penv e) | Dba.Instr.If (c, jt, id) -> Instr.ite (eval_expr penv c) jt id | Dba.Instr.Assert (c, id) -> Instr._assert (eval_expr penv c) id | Dba.Instr.Assume (c, id) -> Instr.assume (eval_expr penv c) id | ( Dba.Instr.Undef _ | Dba.Instr.Nondet _ | Dba.Instr.Stop _ | Dba.Instr.SJump _ ) as instr -> instr let gather_propagations ?(env = Env.empty) block = (* All elements are initialized at None *) let envs = to_list block |> List.map (fun _ -> None) |> Array.of_list in let should_propagate env id = match envs.(id) with | None -> true (* this index was never visited *) | Some e -> not (Env.contains env e) in let mark_env env idx = envs.(idx) <- Some env in let remove lval env = match Dba_types.LValue.name_of lval with | Some vname -> Basic_types.String.Map.remove vname env | None -> env in let rec loop env idx = if should_propagate env idx then ( mark_env env idx; match inst block idx with | None -> env | Some i -> ( match i with | Dba.Instr.Assign (Dba.LValue.Var { name; _ }, Dba.Expr.Cst v, idx') -> loop (Env.add name v env) idx' | Dba.Instr.If (_, Dba.JInner idx1, idx2) -> loop (loop env idx1) idx2 | Dba.Instr.Nondet (lv, id) -> loop (remove lv env) id | Dba.Instr.Assert (_, id) | Dba.Instr.Assume (_, id) | Dba.Instr.Undef (_, id) | Dba.Instr.Assign (_, _, id) | Dba.Instr.SJump (Dba.JInner id, _) | Dba.Instr.If (_, Dba.JOuter _, id) -> loop env id | Dba.Instr.SJump (Dba.JOuter _, _) | Dba.Instr.DJump _ | Dba.Instr.Stop _ -> env)) else env in ignore (loop env (start block)); envs let do_propagations block propagation_envs = mapi ~f:(fun i instruction -> match propagation_envs.(i) with | None -> instruction | Some env -> if Basic_types.String.Map.is_empty env then instruction else eval_instruction env instruction) block let eval block = Logger.debug ~level:5 "@[<v 0>Prepropagation@ %a@]" pp block; let b = gather_propagations block |> do_propagations block in Logger.debug ~level:5 "@[<v 0>Post-propagation@ %a@]" pp b; b end let constant_propagation = Constant_propagation.eval module DC_elimination = struct module M = Basic_types.Integers.Int.Map module S = Basic_types.Integers.Int.Set let fetch target src p = let alias = try src :: M.find src p with Not_found -> [ src ] in try M.add target (List.append alias (M.find target p)) p with Not_found -> M.add target alias p let eval block = let rec collect b n r m p w = match S.min_elt w with | exception Not_found -> (n, r, m) | i when M.mem i m -> collect b n r m p (S.remove i w) | i -> ( match inst_exn b i with | Dba.Instr.SJump (Dba.JInner goto, _) -> collect b n r m (fetch goto i p) S.(add goto (remove i w)) | inst -> let m = try List.fold_left (fun m i -> M.add i n m) m (M.find i p) with Not_found -> m in collect b (n + 1) (M.add n i r) (M.add i n m) p (List.fold_left (fun w -> function | Dba.JOuter _ -> w | Dba.JInner id -> S.add id w) (S.remove i w) (Dba_types.Instruction.successors inst))) in let n, r, m = collect block 0 M.empty M.empty M.empty (S.singleton 0) in let inner i = try M.find i m with Not_found -> i in init n (fun i -> Dba_types.Instruction.reloc ~inner (inst_exn block (M.find i r))) end let dead_code_elimination = DC_elimination.eval
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>