package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_kernel_dba/dba_printer.ml.html
Source file dba_printer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Format module type Renderer = sig val binary_ops : (Dba.Binary_op.t * string) list val unary_ops : (Dba.Unary_op.t * string) list val endiannesses : (Dba.endianness * string) list val string_of_digit_char : char -> string val left_right_parentheses : string * string end module AsciiRenderer = struct let binary_ops = [ (Dba.Binary_op.Plus, "+"); (Dba.Binary_op.Minus, "-"); (Dba.Binary_op.Mult, "*"); (Dba.Binary_op.DivU, "/u"); (Dba.Binary_op.DivS, "/s"); (Dba.Binary_op.RemU, "%u"); (Dba.Binary_op.RemS, "%s"); (Dba.Binary_op.Or, "|"); (Dba.Binary_op.And, "&"); (Dba.Binary_op.Xor, "^"); (Dba.Binary_op.Concat, "::"); (Dba.Binary_op.LShift, "lsl"); (Dba.Binary_op.RShiftU, "lsr"); (Dba.Binary_op.RShiftS, "asr"); (Dba.Binary_op.LeftRotate, "rol"); (Dba.Binary_op.RightRotate, "ror"); (Dba.Binary_op.Eq, "="); (Dba.Binary_op.Diff, "<>"); (Dba.Binary_op.LeqU, "<=u"); (Dba.Binary_op.LtU, "<u"); (Dba.Binary_op.GeqU, ">=u"); (Dba.Binary_op.GtU, ">u"); (Dba.Binary_op.LeqS, "<=s"); (Dba.Binary_op.LtS, "<s"); (Dba.Binary_op.GeqS, ">=s"); (Dba.Binary_op.GtS, ">s"); ] let unary_ops = [ (Dba.Unary_op.UMinus, "-"); (Dba.Unary_op.Not, "!") ] let endiannesses = [ (Dba.BigEndian, "->"); (Dba.LittleEndian, "<-") ] let string_of_digit_char c = Format.sprintf "%c" c let left_right_parentheses = ("(", ")") end module UnicodeRenderer : Renderer = struct let binary_ops = [ (Dba.Binary_op.Plus, "+"); (Dba.Binary_op.Minus, "-"); (Dba.Binary_op.Mult, "*"); (Dba.Binary_op.DivU, "/"); (Dba.Binary_op.DivS, "/𝒔"); (Dba.Binary_op.RemU, "%𝒖"); (Dba.Binary_op.RemS, "%𝒔"); (Dba.Binary_op.Or, "||"); (Dba.Binary_op.And, "&&"); (Dba.Binary_op.Xor, "⨁"); (Dba.Binary_op.Concat, "::"); (Dba.Binary_op.LShift, "≪"); (Dba.Binary_op.RShiftU, "≫𝒖"); (Dba.Binary_op.RShiftS, "≫𝒔"); (Dba.Binary_op.LeftRotate, "lrot"); (Dba.Binary_op.RightRotate, "rrot"); (Dba.Binary_op.Eq, "="); (Dba.Binary_op.Diff, "≠"); (Dba.Binary_op.LeqU, "≤𝒖"); (Dba.Binary_op.LtU, "<𝒖"); (Dba.Binary_op.GeqU, "≥𝒖"); (Dba.Binary_op.GtU, ">𝒖"); (Dba.Binary_op.LeqS, "≤𝒔"); (Dba.Binary_op.LtS, "<𝒔"); (Dba.Binary_op.GeqS, "≥𝒔"); (Dba.Binary_op.GtS, ">𝒔"); ] let unary_ops = [ (Dba.Unary_op.UMinus, "-"); (Dba.Unary_op.Not, "¬") ] let endiannesses = [ (Dba.LittleEndian, "𝐿"); (Dba.BigEndian, "𝐵") ] let string_of_digit_char = function (* Unicode lowercase digits starts at 0x2080 *) | '0' -> "₀" | '1' -> "₁" | '2' -> "₂" | '3' -> "₃" | '4' -> "₄" | '5' -> "₅" | '6' -> "₆" | '7' -> "₇" | '8' -> "₈" | '9' -> "₉" | _ -> assert false let left_right_parentheses = ("₍", "₎") end module EIC (R : Renderer) : Renderer = struct (* Endian Independent Code: Consider that the code has no endianness *) include R (* On purpose: this will not print any endianness information *) let endiannesses = [] end module type DbaPrinter = sig val pp_code_address : Format.formatter -> Dba.address -> unit val pp_tag : Format.formatter -> Dba.tag -> unit val pp_binary_op : Format.formatter -> Dba.Binary_op.t -> unit val pp_unary_op : Format.formatter -> Dba.Unary_op.t -> unit val pp_bl_term : Format.formatter -> Dba.Expr.t -> unit val pp_expr : Format.formatter -> Dba.Expr.t -> unit val pp_instruction : Format.formatter -> Dba.Instr.t -> unit val pp_lhs : Format.formatter -> Dba.LValue.t -> unit val pp_instruction_maybe_goto : current_id:int -> Format.formatter -> Dba.Instr.t -> unit end module Make (R : Renderer) : DbaPrinter = struct let mk_tbl assocs = let h = Hashtbl.create (List.length assocs) in List.iter (fun (key, value) -> Hashtbl.add h key value) assocs; h let binary_op_tbl = mk_tbl R.binary_ops and unary_op_tbl = mk_tbl R.unary_ops and endianness_tbl = mk_tbl R.endiannesses let find_or_default h key default = try Hashtbl.find h key with Not_found -> default let pp_binary_op ppf bop = fprintf ppf "%s" (find_or_default binary_op_tbl bop "?bop?") let pp_unary_op ppf uop = fprintf ppf "%s" (find_or_default unary_op_tbl uop "?uop?") let pp_endianness ppf endianness = fprintf ppf "%s" (find_or_default endianness_tbl endianness "") let pp_size ppf size = let is_digit c = try let ccode = Char.code c in ccode >= 48 && ccode <= 57 with Invalid_argument _ -> false in let encode_char c = if is_digit c then R.string_of_digit_char c else "X" in let b = Buffer.create 16 in (* Wild guess: how many bytes do we need for the size ?*) String.iter (fun c -> Buffer.add_string b (encode_char c)) (string_of_int size); fprintf ppf "%s" (Buffer.contents b) let pp_code_address ppf (addr : Dba.address) = fprintf ppf "(%a, %d)" Virtual_address.pp addr.Dba.base addr.Dba.id let pp_opt pp_value ppf = function | None -> () | Some value -> fprintf ppf "%a" pp_value value let pp_tag ppf = function | Dba.Default -> () | Dba.Call caddr -> fprintf ppf "#call with return address %@ %a" pp_code_address caddr | Dba.Return -> fprintf ppf "#return" (* Arbitrarily set value limits displayed as integer *) let max_display_int = Z.of_int 4096 let min_display_int = Z.of_int (-4096) let pp_constant ppf bv = let n = Bitvector.signed_of bv in if n < min_display_int || n > max_display_int then fprintf ppf "%a" Bitvector.pp_hex_or_bin bv else let size = Bitvector.size_of bv in fprintf ppf "%s<%a>" (Z.to_string n) pp_size size let pp_array = Format.pp_print_option ~none:(fun ppf () -> Format.pp_print_char ppf '@') Format.pp_print_string let rec pp_bl_term ppf = function | Dba.Expr.Var { name; size; _ } -> fprintf ppf "%s<%a>" name pp_size size | Dba.Expr.Load (size, endian, expr, array) -> fprintf ppf "%a[%a,%a,%a]" pp_array array pp_bl_term expr pp_endianness endian pp_size size | Dba.Expr.Cst bv -> pp_constant ppf bv | Dba.Expr.Unary (Dba.Unary_op.Uext n, expr) -> fprintf ppf "@[(uext%d %a)@]" n pp_bl_term expr | Dba.Expr.Unary (Dba.Unary_op.Sext n, expr) -> fprintf ppf "@[(sext%d %a)@]" n pp_bl_term expr | Dba.Expr.Unary (Dba.Unary_op.Restrict { Interval.lo = i; Interval.hi = j }, expr) -> if i = j then fprintf ppf "%a{%d}" pp_bl_term expr i else fprintf ppf "%a{%d..%d}" pp_bl_term expr j i | Dba.Expr.Unary (unary_op, expr) -> fprintf ppf "@[%a@ (%a)@]" pp_unary_op unary_op pp_bl_term expr | Dba.Expr.Binary (binary_op, lexpr, rexpr) -> fprintf ppf "@[<hov 1>(%a@ %a@ %a)@]" pp_bl_term lexpr pp_binary_op binary_op pp_bl_term rexpr | Dba.Expr.Ite (cond, then_expr, else_expr) -> fprintf ppf "@[<hov 0>%a@ ? %a@ : %a@]" pp_bl_term cond pp_bl_term then_expr pp_bl_term else_expr let pp_lhs ppf = function | Dba.(LValue.Var { name; size; _ }) -> fprintf ppf "%s<%d>" name size | Dba.(LValue.Restrict ({ name; size; _ }, { Interval.lo; Interval.hi })) -> if lo <> hi then fprintf ppf "%s<%d>{%d, %d}" name size lo hi else fprintf ppf "%s<%d>{%d}" name size lo | Dba.LValue.Store (size, endian, expr, array) -> fprintf ppf "%a[%a,%a,%a]" pp_array array pp_bl_term expr pp_endianness endian pp_size size let pp_address ppf = function | Dba.JInner id -> fprintf ppf "%d" id | Dba.JOuter caddr -> fprintf ppf "%a" pp_code_address caddr let pp_state ppf = function | Dba.OK -> fprintf ppf "OK" | Dba.KO -> fprintf ppf "KO" | Dba.Undecoded s -> fprintf ppf "#undecoded %s" s | Dba.Unsupported s -> fprintf ppf "#unsupported %s" s let pp_instruction n ppf instruction = let suffix ppf id = match n with | None -> fprintf ppf "" | Some value -> if id = value + 1 then fprintf ppf ";" else fprintf ppf "; goto %d" id in match instruction with | Dba.Instr.Assign (lhs, expr, id) -> fprintf ppf "@[<hov 1>%a :=@ %a@,%a@]" pp_lhs lhs pp_bl_term expr suffix id | Dba.Instr.SJump (addr, tag) -> fprintf ppf "goto %a %a" pp_address addr pp_tag tag | Dba.Instr.DJump (e_addr, tag) -> fprintf ppf "goto %a %a" pp_bl_term e_addr pp_tag tag | Dba.Instr.If (e, addr, int_addr) -> fprintf ppf "@[<hov 2>if %a@ @[<hv 0>goto %a@ else goto %d@]@]" pp_bl_term e pp_address addr int_addr | Dba.Instr.Stop state_opt -> fprintf ppf "%a" (pp_opt pp_state) state_opt | Dba.Instr.Assume (cond, id) -> fprintf ppf "%@assume (%a)%a" pp_bl_term cond suffix id | Dba.Instr.Assert (cond, id) -> fprintf ppf "%@assert (%a)%a" pp_bl_term cond suffix id | Dba.Instr.Undef (lhs, id) -> fprintf ppf "%a := \\undef%a" pp_lhs lhs suffix id | Dba.Instr.Nondet (lhs, id) -> fprintf ppf "%a := nondet%a" pp_lhs lhs suffix id let pp_expr = pp_bl_term let old_pp = pp_instruction let pp_instruction ppf instruction = old_pp None ppf instruction let pp_instruction_maybe_goto ~current_id ppf instruction = old_pp (Some current_id) ppf instruction end module Ascii = Make (AsciiRenderer) module EICAscii = Make (EIC (AsciiRenderer)) module Unicode = Make (UnicodeRenderer) module EICUnicode = Make (EIC (UnicodeRenderer))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>