package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec.base/interval.ml.html
Source file interval.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) type 'a t = 'a Basic_types.interval = { lo : 'a; hi : 'a } type 'a overlap = | Ll_Rl_Rh_Lh of 'a * 'a * 'a * 'a (** Left starts before and ends after right. \[ left \] \[ right \] *) | Rl_Ll_Lh_Rh of 'a * 'a * 'a * 'a (** Right starts before and ends after left. \[ left \] \[ right \] *) | Ll_Rl_Lh_Rh of 'a * 'a * 'a * 'a (** Right starts and ends after left. \[ left \] \[ right \] *) | Rl_Ll_Rh_Lh of 'a * 'a * 'a * 'a (** Left starts and ends after right. \[ left \] \[ right \] *) | LRl_Rh_Lh of 'a * 'a * 'a (** Left ends after right. \[ left \] \[ right \] *) | LRl_Lh_Rh of 'a * 'a * 'a (** Right ends after left. \[ left \] \[ right \] *) | Ll_Rl_LRh of 'a * 'a * 'a (** Left starts before right. \[ left \] \[ right \] *) | Rl_Ll_LRh of 'a * 'a * 'a (** Right starts before left. \[ left \] \[ right \] *) | LRl_LRh of 'a * 'a (** Left and right are equal. \[ left \] \[ right \] *) let overlap : Z.t t -> Z.t t -> Z.t overlap = fun { lo = lo0; hi = hi0 } { lo = lo1; hi = hi1 } -> if Z.leq lo0 lo1 then if Z.equal lo0 lo1 then if Z.equal hi0 hi1 then LRl_LRh (lo0, hi0) else if Z.lt hi0 hi1 then LRl_Lh_Rh (lo0, Z.succ hi0, hi1) else LRl_Rh_Lh (lo0, Z.succ hi1, hi0) else if Z.equal hi0 hi1 then Ll_Rl_LRh (lo0, lo1, hi0) else if Z.lt hi0 hi1 then Ll_Rl_Lh_Rh (lo0, lo1, Z.succ hi0, hi1) else Ll_Rl_Rh_Lh (lo0, lo1, Z.succ hi1, hi0) else if Z.leq hi0 hi1 then if Z.equal hi0 hi1 then Rl_Ll_LRh (lo1, lo0, hi0) else Rl_Ll_Lh_Rh (lo1, lo0, Z.succ hi0, hi1) else Rl_Ll_Rh_Lh (lo1, lo0, Z.succ hi1, hi0) let belongs cmp x t = cmp x t.lo >= 0 && cmp x t.hi <= 0 let intersects cmp t s = not (cmp t.hi s.lo < 0 || cmp t.lo s.hi > 0) module type S = sig type point type interval type t val empty : t val singleton : interval -> t val add : interval -> t -> t val remove : interval -> t -> t val is_empty : t -> bool val cardinal : t -> int val mem : interval -> t -> bool val min : t -> point option val max : t -> point option val is_point : t -> point option val is_interval : t -> interval option val belongs : point -> t -> interval list val intersects : interval -> t -> interval list val map : (interval -> interval) -> t -> t val iter : (interval -> unit) -> t -> unit val fold : (interval -> 'a -> 'a) -> t -> 'a -> 'a val union : t -> t -> t val inter : t -> t -> t val print : (point -> string) -> t -> string end module type T = sig type point type interval type t = private | Empty | Black of int * t * interval * t * interval | Red of int * t * interval * t * interval val empty : t val singleton : interval -> t val add : interval -> t -> t val remove : interval -> t -> t val cardinal : t -> int end module Base (Ord : Sigs.COMPARABLE) : T with type point = Ord.t and type interval = Ord.t t = struct type point = Ord.t type interval = Ord.t t type t = | Empty | Black of int * t * interval * t * interval | Red of int * t * interval * t * interval let empty = Empty let cardinal = function | Empty -> 0 | Black (i, _, _, _, _) | Red (i, _, _, _, _) -> i let extend x y = { lo = (if Ord.compare x.lo y.lo > 0 then y.lo else x.lo); hi = (if Ord.compare x.hi y.hi < 0 then y.hi else x.hi); } let black l v r = let i, ml = match l with | Empty -> (0, v) | Black (i, _, _, _, m) | Red (i, _, _, _, m) -> (i, m) in let j, mr = match r with | Empty -> (0, v) | Black (j, _, _, _, m) | Red (j, _, _, _, m) -> (j, m) in Black (i + j + 1, l, v, r, extend v (extend ml mr)) let red l v r = let i, ml = match l with | Empty -> (0, v) | Black (i, _, _, _, m) | Red (i, _, _, _, m) -> (i, m) in let j, mr = match r with | Empty -> (0, v) | Black (j, _, _, _, m) | Red (j, _, _, _, m) -> (j, m) in Red (i + j + 1, l, v, r, extend v (extend ml mr)) let singleton x = black empty x empty (* Insertion *) let lbalance x1 x2 x3 = match (x1, x2, x3) with | Red (_, Red (_, a, x, b, _), y, c, _), z, d -> red (black a x b) y (black c z d) | Red (_, a, x, Red (_, b, y, c, _), _), z, d -> red (black a x b) y (black c z d) | a, x, b -> black a x b let rbalance x1 x2 x3 = match (x1, x2, x3) with | a, x, Red (_, Red (_, b, y, c, _), z, d, _) -> red (black a x b) y (black c z d) | a, x, Red (_, b, y, Red (_, c, z, d, _), _) -> red (black a x b) y (black c z d) | a, x, b -> black a x b let add x t = let rec ins = function | Empty -> red Empty x Empty | Red (_, a, y, b, _) as t -> let cmp_lo = Ord.compare x.lo y.lo in let cmp_hi = Ord.compare x.hi y.hi in if cmp_lo < 0 || (cmp_lo = 0 && cmp_hi < 0) then red (ins a) y b else if cmp_lo > 0 || (cmp_lo = 0 && cmp_hi > 0) then red a y (ins b) else t | Black (_, a, y, b, _) as t -> let cmp_lo = Ord.compare x.lo y.lo in let cmp_hi = Ord.compare x.hi y.hi in if cmp_lo < 0 || (cmp_lo = 0 && cmp_hi < 0) then lbalance (ins a) y b else if cmp_lo > 0 || (cmp_lo = 0 && cmp_hi > 0) then rbalance a y (ins b) else t in match ins t with | Black _ as s -> s | Red (_, a, y, b, _) -> black a y b | Empty -> assert false (* Deletion *) let lunbalanced = function | Red (_, Black (_, a, x, b, _), y, c, _) -> (lbalance (red a x b) y c, false) | Black (_, Black (_, a, x, b, _), y, c, _) -> (lbalance (red a x b) y c, true) | Black (_, Red (_, a, x, Black (_, b, y, c, _), _), z, d, _) -> (black a x (lbalance (red b y c) z d), false) | _ -> assert false let runbalanced = function | Red (_, a, x, Black (_, b, y, c, _), _) -> (rbalance a x (red b y c), false) | Black (_, a, x, Black (_, b, y, c, _), _) -> (rbalance a x (red b y c), true) | Black (_, a, x, Red (_, Black (_, b, y, c, _), z, d, _), _) -> (black (rbalance a x (red b y c)) z d, false) | _ -> assert false let rec remove_min = function | Empty -> assert false | Black (_, Empty, x, Empty, _) -> (Empty, x, true) | Black (_, Empty, x, Red (_, l, y, r, _), _) -> (black l y r, x, false) | Black (_, Empty, _, Black _, _) -> assert false | Red (_, Empty, x, r, _) -> (r, x, false) | Black (_, l, x, r, _) -> let l, m, d = remove_min l in let t = black l x r in if d then let t, d = runbalanced t in (t, m, d) else (t, m, false) | Red (_, l, x, r, _) -> let l, m, d = remove_min l in let t = red l x r in if d then let t, d = runbalanced t in (t, m, d) else (t, m, false) let remove x t = let rec remove_aux = function | Empty -> (Empty, false) | Black (_, l, y, r, m) -> ( if not (intersects Ord.compare x m) then (t, false) else let cmp_lo = Ord.compare x.lo y.lo in let cmp_hi = Ord.compare x.hi y.hi in if cmp_lo < 0 || (cmp_lo = 0 && cmp_hi < 0) then let l, d = remove_aux l in let t = black l y r in if d then runbalanced t else (t, false) else if cmp_lo > 0 || (cmp_lo = 0 && cmp_hi > 0) then let r, d = remove_aux r in let t = black l y r in if d then lunbalanced t else (t, false) else (* x = y *) match r with | Empty -> ( match l with | Red (_, l, x, r, _) -> (black l x r, false) | t -> (t, true)) | _ -> let r, m, d = remove_min r in let t = black l m r in if d then lunbalanced t else (t, false)) | Red (_, l, y, r, m) -> ( if not (intersects Ord.compare x m) then (t, false) else let cmp_lo = Ord.compare x.lo y.lo in let cmp_hi = Ord.compare x.hi y.hi in if cmp_lo < 0 || (cmp_lo = 0 && cmp_hi < 0) then let l, d = remove_aux l in let t = red l y r in if d then runbalanced t else (t, false) else if cmp_lo > 0 || (cmp_lo = 0 && cmp_hi > 0) then let r, d = remove_aux r in let t = red l y r in if d then lunbalanced t else (t, false) else (* x = y *) match r with | Empty -> (l, false) | _ -> let r, m, d = remove_min r in let t = red l m r in if d then lunbalanced t else (t, false)) in fst (remove_aux t) end module Core (Ord : Sigs.COMPARABLE) (Base : T with type point = Ord.t and type interval = Ord.t t) = struct include Base let restrict x y = { lo = (if Ord.compare x.lo y.lo < 0 then y.lo else x.lo); hi = (if Ord.compare x.hi y.hi > 0 then y.hi else x.hi); } let is_empty = function Empty -> true | _ -> false let is_interval = function | Red (_, Empty, v, Empty, _) | Black (_, Empty, v, Empty, _) -> Some v | _ -> None let is_point t = match is_interval t with | None -> None | Some t -> if Ord.compare t.lo t.hi = 0 then Some t.lo else None let min = function | Empty -> None | Red (_, _, _, _, m) | Black (_, _, _, _, m) -> Some m.lo let max = function | Empty -> None | Red (_, _, _, _, m) | Black (_, _, _, _, m) -> Some m.hi let rec mem x = function | Empty -> false | Black (_, l, v, r, m) | Red (_, l, v, r, m) -> Ord.compare x.lo m.lo >= 0 && Ord.compare x.hi m.hi <= 0 && let cmp_lo = Ord.compare x.lo v.lo in let cmp_hi = Ord.compare x.hi v.hi in (cmp_lo = 0 && cmp_hi = 0) || mem x (if cmp_lo < 0 then l else r) let rec belongs_aux acc x = function | Empty -> acc | Black (_, a, y, b, m) | Red (_, a, y, b, m) -> if not (belongs Ord.compare x m) then acc else let acc = if belongs Ord.compare x y then y :: belongs_aux acc x a else belongs_aux acc x a in if Ord.compare x y.lo < 0 then acc else belongs_aux acc x b let belongs x t = belongs_aux [] x t let rec intersects_aux acc x = function | Empty -> acc | Black (_, a, y, b, m) | Red (_, a, y, b, m) -> if not (intersects Ord.compare x m) then acc else let acc = if intersects Ord.compare x y then y :: intersects_aux acc x a else intersects_aux acc x a in if Ord.compare x.hi y.lo < 0 then acc else intersects_aux acc x b let intersects x t = intersects_aux [] x t let rec iter f = function | Empty -> () | Black (_, l, v, r, _) | Red (_, l, v, r, _) -> iter f l; f v; iter f r let rec fold f t acc = match t with | Empty -> acc | Black (_, l, v, r, _) | Red (_, l, v, r, _) -> fold f r (f v (fold f l acc)) let map f t = fold (fun i t -> add (f i) t) t empty let union t1 t2 = let t1, t2 = if cardinal t1 > cardinal t2 then (t2, t1) else (t1, t2) in fold add t1 t2 let inter t1 t2 = let t1, t2 = if cardinal t1 > cardinal t2 then (t2, t1) else (t1, t2) in fold (fun interval acc -> List.fold_left (fun acc i -> add (restrict interval i) acc) acc (intersects interval t2)) t1 empty let print pr t = fold (fun i acc -> Printf.sprintf "[%s ; %s]" (pr i.lo) (pr i.hi) :: acc) t [] |> List.rev |> String.concat " " end module Make (Ord : Sigs.COMPARABLE) = Core (Ord) (Base (Ord)) module Flat (Ord : Sigs.ITERABLE) = Core (Ord) (struct include Base (Ord) let adjacent x y = y = Ord.succ x || y = Ord.pred x let adjacent x y = intersects Ord.compare x y || adjacent x.hi y.lo || adjacent x.lo y.hi let rec adjacent_aux acc x = function | Empty -> acc | Black (_, a, y, b, m) | Red (_, a, y, b, m) -> if not (adjacent x m) then acc else let acc = if adjacent x y then y :: adjacent_aux acc x a else adjacent_aux acc x a in if Ord.compare x.hi y.lo < 0 then acc else adjacent_aux acc x b let adjacent x t = adjacent_aux [] x t let add interval t = let list = adjacent interval t in add (List.fold_left (fun acc i -> { lo = (if Ord.compare i.lo acc.lo < 0 then i.lo else acc.lo); hi = (if Ord.compare i.hi acc.hi > 0 then i.hi else acc.hi); }) interval list) (List.fold_left (fun t i -> remove i t) t list) let remove interval t = let list = adjacent interval t in List.fold_left (fun acc i -> ( acc |> fun acc -> if Ord.compare i.lo interval.lo < 0 then add { lo = i.lo; hi = Ord.pred interval.lo } acc else acc ) |> fun acc -> if Ord.compare i.hi interval.hi > 0 then add { lo = Ord.succ interval.hi; hi = i.hi } acc else acc) (List.fold_left (fun t i -> remove i t) t list) list end) module Int = Make (struct type t = int let compare (x : int) (y : int) = compare x y end) module IntFlat = Flat (struct type t = int let compare (x : int) (y : int) = compare x y let succ x = succ x let pred x = pred x end) module Float = Make (struct type t = float let compare (x : float) (y : float) = compare x y end) module FloatFlat = Flat (struct type t = float let compare (x : float) (y : float) = compare x y let succ x = x +. epsilon_float let pred x = x -. epsilon_float end) module BV (Make : S with type point = Bitvector.t and type interval = Bitvector.t t) = struct include Make let top n = singleton Bitvector.{ lo = zeros n; hi = max_ubv n } let bot _ = empty let ule bv = singleton Bitvector.{ lo = zeros (size_of bv); hi = bv } let uge bv = singleton Bitvector.{ lo = bv; hi = max_ubv (size_of bv) } let ult bv = if Bitvector.is_zeros bv then empty else ule (Bitvector.pred bv) let ugt bv = if Bitvector.is_max_ubv bv then empty else uge (Bitvector.succ bv) let sle bv = let sz = Bitvector.size_of bv in if Bitvector.is_neg bv then singleton Bitvector.{ lo = min_sbv sz; hi = bv } else empty |> add Bitvector.{ lo = zeros sz; hi = bv } |> add Bitvector.{ lo = min_sbv sz; hi = max_ubv sz } let sge bv = let sz = Bitvector.size_of bv in if Bitvector.is_pos bv then singleton Bitvector.{ lo = bv; hi = max_sbv sz } else empty |> add Bitvector.{ lo = zeros sz; hi = max_sbv sz } |> add Bitvector.{ lo = bv; hi = max_ubv sz } let slt bv = if Bitvector.is_min_sbv bv then empty else sle (Bitvector.pred bv) let sgt bv = if Bitvector.is_max_sbv bv then empty else sge (Bitvector.succ bv) let equal bv = singleton { lo = bv; hi = bv } let distinct bv = union (ult bv) (ugt bv) let size_of t = match min t with None -> None | Some bv -> Some (Bitvector.size_of bv) let zero_extend i t = match size_of t with | None -> empty | Some sz -> map (fun t -> { lo = Bitvector.extend t.lo (sz + i); hi = Bitvector.extend t.hi (sz + i); }) t let sign_extend i t = match size_of t with | None -> empty | Some sz -> map (fun t -> { lo = Bitvector.extend_signed t.lo (sz + i); hi = Bitvector.extend_signed t.hi (sz + i); }) t let extract { hi; lo } t = let sz = hi - lo + 1 in fold (fun t acc -> let shr_lo = Bitvector.shift_right t.lo lo in let shr_hi = Bitvector.shift_right t.hi lo in let length = Bitvector.fill ~hi:(sz - 1) (Bitvector.size_of t.lo) in if Bitvector.ugt (Bitvector.sub shr_hi shr_lo) length then add { lo = Bitvector.zeros sz; hi = Bitvector.fill sz } acc else if Bitvector.ule shr_hi (Bitvector.logor shr_lo length) then add { lo = Bitvector.extract ~hi ~lo t.lo; hi = Bitvector.extract ~hi ~lo t.hi; } acc else acc |> add { lo = Bitvector.extract ~hi ~lo t.lo; hi = Bitvector.fill sz } |> add { lo = Bitvector.zeros sz; hi = Bitvector.extract ~hi ~lo t.hi }) t empty let concat t1 t2 = fold (fun t1 acc -> fold (fun t2 acc -> add { lo = Bitvector.append t1.lo t2.lo; hi = Bitvector.append t1.hi t2.hi; } acc) t2 acc) t1 empty let bvand t1 t2 = match (size_of t1, size_of t2) with | None, None | None, Some _ | Some _, None -> empty | Some sz1, Some sz2 -> ( assert (sz1 = sz2); match is_point t2 with | Some bv -> map (fun t -> { t with lo = Bitvector.logand bv t.lo }) t1 | None -> ( match is_point t1 with | Some bv -> map (fun t -> { t with lo = Bitvector.logand bv t.lo }) t2 | None -> top sz1)) let bvor t1 t2 = match (size_of t1, size_of t2) with | None, None | None, Some _ | Some _, None -> empty | Some sz1, Some sz2 -> ( assert (sz1 = sz2); match is_point t2 with | Some bv -> map (fun t -> { t with hi = Bitvector.logor bv t.hi }) t1 | None -> ( match is_point t1 with | Some bv -> map (fun t -> { t with hi = Bitvector.logor bv t.hi }) t2 | None -> top sz1)) let bvadd t1 t2 = fold (fun t1 acc -> let mx = Bitvector.max_ubv (Bitvector.size_of t1.lo) in fold (fun t2 acc -> let lo = Bitvector.add t1.lo t2.lo in let hi = Bitvector.add t1.hi t2.hi in if Bitvector.ult (Bitvector.sub mx t1.hi) t2.hi && Bitvector.uge (Bitvector.sub mx t1.lo) t2.lo then union acc (union (uge lo) (ule hi)) else union acc (inter (uge lo) (ule hi))) t2 acc) t1 empty let bvsub t1 t2 = fold (fun t1 acc -> fold (fun t2 acc -> let lo = Bitvector.sub t1.lo t2.hi in let hi = Bitvector.sub t1.hi t2.lo in if Bitvector.ult t1.lo t2.hi && Bitvector.uge t1.hi t2.lo then union acc (union (uge lo) (ule hi)) else union acc (inter (uge lo) (ule hi))) t2 acc) t1 empty end module BitVec = BV (Make (struct type t = Bitvector.t let compare x y = Bitvector.ucompare x y end)) module BitVecFlat = BV (Flat (struct type t = Bitvector.t let compare x y = Bitvector.ucompare x y let succ x = if Bitvector.is_max_ubv x then x else Bitvector.succ x let pred x = if Bitvector.is_zeros x then x else Bitvector.pred x end))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>