package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec.dwarf/frame.ml.html
Source file frame.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Basic_types.Integers open Reader module Map = Basic_types.Integers.Int.Map module Set = Basic_types.Integers.Int.Set type rule = Undef | Same | Value of Dba.Expr.t type entry = { addresses : Virtual_address.t Interval.t; cfa : Dba.Expr.t; registers : rule Map.t; } let addresses { addresses; _ } = addresses let cfa { cfa; _ } = cfa let rule x { registers; _ } = match Map.find x registers with exception Not_found -> Undef | rule -> rule module Operator = struct type t = | Advance_loc of Z.t | Offset of int * Z.t | Restore of int | Nop | Set_loc of Virtual_address.t | Undefined of int | Same_value of int | Register of int * int | Remember_state | Restore_state | Def_cfa of int * Z.t | Def_cfa_register of int | Def_cfa_offset of Z.t | Def_cfa_expression of Expr.t | Expression of int * Expr.t | Val_offset of int * Z.t | Val_expression of int * Expr.t let pp ppf = function | Advance_loc d -> Format.fprintf ppf "DW_CFA_advance_loc (%a)" Z.pp_print d | Offset (r, o) -> Format.fprintf ppf "DW_CFA_offset (%d, %a)" r Z.pp_print o | Restore r -> Format.fprintf ppf "DW_CFA_restore (%d)" r | Nop -> Format.fprintf ppf "DW_CFA_nop" | Set_loc a -> Format.fprintf ppf "DW_CFA_set_loc (%a)" Virtual_address.pp a | Undefined r -> Format.fprintf ppf "DW_CFA_undefined (%d)" r | Same_value r -> Format.fprintf ppf "DW_CFA_same_value (%d)" r | Register (r, o) -> Format.fprintf ppf "DW_CFA_register (%d, %d)" r o | Remember_state -> Format.fprintf ppf "DW_CFA_remember_state" | Restore_state -> Format.fprintf ppf "DW_CFA_restore_state" | Def_cfa (r, o) -> Format.fprintf ppf "DW_CFA_def_cfa (%d, %a)" r Z.pp_print o | Def_cfa_register r -> Format.fprintf ppf "DW_CFA_def_cfa_register (%d)" r | Def_cfa_offset o -> Format.fprintf ppf "DW_CFA_def_cfa_offset (%a)" Z.pp_print o | Def_cfa_expression _ -> Format.fprintf ppf "DW_CFA_def_cfa_expression" | Expression _ -> Format.fprintf ppf "DW_CFA_expression" | Val_offset (r, y) -> Format.fprintf ppf "DW_CFA_val_offset (%d, %a)" r Z.pp_print y | Val_expression _ -> Format.fprintf ppf "DW_CFA_val_expression" let load isa format cursor code_alignment_factor data_alignment_factor : t = match Uint8.to_int (Read.u8 cursor) with | x when 0xC0 land x = 0x40 -> Advance_loc (Z.mul (Z.of_int (0x3f land x)) code_alignment_factor) | x when 0xC0 land x = 0x80 -> Offset (0x3f land x, Z.mul (Read.uleb128 cursor) data_alignment_factor) | x when 0xC0 land x = 0xC0 -> Restore (0x3f land x) | 0x00 -> Nop | 0x01 -> Set_loc (Utils.read_address format cursor) | 0x02 -> Advance_loc (Z.mul (Uint8.to_bigint (Read.u8 cursor)) code_alignment_factor) | 0x03 -> Advance_loc (Z.mul (Uint16.to_bigint (Read.u16 cursor)) code_alignment_factor) | 0x04 -> Advance_loc (Z.mul (Uint32.to_bigint (Read.u32 cursor)) code_alignment_factor) | 0x05 -> let reg = Z.to_int (Read.uleb128 cursor) in Offset (reg, Z.mul (Read.uleb128 cursor) data_alignment_factor) | 0x06 -> Restore (Z.to_int (Read.uleb128 cursor)) | 0x07 -> Undefined (Z.to_int (Read.uleb128 cursor)) | 0x08 -> Same_value (Z.to_int (Read.uleb128 cursor)) | 0x09 -> let reg = Z.to_int (Read.uleb128 cursor) in Register (reg, Z.to_int (Read.uleb128 cursor)) | 0x0a -> Remember_state | 0x0b -> Restore_state | 0x0c -> let reg = Z.to_int (Read.uleb128 cursor) in Def_cfa (reg, Read.uleb128 cursor) | 0x0d -> Def_cfa_register (Z.to_int (Read.uleb128 cursor)) | 0x0e -> Def_cfa_offset (Read.uleb128 cursor) | 0x0f -> let size = Z.to_int (Read.uleb128 cursor) in Def_cfa_expression (Expr.load isa format size cursor) | 0x10 -> let reg = Z.to_int (Read.uleb128 cursor) in let size = Z.to_int (Read.uleb128 cursor) in Expression (reg, Expr.load isa format size cursor) | 0x11 -> let reg = Z.to_int (Read.uleb128 cursor) in Offset (reg, Z.mul (Read.sleb128 cursor) data_alignment_factor) | 0x12 -> let reg = Z.to_int (Read.uleb128 cursor) in Def_cfa (reg, Z.mul (Read.sleb128 cursor) data_alignment_factor) | 0x13 -> Def_cfa_offset (Z.mul (Read.sleb128 cursor) data_alignment_factor) | 0x14 -> let r = Z.to_int (Read.uleb128 cursor) in Val_offset (r, Z.mul (Read.uleb128 cursor) data_alignment_factor) | 0x15 -> let r = Z.to_int (Read.uleb128 cursor) in Val_offset (r, Z.mul (Read.sleb128 cursor) data_alignment_factor) | 0x16 -> let r = Z.to_int (Read.uleb128 cursor) in let size = Z.to_int (Read.uleb128 cursor) in Val_expression (r, Expr.load isa format size cursor) | x -> Logger.fatal "unable to map %d to a known DW_CFA value" x let find_reg = function | Dba.Expr.Var _ as v -> v | Dba.Expr.Binary ( (Dba.Binary_op.Plus | Dba.Binary_op.Minus), (Dba.Expr.Var _ as v), Dba.Expr.Cst _ ) | Dba.Expr.Binary (Dba.Binary_op.Plus, Dba.Expr.Cst _, (Dba.Expr.Var _ as v)) -> v | loc -> raise @@ Invalid_argument (Format.asprintf "Loc %a has no base register." Dba_printer.Ascii.pp_bl_term loc) let find_offset = function | Dba.Expr.Var _ as k -> Dba.Expr.(zeros (size_of k)) | Dba.Expr.Binary (Dba.Binary_op.Plus, Dba.Expr.Var _, (Dba.Expr.Cst _ as c)) | Dba.Expr.Binary (Dba.Binary_op.Plus, (Dba.Expr.Cst _ as c), Dba.Expr.Var _) -> c | Dba.Expr.Binary (Dba.Binary_op.Minus, Dba.Expr.Var _, (Dba.Expr.Cst _ as c)) -> Dba.Expr.uminus c | loc -> Logger.fatal "trying to get offset of the non offsetable location %a" Dba_printer.Ascii.pp_bl_term loc let finalise cfa registers = Map.map (fun f -> f cfa) registers let add_offset e offset = Dba.Expr.(add e (constant (Bitvector.create offset (size_of e)))) let load_at isa e = Dba.Expr.load Size.(Byte.of_bitsize (Bit.create (Dba.Expr.size_of e))) (Machine.ISA.endianness isa) e let rec interp : Machine.t -> entry list -> Virtual_address.t -> Virtual_address.t -> Dba.Expr.t -> (Dba.Expr.t -> rule) Map.t -> (Dba.Expr.t * (Dba.Expr.t -> rule) Map.t) list -> t list -> int list * entry list = fun isa entries address frontier cfa columns states instrs -> match instrs with | [] -> ( Map.keys columns, List.rev ({ addresses = { Interval.lo = address; hi = frontier }; cfa; registers = finalise cfa columns; } :: entries) ) | Nop :: tl -> interp isa entries address frontier cfa columns states tl | Advance_loc delta :: tl -> let address' = Virtual_address.add_bigint delta address in let entries = { addresses = { Interval.lo = address; hi = Virtual_address.pred address' }; cfa; registers = finalise cfa columns; } :: entries in if frontier <= address' then (Map.keys columns, List.rev entries) else interp isa entries address' frontier cfa columns states tl | Offset (reg, offset) :: tl -> interp isa entries address frontier cfa (Map.add reg (fun cfa -> Value (load_at isa (add_offset cfa offset))) columns) states tl | Restore reg :: tl -> let state = List.fold_left (fun _ (_, state) -> state) Map.empty states in interp isa entries address frontier cfa (Map.add reg (try Map.find reg state with Not_found -> fun _ -> Undef) columns) states tl | Set_loc address' :: tl -> let entries = { addresses = { Interval.lo = address; hi = Virtual_address.pred address' }; cfa; registers = finalise cfa columns; } :: entries in if frontier <= address' then (Map.keys columns, List.rev entries) else interp isa entries address' frontier cfa columns states tl | Undefined reg :: tl -> interp isa entries address frontier cfa (Map.add reg (fun _ -> Undef) columns) states tl | Same_value reg :: tl -> interp isa entries address frontier cfa (Map.add reg (fun _ -> Same) columns) states tl | Register (reg, reg') :: tl -> interp isa entries address frontier cfa (Map.add reg (fun _ -> Value (Expr.map isa reg')) columns) states tl | Remember_state :: tl -> interp isa entries address frontier cfa columns ((cfa, columns) :: states) tl | Restore_state :: tl -> let cfa, collumns = List.hd states in interp isa entries address frontier cfa collumns (List.tl states) tl | Def_cfa (reg, offset) :: tl -> interp isa entries address frontier (add_offset (Expr.map isa reg) offset) columns states tl | Def_cfa_register reg :: tl -> let offset = find_offset cfa in interp isa entries address frontier (Dba.Expr.add (Expr.map isa reg) offset) columns states tl | Def_cfa_offset offset :: tl -> let reg = find_reg cfa in interp isa entries address frontier (add_offset reg offset) columns states tl | Def_cfa_expression e :: tl -> interp isa entries address frontier (Expr.cfa isa e) columns states tl | Expression (reg, e) :: tl -> interp isa entries address frontier cfa (Map.add reg (fun cfa -> Value (Expr.loc isa ~cfa e (Machine.ISA.word_size isa))) columns) states tl | Val_offset (reg, offset) :: tl -> interp isa entries address frontier cfa (Map.add reg (fun cfa -> Value (add_offset cfa offset)) columns) states tl | Val_expression (reg, e) :: tl -> interp isa entries address frontier cfa (Map.add reg (fun cfa -> Value (Expr.loc isa ~cfa e (Machine.ISA.word_size isa))) columns) states tl end module Cie = struct type t = { offset : int; format : [ `x32 | `x64 ]; version : int; augmentation : string; code_alignment_factor : Z.t; data_alignment_factor : Z.t; return_address_register : int; augmentation_data : string; initial_instructions : Operator.t list; } let pp = let columns = [| Prettytbl.Column.default; Prettytbl.Column.default |] in fun ppf cie -> Format.fprintf ppf "@[<v 2>%a CIE@ " Machine.(Bitwidth.pp_print_hex (cie.format :> bitwidth)) cie.offset; let t = Prettytbl.make columns in Prettytbl.append t [| "Version:"; string_of_int cie.version |]; Prettytbl.append t [| "Augmentation:"; cie.augmentation |]; Prettytbl.append t [| "Code alignement factor:"; Z.to_string cie.code_alignment_factor |]; Prettytbl.append t [| "Data alignement factor:"; Z.to_string cie.data_alignment_factor |]; Prettytbl.append t [| "Return address column:"; string_of_int cie.return_address_register; |]; if String.length cie.augmentation_data > 0 then Prettytbl.append t [| "Augmentation data:"; String_utils.to_hex cie.augmentation_data |]; Prettytbl.pp ppf t; Format.pp_print_space ppf (); List.iter (fun op -> Format.fprintf ppf "@ %a" Operator.pp op) cie.initial_instructions; Format.pp_close_box ppf () let load_eh_frame isa format cursor offset = let version = Uint8.to_int (Read.u8 cursor) in if version <> 1 then Logger.fatal "trying to read .eh_frame with CIE version <> 1"; let augmentation = Read.zero_string "" cursor () in if augmentation <> "zR" then Logger.fatal "trying to read .eh_frame with CIE augmentation <> \"zR\""; let code_alignment_factor = Read.uleb128 cursor in let data_alignment_factor = Read.sleb128 cursor in let return_address_register = Z.to_int (Read.uleb128 cursor) in (* here we assumes augmentation = "zR" *) let augmentation_size = Z.to_int (Read.uleb128 cursor) in let augmentation_data = String.init augmentation_size (fun _ -> Uint8.to_char (Read.u8 cursor)) in let initial_instructions = let rec loop instrs caf daf = if at_end cursor then List.rev instrs else loop (Operator.load isa format cursor caf daf :: instrs) caf daf in loop [] code_alignment_factor data_alignment_factor in { offset; format; version; augmentation; code_alignment_factor; data_alignment_factor; return_address_register; augmentation_data; initial_instructions; } let load_debug_frame isa format cursor offset = let version = Uint8.to_int (Read.u8 cursor) in if version <> 1 then Logger.fatal "trying to read .debug_frame with CIE version <> 1"; let augmentation = Read.zero_string "" cursor () in if augmentation <> "" then Logger.fatal "trying to read .debug_frame with non empty CIE augmentation"; let code_alignment_factor = Read.uleb128 cursor in let data_alignment_factor = Read.sleb128 cursor in let return_address_register = Z.to_int (Read.uleb128 cursor) in let initial_instructions = let rec loop instrs caf daf = if at_end cursor then List.rev instrs else loop (Operator.load isa format cursor caf daf :: instrs) caf daf in loop [] code_alignment_factor data_alignment_factor in { offset; format; version; augmentation; code_alignment_factor; data_alignment_factor; return_address_register; augmentation_data = ""; initial_instructions; } end module Fde = struct type t = { offset : int; cie : Cie.t; initial_location : Virtual_address.t; address_range : Z.t; augmentation_data : string; instructions : Operator.t list; } let pp ppf fde = let pp_print_hex = Virtual_address.pp_print (fde.cie.Cie.format :> [ `x16 | `x32 | `x64 ]) and pp_print_hex_offset = Machine.Bitwidth.pp_print_hex (fde.cie.Cie.format :> Machine.bitwidth) in Format.fprintf ppf "@[<v 2>%a FDE cie=%a pc=%a..%a" pp_print_hex_offset fde.offset pp_print_hex_offset fde.cie.Cie.offset pp_print_hex fde.initial_location pp_print_hex (Virtual_address.add_bigint fde.address_range fde.initial_location); List.iter (fun op -> Format.fprintf ppf "@ %a" Operator.pp op) fde.instructions; Format.pp_close_box ppf () let load_eh_frame isa format cursor (vaddr : Virtual_address.t) offset cie = (* TODO here we assumes augmentation = "zR" *) let initial_location = Virtual_address.add_bigint (Z.of_int64 (Utils.read ~signed:true format cursor)) (Virtual_address.add_int (get_pos cursor) (Virtual_address.add_int offset vaddr)) in let address_range = Virtual_address.to_bigint (Utils.read_address format cursor) in let augmentation_size = if cie.Cie.augmentation_data <> "" then Z.to_int (Read.uleb128 cursor) else 0 in let augmentation_data = String.init augmentation_size (fun _ -> Uint8.to_char (Read.u8 cursor)) in let instructions = let rec loop instrs caf daf = if at_end cursor then List.rev instrs else loop (Operator.load isa format cursor caf daf :: instrs) caf daf in loop [] cie.Cie.code_alignment_factor cie.Cie.data_alignment_factor in { offset; cie; initial_location; augmentation_data; address_range; instructions; } let load_debug_frame isa format cursor offset cie = (* TODO this code work only for object files... *) let initial_location = Utils.read_addr isa cursor in let address_range = Virtual_address.to_bigint (Utils.read_addr isa cursor) in let instructions = let rec loop instrs caf daf = if at_end cursor then List.rev instrs else loop (Operator.load isa format cursor caf daf :: instrs) caf daf in loop [] cie.Cie.code_alignment_factor cie.Cie.data_alignment_factor in { offset; cie; initial_location; augmentation_data = ""; address_range; instructions; } end let pp ppf t = Format.pp_open_vbox ppf 0; Format.fprintf ppf "Contents of the .eh_frame section:"; ignore @@ List.fold_left (fun cies ({ Fde.cie; _ } as fde) -> let cies = match Set.mem cie.Cie.offset cies with | false -> Format.pp_print_space ppf (); Format.pp_print_space ppf (); Cie.pp ppf cie; Set.add cie.Cie.offset cies | true -> cies in Format.pp_print_space ppf (); Format.pp_print_space ppf (); Fde.pp ppf fde; cies) Set.empty t; Format.pp_close_box ppf () let load_eh_frame isa cursor (vaddr : Virtual_address.t) : Fde.t list = let rec loop isa cursor cies fdes = if at_end cursor then List.rev fdes else let offset = get_pos cursor in let format, length = let length = Read.u32 cursor in if Uint32.to_int32 length = 0xffffffffl then (`x64, Uint64.to_int (Read.u64 cursor)) else (`x32, Uint32.to_int length) in if length = 0 then List.rev fdes else let cursor' = Read.sub cursor length in match Utils.read format cursor' with | 0L -> loop isa cursor (Cie.load_eh_frame isa format cursor' offset :: cies) fdes | cie_ptr -> let cie = List.find (function | { Cie.offset = offset'; _ } -> Int64.to_int cie_ptr = offset + get_pos cursor' - offset') cies in loop isa cursor cies (Fde.load_eh_frame isa format cursor' vaddr offset cie :: fdes) in loop isa cursor [] [] let load_debug_frame isa cursor : Fde.t list = let rec loop isa cursor cies fdes = if at_end cursor then List.rev fdes else let offset = get_pos cursor in let format, length = let length = Read.u32 cursor in if Uint32.to_int32 length = 0xffffffffl then (`x64, Uint64.to_int (Read.u64 cursor)) else (`x32, Uint32.to_int length) in let cursor' = Read.sub cursor length in match (format, Utils.read format cursor') with | `x32, 0xffffffffL | `x64, 0xffffffffffffffffL -> loop isa cursor (Cie.load_debug_frame isa format cursor' offset :: cies) fdes | _, cie_ptr -> let cie = List.find (function | { Cie.offset = offset'; _ } -> Int64.to_int cie_ptr = offset') cies in loop isa cursor cies (Fde.load_debug_frame isa format cursor' offset cie :: fdes) in loop isa cursor [] [] type t = Machine.isa * (Fde.t * int array * entry list) list let load img : t = let isa = Loader.Img.arch img in let fdes = try let section = Loader_utils.find_section_by_name ".eh_frame" img in let at = (Loader.Section.pos section).Loader_types.raw in let length = (Loader.Section.size section).Loader_types.raw in let cursor = Read.sub (Loader.Img.cursor ~at img) length in let vaddr = (Loader.Section.pos section).Loader_types.virt in load_eh_frame isa cursor vaddr with Not_found -> let section = Loader_utils.find_section_by_name ".debug_frame" img in let at = (Loader.Section.pos section).Loader_types.raw in let length = (Loader.Section.size section).Loader_types.raw in let cursor = Read.sub (Loader.Img.cursor ~at img) length in load_debug_frame isa cursor in Logger.debug "%a" pp fdes; ( isa, List.map (fun fde -> let columns, entries = Operator.interp isa [] fde.Fde.initial_location (Virtual_address.add_bigint (Z.pred fde.Fde.address_range) fde.Fde.initial_location) Dba.Expr.zero Map.empty [] (List.concat [ fde.Fde.cie.Cie.initial_instructions; [ Operator.Remember_state ]; fde.Fde.instructions; ]) in (fde, Array.of_list columns, entries)) fdes ) let fold f a (_, t) = List.fold_left (fun a ({ Fde.cie; _ }, columns, entries) -> List.fold_left (fun a entry -> f a ~return_address:cie.Cie.return_address_register ~columns entry) a entries) a t let iter f (_, t) = List.iter (function | { Fde.cie; _ }, columns, entries -> List.iter (fun entry -> f ~return_address:cie.Cie.return_address_register ~columns entry) entries) t let pp ppf (isa, t) = List.iter (function | { Fde.cie; initial_location; address_range; _ }, columns, entries -> let pp_print_hex = Virtual_address.pp_print (cie.Cie.format :> [ `x16 | `x32 | `x64 ]) in Format.fprintf ppf "@[<v>FDE pc=%a..%a@ " pp_print_hex initial_location pp_print_hex (Virtual_address.add_bigint address_range initial_location); let n = Array.length columns + 2 in let t = Prettytbl.(make (Array.make n Column.default)) in Prettytbl.append t (Array.init n (function | 0 -> "LOC" | 1 -> "CFA" | x -> let x = columns.(x - 2) in if x = cie.Cie.return_address_register then "RA" else Format.asprintf "%a" Dba_printer.Ascii.pp_bl_term (Expr.map isa x))); List.iter (function | { addresses = { Interval.lo; _ }; cfa; registers } -> Prettytbl.append t (Array.init n (function | 0 -> Format.asprintf "%a" pp_print_hex lo | 1 -> Format.asprintf "%a" Dba_printer.Ascii.pp_bl_term cfa | x -> ( match Map.find columns.(x - 2) registers with | exception Not_found -> "u" | Undef -> "u" | Same -> "s" | Value e -> Format.asprintf "%a" Dba_printer.Ascii.pp_bl_term e)))) entries; Prettytbl.pp ppf t; Format.pp_close_box ppf (); Format.pp_print_space ppf ()) t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>