package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec.base/term.ml.html
Source file term.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) let byte_size = (Basic_types.Constants.bytesize :> int) type size = int type 'a interval = 'a Interval.t = { lo : 'a; hi : 'a } type endianness = Machine.endianness = LittleEndian | BigEndian let pp_endiannesss ppf = function | LittleEndian -> Format.pp_print_char ppf 'L' | BigEndian -> Format.pp_print_char ppf 'B' type unary = U and binary = B type _ operator = | Not : unary operator | Sext : size -> unary operator | Uext : size -> unary operator | Restrict : int interval -> unary operator | Plus : binary operator | Minus : _ operator | Mul : binary operator | Udiv : binary operator (* Corresponds to *) | Urem : binary operator (* the truncated division *) | Sdiv : binary operator (* of C99 and most *) | Srem : binary operator (* processors *) | Or : binary operator | And : binary operator | Xor : binary operator | Concat : binary operator | Lsl : binary operator | Lsr : binary operator | Asr : binary operator | Rol : binary operator | Ror : binary operator | Eq : binary operator | Diff : binary operator | Ule : binary operator | Ult : binary operator | Uge : binary operator | Ugt : binary operator | Sle : binary operator | Slt : binary operator | Sge : binary operator | Sgt : binary operator module Op = struct type 'a t = 'a operator external to_int : 'a t -> int = "%identity" let equal : type a b. a t -> b t -> bool = fun t t' -> match (t, t') with | ( ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ), ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ) ) -> to_int t = to_int t' | Sext n, Sext n' | Uext n, Uext n' -> n = n' | Restrict { hi; lo }, Restrict { hi = hi'; lo = lo' } -> hi = hi' && lo = lo' | ( ( Not | Sext _ | Uext _ | Restrict _ | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ), ( Not | Sext _ | Uext _ | Restrict _ | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ) ) -> false let compare : type a b. a t -> b t -> int = fun t t' -> match (t, t') with | ( ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ), ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ) ) -> to_int t - to_int t' | Sext n, Sext n' | Uext n, Uext n' -> n - n' | Restrict { hi; lo }, Restrict { hi = hi'; lo = lo' } -> let d = hi - hi' in if d = 0 then lo - lo' else d | ( ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ), Sext _ ) -> -1 | ( Sext _, ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt ) ) -> 1 | ( ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt | Sext _ ), Uext _ ) -> -1 | ( Uext _, ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt | Sext _ ) ) -> 1 | ( ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt | Sext _ | Uext _ ), Restrict _ ) -> -1 | ( Restrict _, ( Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt | Sext _ | Uext _ ) ) -> 1 let hash : type a. a t -> int = fun t -> match t with | Sext _ | Uext _ | Restrict _ -> Hashtbl.hash t | Not | Plus | Minus | Mul | Udiv | Urem | Sdiv | Srem | Or | And | Xor | Concat | Lsl | Lsr | Asr | Rol | Ror | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt -> to_int t let pp : type a. Format.formatter -> a operator -> unit = fun ppf -> function | Minus -> Format.pp_print_char ppf '-' | Not -> Format.pp_print_char ppf '!' | Sext n -> Format.fprintf ppf "sext +%d" n | Uext n -> Format.fprintf ppf "uext +%d" n | Restrict { lo; hi } -> if lo = hi then Format.fprintf ppf "select %d" lo else Format.fprintf ppf "select <%d .. %d>" hi lo | Plus -> Format.pp_print_char ppf '+' | Mul -> Format.pp_print_char ppf '*' | Udiv -> Format.pp_print_string ppf "udiv" | Sdiv -> Format.pp_print_string ppf "sdiv" | Urem -> Format.pp_print_string ppf "urem" | Srem -> Format.pp_print_string ppf "srem" | Or -> Format.pp_print_string ppf "or" | And -> Format.pp_print_string ppf "and" | Xor -> Format.pp_print_string ppf "xor" | Concat -> Format.pp_print_string ppf "::" | Lsl -> Format.pp_print_string ppf "lsl" | Lsr -> Format.pp_print_string ppf "lsr" | Asr -> Format.pp_print_string ppf "asr" | Rol -> Format.pp_print_string ppf "rol" | Ror -> Format.pp_print_string ppf "ror" | Eq -> Format.pp_print_char ppf '=' | Diff -> Format.pp_print_string ppf "<>" | Ule -> Format.pp_print_string ppf "ule" | Ult -> Format.pp_print_string ppf "ult" | Uge -> Format.pp_print_string ppf "uge" | Ugt -> Format.pp_print_string ppf "ugt" | Sle -> Format.pp_print_string ppf "sle" | Slt -> Format.pp_print_string ppf "slt" | Sge -> Format.pp_print_string ppf "sge" | Sgt -> Format.pp_print_string ppf "sgt" end type (_, 'a, 'b) t = | Var : { hash : int; size : size; name : string; label : 'a; } -> ([< `Var | `Loc | `Exp ], 'a, _) t | Load : { hash : int; len : size; dir : endianness; mutable addr : ([ `Exp ], 'a, 'b) t; label : 'b; } -> ([< `Mem | `Loc | `Exp ], 'a, 'b) t | Cst : Bitvector.t -> ([< `Cst | `Exp ], _, _) t | Unary : { hash : int; size : size; f : unary operator; mutable x : ([ `Exp ], 'a, 'b) t; } -> ([< `Unary | `Exp ], 'a, 'b) t | Binary : { hash : int; size : size; f : binary operator; mutable x : ([ `Exp ], 'a, 'b) t; mutable y : ([ `Exp ], 'a, 'b) t; } -> ([< `Binary | `Exp ], 'a, 'b) t | Ite : { hash : int; size : size; mutable c : ([ `Exp ], 'a, 'b) t; mutable t : ([ `Exp ], 'a, 'b) t; mutable e : ([ `Exp ], 'a, 'b) t; } -> ([< `Ite | `Exp ], 'a, 'b) t let rec pp : type k. Format.formatter -> (k, 'a, 'b) t -> unit = fun ppf -> function | Var { name; size; _ } -> Format.fprintf ppf "%s<%d>" name size | Load { len; dir; addr; _ } -> Format.fprintf ppf "%@[%a]%d%a" pp addr len pp_endiannesss dir | Cst bv -> Bitvector.pp_hex_or_bin ppf bv | Unary { f; x; _ } -> Format.fprintf ppf "@[(%a %a)@]" Op.pp f pp x | Binary { f; x; y; _ } -> Format.fprintf ppf "@[(%a %a %a)@]" Op.pp f pp x pp y | Ite { c; t; e; _ } -> Format.fprintf ppf "@[(%a ? %a : %a)@]" pp c pp t pp e let to_string t = Format.asprintf "%a" pp t let abort t = raise (Invalid_argument (to_string t)) let hash : type k. (k, _, _) t -> int = function | Cst bv -> Bitvector.hash bv | Load { hash; _ } -> hash | Var { hash; _ } -> hash | Unary { hash; _ } -> hash | Binary { hash; _ } -> hash | Ite { hash; _ } -> hash let sizeof : type k. (k, _, _) t -> int = function | Cst bv -> Bitvector.size_of bv | Load { len; _ } -> byte_size * len | Var { size; _ } -> size | Unary { size; _ } -> size | Binary { size; _ } -> size | Ite { size; _ } -> size type ('a, 'b) any = Term : (_, 'a, 'b) t -> ('a, 'b) any [@@unboxed] let to_exp t = match Term t with | Term (Var _ as v) -> v | Term (Load _ as l) -> l | Term (Cst _ as c) -> c | Term (Unary _ as u) -> u | Term (Binary _ as b) -> b | Term (Ite _ as i) -> i let to_var t = match Term t with Term (Var _ as v) -> Some v | _ -> None let to_var_exn t = match Term t with Term (Var _ as v) -> v | _ -> abort t let to_loc t = match Term t with | Term (Var _ as v) -> Some v | Term (Load _ as l) -> Some l | _ -> None let to_loc_exn t = match Term t with | Term (Var _ as v) -> v | Term (Load _ as l) -> l | _ -> abort t let to_mem t = match Term t with Term (Load _ as l) -> Some l | _ -> None let to_mem_exn t = match Term t with Term (Load _ as l) -> l | _ -> abort t let to_cst t = match Term t with Term (Cst _ as c) -> Some c | _ -> None let to_cst_exn t = match Term t with Term (Cst _ as c) -> c | _ -> abort t module Bv = struct include Bitvector let unary f x = match f with | Not -> lognot x | Minus -> neg x | Uext n -> extend x (size_of x + n) | Sext n -> extend_signed x (size_of x + n) | Restrict { hi; lo } -> extract ~hi ~lo x let binary f x y = let n = size_of x in if f <> Concat && n <> size_of y then abort (Binary { f; x = Cst x; y = Cst y; size = n; hash = 0 }) else match f with | Plus -> add x y | Minus -> sub x y | Mul -> mul x y | Udiv -> udiv x y | Urem -> urem x y | Sdiv -> sdiv x y | Srem -> srem x y | Or -> logor x y | And -> logand x y | Xor -> logxor x y | Eq -> of_bool (equal x y) | Diff -> of_bool (diff x y) | Ule -> of_bool (ule x y) | Ult -> of_bool (ult x y) | Uge -> of_bool (uge x y) | Ugt -> of_bool (ugt x y) | Sle -> of_bool (sle x y) | Slt -> of_bool (slt x y) | Sge -> of_bool (sge x y) | Sgt -> of_bool (sgt x y) | Lsl -> shift_left x (to_uint y) | Lsr -> shift_right x (to_uint y) | Asr -> shift_right_signed x (to_uint y) | Rol -> rotate_left x (to_uint y) | Ror -> rotate_right x (to_uint y) | Concat -> append x y end module type S = sig type a and b type nonrec size = size type nonrec 'a interval = 'a interval = { lo : 'a; hi : 'a } type nonrec endianness = endianness = LittleEndian | BigEndian type 'a op = 'a operator = | Not : unary op | Sext : size -> unary op | Uext : size -> unary op | Restrict : int interval -> unary op | Plus : binary op | Minus : _ op | Mul : binary op | Udiv : binary op (* Corresponds to *) | Urem : binary op (* the truncated division *) | Sdiv : binary op (* of C99 and most *) | Srem : binary op (* processors *) | Or : binary op | And : binary op | Xor : binary op | Concat : binary op | Lsl : binary op | Lsr : binary op | Asr : binary op | Rol : binary op | Ror : binary op | Eq : binary op | Diff : binary op | Ule : binary op | Ult : binary op | Uge : binary op | Ugt : binary op | Sle : binary op | Slt : binary op | Sge : binary op | Sgt : binary op type ('k, 'a, 'b) term = ('k, 'a, 'b) t = private | Var : { hash : int; size : size; name : string; label : 'a; } -> ([< `Var | `Loc | `Exp ], 'a, _) term | Load : { hash : int; len : size; dir : endianness; mutable addr : ([ `Exp ], 'a, 'b) term; label : 'b; } -> ([< `Mem | `Loc | `Exp ], 'a, 'b) term | Cst : Bitvector.t -> ([< `Cst | `Exp ], _, _) term | Unary : { hash : int; size : size; f : unary operator; mutable x : ([ `Exp ], 'a, 'b) term; } -> ([< `Unary | `Exp ], 'a, 'b) term | Binary : { hash : int; size : size; f : binary operator; mutable x : ([ `Exp ], 'a, 'b) term; mutable y : ([ `Exp ], 'a, 'b) term; } -> ([< `Binary | `Exp ], 'a, 'b) term | Ite : { hash : int; size : size; mutable c : ([ `Exp ], 'a, 'b) term; mutable t : ([ `Exp ], 'a, 'b) term; mutable e : ([ `Exp ], 'a, 'b) term; } -> ([< `Ite | `Exp ], 'a, 'b) term type t = ([ `Exp ], a, b) term (** {2 Smart constructors} *) val var : string -> size -> a -> t (** [var name bitsize label] *) val load : size -> endianness -> t -> b -> t (** [load nbytes endianness addr label] *) val constant : Bitvector.t -> t (** [constant bv] creates a constant expression from the bitvector [bv]. *) val unary : unary op -> t -> t (** [unary f x] creates a unary application of [f] on [x]. *) val binary : binary op -> t -> t -> t (** [binary f x y] creates a binary application of [f] on [x] and [y]. *) val ite : t -> t -> t -> t (** [ite c t e] creates an if-then-else expression [c] ? [t] : [e]. *) val uminus : t -> t val add : t -> t -> t val sub : t -> t -> t val mul : t -> t -> t val srem : t -> t -> t val urem : t -> t -> t val udiv : t -> t -> t val sdiv : t -> t -> t val append : t -> t -> t val equal : t -> t -> t val diff : t -> t -> t val ule : t -> t -> t val uge : t -> t -> t val ult : t -> t -> t val ugt : t -> t -> t val sle : t -> t -> t val sge : t -> t -> t val slt : t -> t -> t val sgt : t -> t -> t val logand : t -> t -> t val logor : t -> t -> t val lognot : t -> t val logxor : t -> t -> t val shift_left : t -> t -> t val shift_right : t -> t -> t val shift_right_signed : t -> t -> t (** [shift_(left|right) e q] shifts expression [e] by quantity [q], padding with zeroes *) val rotate_left : t -> t -> t val rotate_right : t -> t -> t (** [rotate_(left|right) e q] rotates expression [e] by quantity [q] *) val sext : size -> t -> t (** [sext sz e] performs a signed extension of expression [e] to size [sz] *) val uext : size -> t -> t (** [uext sz e] performs an unsigned extension expression [e] to size [sz] *) val restrict : lo:int -> hi:int -> t -> t (** [restrict lo hi e] creates [Dba.ExprUnary(Restrict(lo, hi), e)] if [hi >= lo && lo >=0] . *) val bit_restrict : int -> t -> t (** [bit_restrict o e] is [restrict o o e] *) val byte_swap : t -> t (** [byte_swap e] reverses the byte order of the expression [e] *) (** {3 Specific constants }*) val zeros : int -> t (** [zeros n] creates a constant expression of value 0 with length [n] *) val ones : int -> t (** [ones n] creates a constant expression of value 1 with length [n]. I.e.; it has (n - 1) zeros in binary. *) val one : t val zero : t val addi : t -> int -> t val addz : t -> Z.t -> t (** {4 Utils} **) val hash : t -> int (** [hash t] returns the hash of [t] in constant time. *) val is_equal : t -> t -> bool val compare : t -> t -> int val sizeof : t -> size (** [sizeof t] returns the bit size of [t] in constant time. *) val map : (string -> int -> 'a -> t) -> (int -> Machine.endianness -> t -> 'b -> t) -> (_, 'a, 'b) term -> t (** {2 Raw constructors} *) val _unary : unary op -> t -> t (** [_unary f x] creates a unary application of [f] on [x]. *) val _binary : binary op -> t -> t -> t (** [_binary f x y] creates a binary application of [f] on [x] and [y]. *) val _ite : t -> t -> t -> t (** [_ite c t e] creates an if-then-else expression [c] ? [t] : [e]. *) end module Make (A : Sigs.HASHABLE) (B : Sigs.HASHABLE) : S with type a := A.t and type b := B.t = struct type nonrec size = size type nonrec 'a interval = 'a interval = { lo : 'a; hi : 'a } type nonrec endianness = endianness = LittleEndian | BigEndian type 'a op = 'a operator = | Not : unary op | Sext : size -> unary op | Uext : size -> unary op | Restrict : int interval -> unary op | Plus : binary op | Minus : _ op | Mul : binary op | Udiv : binary op (* Corresponds to *) | Urem : binary op (* the truncated division *) | Sdiv : binary op (* of C99 and most *) | Srem : binary op (* processors *) | Or : binary op | And : binary op | Xor : binary op | Concat : binary op | Lsl : binary op | Lsr : binary op | Asr : binary op | Rol : binary op | Ror : binary op | Eq : binary op | Diff : binary op | Ule : binary op | Ult : binary op | Uge : binary op | Ugt : binary op | Sle : binary op | Slt : binary op | Sge : binary op | Sgt : binary op type ('k, 'a, 'b) term = ('k, 'a, 'b) t = | Var : { hash : int; size : size; name : string; label : 'a; } -> ([< `Var | `Loc | `Exp ], 'a, _) term | Load : { hash : int; len : size; dir : endianness; mutable addr : ([ `Exp ], 'a, 'b) term; label : 'b; } -> ([< `Mem | `Loc | `Exp ], 'a, 'b) term | Cst : Bitvector.t -> ([< `Cst | `Exp ], _, _) term | Unary : { hash : int; size : size; f : unary operator; mutable x : ([ `Exp ], 'a, 'b) term; } -> ([< `Unary | `Exp ], 'a, 'b) term | Binary : { hash : int; size : size; f : binary operator; mutable x : ([ `Exp ], 'a, 'b) term; mutable y : ([ `Exp ], 'a, 'b) term; } -> ([< `Binary | `Exp ], 'a, 'b) term | Ite : { hash : int; size : size; mutable c : ([ `Exp ], 'a, 'b) term; mutable t : ([ `Exp ], 'a, 'b) term; mutable e : ([ `Exp ], 'a, 'b) term; } -> ([< `Ite | `Exp ], 'a, 'b) term type t = ([ `Exp ], A.t, B.t) term let hash = hash external ( <! ) : 'a -> 'a -> bool = "cstubs_hashcons_older" [@@noalloc] let set_load_addr : ([ `Mem ], A.t, B.t) term -> t -> unit = fun (Load r) e -> r.addr <- e and set_unary_x : ([ `Unary ], A.t, B.t) term -> t -> unit = fun (Unary r) e -> r.x <- e and set_binary_x : ([ `Binary ], A.t, B.t) term -> t -> unit = fun (Binary r) e -> r.x <- e and set_binary_y : ([ `Binary ], A.t, B.t) term -> t -> unit = fun (Binary r) e -> r.y <- e and set_ite_c : ([ `Ite ], A.t, B.t) term -> t -> unit = fun (Ite r) e -> r.c <- e and set_ite_t : ([ `Ite ], A.t, B.t) term -> t -> unit = fun (Ite r) e -> r.t <- e and set_ite_e : ([ `Ite ], A.t, B.t) term -> t -> unit = fun (Ite r) e -> r.e <- e let is_equal = let rec is_equal_match t t' = match (t, t') with | Cst bv, Cst bv' -> Bv.equal bv bv' | Var r, Var r' -> r.hash = r'.hash && r.size = r'.size && String.equal r.name r'.name && A.equal r.label r'.label | (Load r as l), (Load r' as l') -> r.hash = r'.hash && r.len = r'.len && r.dir = r'.dir && is_equal_unify r.addr r'.addr set_load_addr l l' && B.equal r.label r'.label | (Unary r as u), (Unary r' as u') -> r.hash = r'.hash && r.f = r'.f && is_equal_unify r.x r'.x set_unary_x u u' | (Binary r as b), (Binary r' as b') -> r.hash = r'.hash && r.f = r'.f && is_equal_unify r.x r'.x set_binary_x b b' && is_equal_unify r.y r'.y set_binary_y b b' | (Ite r as i), (Ite r' as i') -> r.hash = r'.hash && is_equal_unify r.c r'.c set_ite_c i i' && is_equal_unify r.t r'.t set_ite_t i i' && is_equal_unify r.e r'.e set_ite_e i i' | _, _ -> false and is_equal_unify : type a. t -> t -> ((a, A.t, B.t) term -> t -> unit) -> (a, A.t, B.t) term -> (a, A.t, B.t) term -> bool = fun t t' f p p' -> t == t' || is_equal_match t t' && (if t <! t' then f p' t else f p t'; true) in fun t t' -> t == t' || is_equal_match t t' let compare = let rec compare_match t t' = match (t, t') with | Cst bv, Cst bv' -> Bv.compare bv bv' | Cst _, Load _ -> -1 | Cst _, Unary _ -> -1 | Cst _, Binary _ -> -1 | Cst _, Ite _ -> -1 | Cst _, Var _ -> -1 | Load _, Cst _ -> 1 | (Load r as l), (Load r' as l') -> let d = r.len - r'.len in if d <> 0 then d else let d = compare r.dir r'.dir in if d <> 0 then d else let d = compare_unify r.addr r'.addr set_load_addr l l' in if d <> 0 then d else B.compare r.label r'.label | Load _, Unary _ -> -1 | Load _, Binary _ -> -1 | Load _, Ite _ -> -1 | Load _, Var _ -> -1 | Unary _, Cst _ -> 1 | Unary _, Load _ -> 1 | (Unary r as u), (Unary r' as u') -> let d = Op.compare r.f r'.f in if d <> 0 then d else let d = r.size - r'.size in if d <> 0 then d else compare_unify r.x r'.x set_unary_x u u' | Unary _, Binary _ -> -1 | Unary _, Ite _ -> -1 | Unary _, Var _ -> -1 | Binary _, Cst _ -> 1 | Binary _, Load _ -> 1 | Binary _, Unary _ -> 1 | (Binary r as b), (Binary r' as b') -> let d = Op.compare r.f r'.f in if d <> 0 then d else let d = r.size - r'.size in if d <> 0 then d else let d = r.hash - r'.hash in if d <> 0 then d else let d = compare_unify r.x r'.x set_binary_x b b' in if d <> 0 then d else compare_unify r.y r'.y set_binary_y b b' | Binary _, Ite _ -> -1 | Binary _, Var _ -> -1 | Ite _, Cst _ -> 1 | Ite _, Load _ -> 1 | Ite _, Unary _ -> 1 | Ite _, Binary _ -> 1 | (Ite r as i), (Ite r' as i') -> let d = r.size - r'.size in if d <> 0 then d else let d = r.hash - r'.hash in if d <> 0 then d else let d = compare_unify r.c r'.c set_ite_c i i' in if d <> 0 then d else let d = compare_unify r.t r'.t set_ite_t i i' in if d <> 0 then d else compare_unify r.e r'.e set_ite_e i i' | Ite _, Var _ -> -1 | Var _, Cst _ -> 1 | Var _, Load _ -> 1 | Var _, Unary _ -> 1 | Var _, Binary _ -> 1 | Var _, Ite _ -> 1 | Var r, Var r' -> let d = r.size - r'.size in if d <> 0 then d else let d = String.compare r.name r'.name in if d <> 0 then d else A.compare r.label r'.label and compare_unify : type a. t -> t -> ((a, A.t, B.t) term -> t -> unit) -> (a, A.t, B.t) term -> (a, A.t, B.t) term -> int = fun t t' f p p' -> if t == t' then 0 else let d = compare_match t t' in if d = 0 then if t <! t' then f p' t else f p t'; d in fun t t' -> if t == t' then 0 else compare_match t t' let is_trivial_lognot x y = match (x, y) with | Unary { f = Not; x; _ }, y | y, Unary { f = Not; x; _ } -> compare x y = 0 | Binary { f = Eq; x = a; y = b; _ }, Binary { f = Diff; x = c; y = d; _ } | Binary { f = Diff; x = a; y = b; _ }, Binary { f = Eq; x = c; y = d; _ } | Binary { f = Ule; x = a; y = b; _ }, Binary { f = Ugt; x = c; y = d; _ } | Binary { f = Ugt; x = a; y = b; _ }, Binary { f = Ule; x = c; y = d; _ } | Binary { f = Uge; x = a; y = b; _ }, Binary { f = Ult; x = c; y = d; _ } | Binary { f = Ult; x = a; y = b; _ }, Binary { f = Uge; x = c; y = d; _ } | Binary { f = Sle; x = a; y = b; _ }, Binary { f = Sgt; x = c; y = d; _ } | Binary { f = Sgt; x = a; y = b; _ }, Binary { f = Sle; x = c; y = d; _ } | Binary { f = Sge; x = a; y = b; _ }, Binary { f = Slt; x = c; y = d; _ } | Binary { f = Slt; x = a; y = b; _ }, Binary { f = Sge; x = c; y = d; _ } -> compare a c = 0 && compare b d = 0 | _ -> false let sizeof = sizeof let var name size label = Var { name; size; label; hash = Hash.(return @@ fold_int (fold_string (seed 0x48206212) name) size); } let load len dir addr label = Load { len; dir; addr; label; hash = Hash.(return @@ fold_int (fold_int (seed 0x64dba348) len) (hash addr)); } let constant bv = Cst bv let mk_unary f x = let size = match f with | Uext n | Sext n -> n + sizeof x | Restrict { lo; hi } -> hi - lo + 1 | Not | Minus -> sizeof x in Unary { f; x; size; hash = Hash.( return @@ fold_int (fold_int (seed 0xec9576a) (Hashtbl.hash f)) (hash x)); } let mk_binary f x y = let size = match f with | Eq | Diff | Ule | Ult | Uge | Ugt | Sle | Slt | Sge | Sgt -> 1 | Concat -> sizeof x + sizeof y | _ -> sizeof x in Binary { f; x; y; size; hash = Hash.( return @@ fold_int (fold_int (fold_int (seed 0x4b8498a0) (Hashtbl.hash f)) (hash x)) (hash y)); } let mk_ite c t e = Ite { c; t; e; size = sizeof t; hash = Hash.( return @@ fold_int (fold_int (fold_int (seed 0x4bfe92b2) (hash c)) (hash t)) (hash e)); } let zeros n = Cst (Bv.zeros n) let ones n = Cst (Bv.ones n) let one = Cst Bv.one let zero = Cst Bv.zero let rec unary f x = match (f, x) with (* safety pattern guard *) (* TODO: move outside of the rec pattern if the rewriter is trusted *) | (Uext n, _ | Sext n, _) when n < 0 -> abort @@ mk_unary f x | Restrict { lo; hi }, t when lo < 0 || hi < lo || sizeof t <= hi -> abort @@ mk_unary f x (* constant folding *) | _, Cst bv -> constant (Bv.unary f bv) (* identity *) | Sext 0, x | Uext 0, x -> x | Restrict { lo = 0; hi }, x when hi = sizeof x - 1 -> x | Not, Unary { f = Not; x; _ } -> x | Minus, Unary { f = Minus; x; _ } -> x | Minus, x when sizeof x = 1 -> x (* inversion *) | Minus, Binary { f = Minus; x; y; size; _ } -> binary Minus y x size | Not, Binary { f = Eq; x; y; size; _ } -> binary Diff x y size | Not, Binary { f = Diff; x; y; size; _ } -> binary Eq x y size | Not, Binary { f = Ule; x; y; size; _ } -> binary Ugt x y size | Not, Binary { f = Ult; x; y; size; _ } -> binary Uge x y size | Not, Binary { f = Uge; x; y; size; _ } -> binary Ult x y size | Not, Binary { f = Ugt; x; y; size; _ } -> binary Ule x y size | Not, Binary { f = Sle; x; y; size; _ } -> binary Sgt x y size | Not, Binary { f = Slt; x; y; size; _ } -> binary Sge x y size | Not, Binary { f = Sge; x; y; size; _ } -> binary Slt x y size | Not, Binary { f = Sgt; x; y; size; _ } -> binary Sle x y size (* TODO: more to come like de morgan's law, etc.. *) (* combining *) | Uext n, Unary { f = Uext p; x; _ } | Sext n, Unary { f = Uext p; x; _ } -> unary (Uext (n + p)) x | Sext n, Unary { f = Sext p; x; _ } -> unary (Sext (n + p)) x | Restrict { lo; hi }, Unary { f = Restrict { lo = lo'; _ }; x; _ } -> unary (Restrict { lo = lo' + lo; hi = lo' + hi }) x (* revert -- extract only inside the initial term t *) | Restrict { hi; _ }, Unary { f = Uext _; x; _ } | Restrict { hi; _ }, Unary { f = Sext _; x; _ } when hi < sizeof x -> unary f x (* absorbing element -- extract only the inserted bits *) | Restrict { lo; hi }, Unary { f = Uext _; x; _ } when sizeof x <= lo -> zeros (hi - lo + 1) | Restrict { lo; hi }, Unary { f = Sext _; x; _ } when sizeof x <= lo -> unary (Sext (hi - lo)) (unary (Restrict { lo = sizeof x - 1; hi = sizeof x - 1 }) x) (* reorder -- extension on top *) | Restrict { lo; hi }, Unary { f = Uext _; x; _ } -> unary (Uext (hi - sizeof x + 1)) (unary (Restrict { lo; hi = sizeof x - 1 }) x) | Restrict { lo; hi }, Unary { f = Sext _; x; _ } -> unary (Sext (hi - sizeof x + 1)) (unary (Restrict { lo; hi = sizeof x - 1 }) x) (* absorbing element -- extract only the inserted bits *) | Restrict { lo; hi }, Binary { f = Lsl; y = Cst bv; _ } when hi < Bv.to_uint bv -> zeros (hi - lo + 1) | Restrict { lo; hi }, Binary { f = Lsr; x; y = Cst bv; _ } when sizeof x - Bv.to_uint bv <= lo -> zeros (hi - lo + 1) | Restrict { lo; hi }, Binary { f = Asr; x; y = Cst bv; _ } when sizeof x - Bv.to_uint bv - 1 <= lo -> unary (Sext (hi - lo)) (unary (Restrict { lo = sizeof x - 1; hi = sizeof x - 1 }) x) (* combining -- extract is still inside the initial term t *) | Restrict { lo; hi }, Binary { f = Lsl; x; y = Cst bv; _ } when Bv.to_uint bv <= lo -> unary (Restrict { lo = lo - Bv.to_uint bv; hi = hi - Bv.to_uint bv }) x | Restrict { lo; hi }, Binary { f = Lsr; x; y = Cst bv; _ } | Restrict { lo; hi }, Binary { f = Asr; x; y = Cst bv; _ } when hi + Bv.to_uint bv < sizeof x -> unary (Restrict { lo = lo + Bv.to_uint bv; hi = hi + Bv.to_uint bv }) x (* reorder -- extension on top *) | Restrict { lo; hi }, Binary { f = Lsr; x; y = Cst bv; _ } -> unary (Uext (hi - sizeof x + Bv.to_uint bv + 1)) (unary (Restrict { lo = lo + Bv.to_uint bv; hi = sizeof x - 1 }) x) | Restrict { lo; hi }, Binary { f = Asr; x; y = Cst bv; _ } -> unary (Sext (hi - sizeof x + Bv.to_uint bv + 1)) (unary (Restrict { lo = lo + Bv.to_uint bv; hi = sizeof x - 1 }) x) (* split concatenation *) | Restrict { hi; _ }, Binary { f = Concat; y; _ } when hi < sizeof y -> unary f y | Restrict { lo; hi }, Binary { f = Concat; x; y; _ } when sizeof y <= lo -> unary (Restrict { lo = lo - sizeof y; hi = hi - sizeof y }) x | ( Restrict { hi; lo }, Binary { f = Concat; x = Binary { f = Concat; _ } as x; y; _ } ) -> let sz = sizeof y in binary Concat (unary (Restrict { hi = hi - sz; lo = 0 }) x) (unary (Restrict { hi = sz - 1; lo }) y) (hi - sz + 1) | Restrict { hi; lo }, Binary { f = Concat; x = Cst bv; y; _ } -> let shift = sizeof y in binary Concat (constant (Bv.extract ~hi:(hi - shift) ~lo:0 bv)) (unary (Restrict { hi = shift - 1; lo }) x) (hi - shift + 1) | Restrict { hi; lo }, Binary { f = Concat; x; y = Cst bv; _ } -> let shift = Bv.size_of bv in binary Concat (unary (Restrict { hi = hi - shift; lo = 0 }) x) (constant (Bv.extract ~hi:(shift - 1) ~lo bv)) (hi - shift + 1) (* TODO: more to come when term is "splitable" -- eg. t land cst *) (* elimination *) | Restrict { hi; lo = 0 }, Binary { f = And; x; y = Cst bv; _ } when let v = Bv.value_of bv in let s = Z.numbits v in hi < s && s = Z.popcount v -> unary f x | ( Restrict { hi; lo = 0 }, Binary { f = (Plus | Minus | Mul | And | Or | Xor) as bop; x = (Unary { f = Uext _ | Sext _; _ } | Binary { f = Concat; _ }) as x; y = Cst bv; _; } ) -> binary bop (unary f x) (constant (Bv.extract ~lo:0 ~hi bv)) (hi + 1) | ( Restrict { hi; lo = 0 }, Binary { f = (Plus | Minus | Mul | And | Or | Xor) as bop; x = (Unary { f = Uext _ | Sext _; _ } | Binary { f = Concat; _ }) as x; y = (Unary { f = Uext _ | Sext _; _ } | Binary { f = Concat; _ }) as y; _; } ) -> binary bop (unary f x) (unary f y) (hi + 1) | ( Restrict { hi; lo }, Binary { f = (And | Or) as bop; x = (Unary { f = Uext _ | Sext _; _ } | Binary { f = Concat; _ }) as x; y = Cst bv; _; } ) -> binary bop (unary f x) (constant (Bv.extract ~hi ~lo bv)) (hi - lo + 1) (* bit test *) | (Restrict { hi; lo } as f), Binary { f = And; x; y; _ } when hi = lo -> binary And (unary f x) (unary f y) 1 | (Restrict _ as f), Unary { f = Not; x; _ } -> unary Not (unary f x) (* sign extraction *) | ( Restrict { hi; lo }, Binary { f = Minus; x = Unary { f = Sext n; x; _ }; y = Cst bv; size; _ } ) when hi = lo && hi = size - 1 && Z.numbits (Bv.value_of bv) < size - n -> binary Slt x (constant (Bv.extract ~hi:(size - n - 1) ~lo:0 bv)) (size - n) | ( Restrict { hi; lo }, Binary { f = Minus; x = Unary { f = Uext n; x; _ }; y = Cst bv; size; _ } ) when hi = lo && hi = size - 1 && Z.numbits (Bv.value_of bv) < size - n -> binary Ult x (constant (Bv.extract ~hi:(size - n - 1) ~lo:0 bv)) (size - n) (* | ( Restrict { hi; lo }, Unary { f = Not; x = Binary { f = Minus; x = Unary { f = Sext n; x; _ }; y = Cst bv; size; _; }; _; } ) when hi = lo && hi = size - 1 && Z.numbits (Bv.value_of bv) < size - n -> binary Sge x (constant (Bv.extract ~hi:(size - n - 1) ~lo:0 bv)) (size - n) *) (* parity *) (* | Restrict { hi = 0; lo = 0 }, Binary { f = Xor | Plus; x; y; _ } -> *) (* binary Xor (unary f x) (unary f y) 1 *) (* forward ite *) | f, Ite { c; t = Cst bv; e; _ } -> ite c (constant (Bv.unary f bv)) (unary f e) | f, Ite { c; t; e = Cst bv; _ } -> ite c (unary f t) (constant (Bv.unary f bv)) (* default case *) | _, _ -> mk_unary f x and binary f x y sx = match (f, x, y) with (* safety pattern guard *) (* TODO: move outside of the rec pattern if the rewriter is trusted *) (* | _, _, _ when f <> Concat && sizeof x <> sizeof y -> *) (* abort @@ mk_binary f x y *) (* special boolean replacement *) | (Plus, _, _ | Minus, _, _) when sx = 1 -> binary Xor x y sx (* constant folding *) | _, Cst x, Cst y -> constant (Bv.binary f x y) | Plus, Binary { f = Plus; x = a; y = Cst b; _ }, Cst c -> binary Plus a (constant (Bv.binary Plus b c)) sx | Plus, Binary { f = Minus; x = a; y = Cst b; _ }, Cst c -> binary Minus a (constant (Bv.binary Minus b c)) sx | Minus, Binary { f = Plus; x = a; y = Cst b; _ }, Cst c -> binary Plus a (constant (Bv.binary Minus b c)) sx | Minus, Binary { f = Minus; x = a; y = Cst b; _ }, Cst c -> binary Minus a (constant (Bv.binary Plus b c)) sx | ((Plus | Minus) as f), Binary { f = Minus; x = Cst a; y = b; _ }, Cst c -> binary Minus (constant (Bv.binary f a c)) b sx | Plus, a, Cst bv when Bv.is_neg bv && not (Bv.is_min_sbv bv) -> binary Minus a (constant (Bv.neg bv)) sx | Minus, a, Cst bv when Bv.is_neg bv -> binary Plus a (constant (Bv.neg bv)) sx | Mul, Binary { f = Mul; x = a; y = Cst b; _ }, Cst c -> binary Mul a (constant (Bv.binary Mul b c)) sx | Or, Binary { f = Or; x = a; y = Cst b; _ }, Cst c -> binary Or a (constant (Bv.binary Or b c)) sx | And, Binary { f = And; x = a; y = Cst b; _ }, Cst c -> binary And a (constant (Bv.binary And b c)) sx | Xor, Binary { f = Xor; x = a; y = Cst b; _ }, Cst c -> binary Xor a (constant (Bv.binary Xor b c)) sx | Lsl, Binary { f = Lsl; x = a; y = Cst b; _ }, Cst c -> binary Lsl a (constant (Bv.binary Plus b c)) sx | Lsr, Binary { f = Lsr; x = a; y = Cst b; _ }, Cst c -> binary Lsr a (constant (Bv.binary Plus b c)) sx | Asr, Binary { f = Asr; x = a; y = Cst b; _ }, Cst c -> binary Asr a (constant (Bv.binary Plus b c)) sx | Rol, Binary { f = Rol; x = a; y = Cst b; _ }, Cst c -> binary Rol a (constant (Bv.binary Plus b c)) sx | Ror, Binary { f = Ror; x = a; y = Cst b; _ }, Cst c -> binary Ror a (constant (Bv.binary Plus b c)) sx | Concat, Cst bv, Binary { f = Concat; x = Cst bv'; y; _ } -> let sz = Bv.size_of bv' in binary Concat (constant (Bv.append bv bv')) y (sx + sz) | Concat, Binary { f = Concat; x; y = Cst bv; _ }, Cst bv' -> let sz = Bv.size_of bv in binary Concat x (constant (Bv.append bv bv')) (sx - sz) (* identity *) | Plus, x, Cst bv | Minus, x, Cst bv | Lsl, x, Cst bv | Lsr, x, Cst bv | Asr, x, Cst bv | Rol, x, Cst bv | Ror, x, Cst bv | Xor, x, Cst bv | Or, x, Cst bv when Bv.is_zeros bv -> x | (Mul, x, Cst bv | Udiv, x, Cst bv | Sdiv, x, Cst bv) when Bv.is_ones bv -> x | And, x, Cst bv when Bv.is_fill bv -> x | (Rol, x, Cst bv | Ror, x, Cst bv) when sizeof x = Bv.to_uint bv -> x (* absorbing element *) | (Mul, _, Cst bv | And, _, Cst bv) when Bv.is_zeros bv -> y | Or, _, Cst bv when Bv.is_fill bv -> y | (Lsr | Lsl | Asr | Rol | Ror | Srem | Sdiv | Udiv | Urem), Cst bv, _ when Bv.is_zeros bv -> x | (Lsl, x, Cst bv | Lsr, x, Cst bv) when sizeof x <= Bv.to_uint bv -> zeros (Bv.size_of bv) (* elimination *) | (And, a, b | Or, a, b) when compare a b = 0 -> a | And, a, b when is_trivial_lognot a b -> zeros sx | Or, a, b when is_trivial_lognot a b -> constant (Bitvector.fill sx) | (And, Binary { f = And; y = a; _ }, b | Or, Binary { f = Or; y = a; _ }, b) when compare a b = 0 -> x | (Minus, a, b | Xor, a, b) when compare a b = 0 -> zeros (sizeof a) | Minus, Binary { f = Plus; x = a; y = b; _ }, c | Xor, Binary { f = Xor; x = a; y = b; _ }, c when compare b c = 0 -> a | (Srem | Urem), a, Cst bv when Bv.is_ones bv -> zeros (sizeof a) | (Sdiv | Udiv), x, y when compare x y = 0 -> ones (sizeof x) | (Srem | Urem), x, y when compare x y = 0 -> zeros (sizeof x) | (Lsl, x, Cst bv | Lsr, x, Cst bv) when Bv.to_uint bv >= sizeof x -> zeros (sizeof x) | Asr, x, Cst bv when Bv.to_uint bv >= sizeof x - 1 -> let hi = sizeof x - 1 in unary (Sext hi) (unary (Restrict { hi; lo = hi }) x) (* factorisation *) | Plus, a, b when compare a b = 0 -> binary Lsl a (constant (Bv.ones sx)) sx (* commutativity -- keep sorted *) (* special cases for + - *) | Plus, a, Binary { f = Minus; x = b; y = c; _ } when compare a b <= 0 -> binary Minus (binary Plus b a sx) c sx | Plus, Binary { f = Minus; x = a; y = b; _ }, c when compare b c <= 0 -> binary Minus (binary Plus a c sx) b sx | Plus, Binary { f = Minus; _ }, c -> mk_binary Plus x c | Minus, Binary { f = Plus; x = a; y = b; _ }, c when compare b c < 0 -> binary Plus (binary Minus a c sx) b sx | Minus, Binary { f = Minus; x = a; y = b; _ }, c when compare b c < 0 -> binary Minus (binary Minus a c sx) b sx | Plus, Unary { f = Minus; x = a; _ }, b -> binary Minus b a sx (* generic chained *) | Plus, Binary { f = Plus; x = a; y = b; _ }, c | Mul, Binary { f = Mul; x = a; y = b; _ }, c | And, Binary { f = And; x = a; y = b; _ }, c | Or, Binary { f = Or; x = a; y = b; _ }, c | Xor, Binary { f = Xor; x = a; y = b; _ }, c when compare b c < 0 -> binary f (binary f a c sx) b sx | Plus, Binary { f = Plus; _ }, c | Mul, Binary { f = Mul; _ }, c | And, Binary { f = And; _ }, c | Or, Binary { f = Or; _ }, c | Xor, Binary { f = Xor; _ }, c -> mk_binary f x c (* generic dual *) | Plus, _, _ | Mul, _, _ | And, _, _ | Or, _, _ | Xor, _, _ | Eq, _, _ | Diff, _, _ when compare x y < 0 -> binary f y x sx (* associativity *) | Plus, a, Binary { f = Plus; x = b; y = c; _ } | Mul, a, Binary { f = Mul; x = b; y = c; _ } | And, a, Binary { f = And; x = b; y = c; _ } | Or, a, Binary { f = Or; x = b; y = c; _ } | Xor, a, Binary { f = Xor; x = b; y = c; _ } -> binary f (binary f a b sx) c sx | Concat, a, Binary { f = Concat; x = b; y = c; _ } -> binary f (binary f a b sx) c (sx + sizeof b) (* trivial condition *) | (Eq, a, b | Ule, a, b | Uge, a, b | Sle, a, b | Sge, a, b) when compare a b = 0 -> one | (Diff, a, b | Ult, a, b | Ugt, a, b | Slt, a, b | Sgt, a, b) when compare a b = 0 -> zero (* condition reduction *) | Eq, x, Cst bv when Bv.is_one bv -> x | Eq, x, Cst bv when Bv.is_zero bv -> unary Not x | Eq, Unary { f = Uext n; x = a; size; _ }, Cst bv (* see check above *) | Diff, Unary { f = Uext n; x = a; size; _ }, Cst bv -> let sa = size - n in let bv' = Bv.extract ~hi:(sa - 1) ~lo:0 bv in if Bv.is_zeros (Bv.extract ~hi:(size - 1) ~lo:sa bv) then binary f a (constant bv') sa else if f = Eq then zero else one | Eq, Unary { f = Sext n; x = a; size; _ }, Cst bv | Diff, Unary { f = Sext n; x = a; size; _ }, Cst bv -> let sa = size - n in let bv' = Bv.extract ~hi:(sa - 1) ~lo:0 bv in if Bv.equal bv (Bv.extend_signed bv' size) then binary f a (constant bv') sa else if f = Eq then zero else one | Eq, Unary { f = Not; x = a; _ }, Unary { f = Not; x = b; _ } | Eq, Unary { f = Minus; x = a; _ }, Unary { f = Minus; x = b; _ } | Diff, Unary { f = Not; x = a; _ }, Unary { f = Not; x = b; _ } | Diff, Unary { f = Minus; x = a; _ }, Unary { f = Minus; x = b; _ } -> binary f a b sx | Eq, Unary { f = Uext _; x = a; _ }, Unary { f = Uext _; x = b; _ } | Eq, Unary { f = Sext _; x = a; _ }, Unary { f = Sext _; x = b; _ } | Diff, Unary { f = Uext _; x = a; _ }, Unary { f = Uext _; x = b; _ } | Diff, Unary { f = Sext _; x = a; _ }, Unary { f = Sext _; x = b; _ } when sizeof a = sizeof b -> binary f a b (sizeof a) | ( Or, Binary { f = (Ugt | Ult | Sgt | Slt) as cmp; x; y; _ }, Binary { f = Eq; x = x'; y = y'; _ } ) | ( Or, Binary { f = Eq; x = x'; y = y'; _ }, Binary { f = (Ugt | Ult | Sgt | Slt) as cmp; x; y; _ } ) when (is_equal x x' && is_equal y y') || (is_equal x y' && is_equal y x') -> binary (match cmp with | Ugt -> Uge | Ult -> Ule | Sgt -> Sge (* Slt *) | _ -> Sle) x y 1 (* split condition *) | Eq, Binary { f = Concat; x = a; y = b; _ }, Cst bv -> let sb = sizeof b in binary And (binary Eq a (constant (Bv.extract ~lo:sb ~hi:(Bv.size_of bv - 1) bv)) (sx - sb)) (binary Eq b (constant (Bv.extract ~lo:0 ~hi:(sb - 1) bv)) sb) 1 | Diff, Binary { f = Concat; x = a; y = b; _ }, Cst bv -> let sb = sizeof b in binary Or (binary Diff a (constant (Bv.extract ~lo:sb ~hi:(Bv.size_of bv - 1) bv)) (sx - sb)) (binary Diff b (constant (Bv.extract ~lo:0 ~hi:(sb - 1) bv)) sb) 1 | Eq, Binary { f = Concat; x = a; y = b; _ }, Unary { f = Uext _; x = c; _ } when sizeof b = sizeof c -> let sa = sizeof a in binary And (binary Eq a (zeros sa) sa) (binary Eq b c (sx - sa)) 1 | ( Diff, Binary { f = Concat; x = a; y = b; _ }, Unary { f = Uext _; x = c; _ } ) when sizeof b = sizeof c -> let sa = sizeof a in binary Or (binary Diff a (zeros sa) sa) (binary Diff b c (sx - sa)) 1 | ( Eq, Binary { f = Concat; x = a; y = b; _ }, Binary { f = Concat; x = c; y = d; _ } ) when sizeof b = sizeof d -> binary And (binary Eq a c (sizeof a)) (binary Eq b d (sizeof b)) 1 | ( Diff, Binary { f = Concat; x = a; y = b; _ }, Binary { f = Concat; x = c; y = d; _ } ) when sizeof b = sizeof d -> binary Or (binary Diff a c (sizeof a)) (binary Diff b d (sizeof b)) 1 (* TODO: possibly more to come *) (* inversion *) | Minus, a, Cst bv when Bv.is_one bv -> unary Not a | Xor, a, Cst bv when Bv.is_fill bv -> unary Not a | Minus, a, Unary { f = Minus; x = b; _ } -> binary Plus a b sx | Minus, a, Binary { f = Plus; x = b; y = c; _ } -> binary Minus (binary Minus a b sx) c sx | Minus, a, Binary { f = Minus; x = b; y = c; _ } -> binary Plus (binary Minus a b sx) c sx (* bit masking *) | Minus, Unary { f = Uext n; x; _ }, Cst b when sizeof x = 1 && Bv.is_ones b -> unary (Sext n) (unary Not x) | And, x, Cst bv when Bv.is_ones bv -> unary (Uext (sx - 1)) (unary (Restrict { hi = 0; lo = 0 }) x) (* concatenation normalization -- extension on top *) | Concat, Cst bv, a when Bv.is_zeros bv -> unary (Uext (Bv.size_of bv)) a | Concat, Unary { f = Uext n; x = a; _ }, b -> unary (Uext n) (binary Concat a b (sizeof a)) | Concat, Unary { f = Sext n; x = a; _ }, b -> unary (Sext n) (binary Concat a b (sizeof a)) | ( (Or | Xor), Binary { f = Lsl; x = a; y = Cst bv; _ }, Unary { f = Uext n; x = b; _ } ) when sizeof b = Bv.to_uint bv -> binary Concat (unary (Restrict { lo = 0; hi = n - 1 }) a) b n | (Or | Xor), Binary { f = Lsl; x = a; y = Cst bv; size; _ }, Cst bv' -> let shift = Bv.to_uint bv in let sz = size - shift in binary Concat (binary Or (unary (Restrict { hi = sz - 1; lo = 0 }) a) (constant (Bv.extract ~hi:(size - 1) ~lo:shift bv')) sz) (constant (Bv.extract ~hi:(shift - 1) ~lo:0 bv')) sz (* TODO!!: chain!! *) (* revert -- stitch adjacent part *) | ( Concat, Unary { f = Restrict { lo; hi }; x = a; _ }, Unary { f = Restrict { lo = lo'; hi = hi' }; x = b; _ } ) when hi' + 1 = lo && compare a b = 0 -> unary (Restrict { lo = lo'; hi }) a (* TODO: more to come like loads.. *) (* misc *) | Asr, Unary { f = Uext _; x; _ }, Cst bv when Bv.to_uint bv >= sizeof x -> zeros (Bv.size_of bv) | Asr, Unary { f = Uext n; x; _ }, Cst bv -> let shift = Bv.to_uint bv in unary (Uext (n + shift)) (unary (Restrict { hi = sizeof x - 1; lo = shift }) x) | And, (Unary { f = Uext _; x; _ } as u), Cst bv when let v = Bv.value_of bv in let s = Z.numbits v in sizeof x <= s && s = Z.popcount v -> u | And, Unary { f = Uext n as f; x; _ }, Cst bv -> unary f (binary And x (constant (Bv.extract ~hi:(sizeof x - 1) ~lo:0 bv)) (sx - n)) | And, Unary { f = Uext n as f; x; _ }, Unary { f = Uext n'; x = x'; _ } when n = n' -> unary f (binary And x x' (sx - n)) | And, Unary { f = Sext n; x; _ }, Cst bv when Z.numbits (Bv.value_of bv) <= sx - n -> unary (Uext n) (binary And x (constant (Bv.extract ~hi:(sx - n - 1) ~lo:0 bv)) (sx - n)) | And, Binary { f = Concat; y; _ }, Cst bv when Z.numbits (Bv.value_of bv) <= sizeof y -> let sz = sizeof y in unary (Uext (sx - sz)) (binary And y (constant (Bv.extract ~hi:(sz - 1) ~lo:0 bv)) sz) | ((And | Or | Xor) as f), Binary { f = Concat; x; y; size; _ }, Cst bv -> let sy = sizeof y in binary Concat (binary f x (constant (Bv.extract ~hi:(size - 1) ~lo:sy bv)) (size - sy)) (binary f y (constant (Bv.extract ~hi:(sy - 1) ~lo:0 bv)) sy) size | Lsr, Binary { f = Lsl; x; y = Cst bv; size; _ }, Cst bv' when Bv.uge bv bv' -> let i = Bv.to_uint bv in binary Lsl (unary (Uext i) (unary (Restrict { hi = size - 1 - i; lo = 0 }) x)) (constant (Bv.sub bv bv')) size | ( Or, Binary { f = Lsl; x; y = Cst bv; size; _ }, Binary { f = Lsr; x = x'; y = Cst bv'; _ } ) | ( Or, Binary { f = Lsr; x = x'; y = Cst bv'; _ }, Binary { f = Lsl; x; y = Cst bv; size; _ } ) when is_equal x x' && Bv.to_int bv + Bv.to_int bv' = size -> binary Concat (unary (Restrict { hi = size - 1 - Bv.to_int bv; lo = 0 }) x) (unary (Restrict { hi = size - 1; lo = size - Bv.to_int bv }) x) size (* bitwize *) | ( (And | Or | Xor), Binary { f = Concat; x; y; size; _ }, Binary { f = Concat; x = x'; y = y'; _ } ) when sizeof y = sizeof y' -> let sy = sizeof y in binary Concat (binary f x x' (size - sy)) (binary f y y' sy) size (* forward ite *) | f, Ite { c; t = Cst bv; e; _ }, (Cst bv' as y) -> ite c (constant (Bv.binary f bv bv')) (binary f e y sx) | f, Ite { c; t; e = Cst bv; _ }, (Cst bv' as y) -> ite c (binary f t y sx) (constant (Bv.binary f bv bv')) | f, (Cst bv as x), Ite { c; t = Cst bv' as z; e = Cst bv'' as z'; _ } -> ite c (try constant (Bv.binary f bv bv') with Division_by_zero -> mk_binary f x z) (try constant (Bv.binary f bv bv'') with Division_by_zero -> mk_binary f x z') | f, (Cst bv as x), Ite { c; t = Cst bv' as z; e; _ } -> ite c (try constant (Bv.binary f bv bv') with Division_by_zero -> mk_binary f x z) (binary f x e sx) | f, (Cst bv as x), Ite { c; t; e = Cst bv' as z; _ } -> ite c (binary f x t sx) (try constant (Bv.binary f bv bv') with Division_by_zero -> mk_binary f x z) (* basic equation *) | (Eq | Diff), Binary { f = Plus; x; y = Cst bv; _ }, Cst bv' -> binary f x (constant (Bv.sub bv' bv)) sx | (Eq | Diff), Binary { f = Minus; x; y = Cst bv; _ }, Cst bv' -> binary f x (constant (Bv.add bv' bv)) sx | (Eq | Diff), Binary { f = Minus; x = Cst bv; y; _ }, Cst bv' -> binary f y (constant (Bv.sub bv bv')) sx | (Eq | Diff), Binary { f = Xor; x; y = Cst bv; _ }, Cst bv' -> binary f x (constant (Bv.logxor bv bv')) sx | (Eq | Diff), Binary { f = And; x; y = Cst bv; _ }, Cst bv' when Bv.equal bv bv' && Z.popcount (Bv.value_of bv) = 1 -> let hi = Z.trailing_zeros (Bv.value_of bv) in let b = unary (Restrict { hi; lo = hi }) x in if f = Diff then unary Not b else b | (Eq | Diff), Binary { f = And; x; y = Cst bv; _ }, Cst bv' when Z.popcount (Bv.value_of bv) = 1 && Bv.is_zeros bv' -> let hi = Z.trailing_zeros (Bv.value_of bv) in let b = unary (Restrict { hi; lo = hi }) x in if f = Eq then unary Not b else b | (Eq | Diff), Binary { f = Lsl; x; y = Cst bv; _ }, Cst bv' -> let shift = Bv.to_uint bv in let y = Bv.value_of bv' in if Z.trailing_zeros y >= shift then binary f (unary (Restrict { hi = sx - shift - 1; lo = 0 }) x) (constant (Bv.create (Z.shift_right y shift) (sx - shift))) 1 else if f = Eq then zero else one | (Eq | Diff), Binary { f = Or; x; y; size; _ }, (Cst bv as z) when Bv.is_zeros bv -> binary (if f = Eq then And else Or) (binary f x z size) (binary f y z size) 1 | ( And, Binary { f = Diff; x = a; y = Cst bv; _ }, Binary { f = Eq; x = a'; y = Cst bv'; _ } ) when is_equal a a' -> if Bv.equal bv bv' then zero else y | ( Or, Binary { f = Diff; x = a; y = Cst bv; _ }, Binary { f = Eq; x = a'; y = Cst bv'; _ } ) when is_equal a a' -> if Bv.equal bv bv' then one else x (* basic arithmetic *) | Minus, Binary { f = Lsl; x; y = Cst bv; size; _ }, y when is_equal x y -> let one = Bv.ones size in binary Mul x (constant (Bv.sub (Bv.binary Lsl one bv) one)) size | Mul, x, Cst bv -> let z = Bv.value_of bv in if Z.popcount z = 1 then binary Lsl x (constant (Bv.of_int ~size:sx (Z.trailing_zeros z))) sx else mk_binary Mul x y (* default case *) | _, _, _ -> mk_binary f x y and ite c t e = match (c, t, e) with | _, _, _ when sizeof c <> 1 || sizeof t <> sizeof e -> abort @@ mk_ite c t e | Cst bv, t, _ when Bv.is_one bv -> t | Cst bv, _, e when Bv.is_zero bv -> e | c, Cst bv, e when Bv.is_one bv -> binary Or c e 1 | c, Cst bv, e when Bv.is_zero bv -> binary And (unary Not c) e 1 | c, t, Cst bv when Bv.is_one bv -> binary Or (unary Not c) t 1 | c, t, Cst bv when Bv.is_zero bv -> binary And c t 1 | _, t, e when compare t e = 0 -> t | c, Cst bv, Cst bv' when Bv.is_fill bv && Bv.is_zeros bv' -> unary (Sext (Bv.size_of bv - 1)) c | c, Cst bv, Cst bv' when Bv.is_zeros bv && Bv.is_fill bv' -> unary (Sext (Bv.size_of bv - 1)) (unary Not c) | Unary { f = Not; x = c; _ }, t, e -> ite c e t | c, Ite { c = c'; t = t'; e = e'; _ }, e when is_equal e e' -> ite (binary And c c' 1) t' e | c, Ite { c = c'; t = t'; e = e'; _ }, e when is_equal e t' -> ite (binary And c (unary Not c') 1) e' e | c, t, Ite { c = c'; t = t'; e = e'; _ } when is_equal t t' -> ite (binary Or c c' 1) t e' | c, t, Ite { c = c'; t = t'; e = e'; _ } when is_equal t e' -> ite (binary Or c (unary Not c') 1) t t' | _, _, _ -> mk_ite c t e let binary f x y = let sx = sizeof x and sy = sizeof y in if f <> Concat && sx <> sy then abort @@ mk_binary f x y; binary f x y sx let lognot t = unary Not t let uminus t = unary Minus t let sext n t = unary (Sext (n - sizeof t)) t let uext n t = unary (Uext (n - sizeof t)) t let restrict ~lo ~hi t = unary (Restrict { lo; hi }) t let bit_restrict i t = restrict ~lo:i ~hi:i t let add t t' = binary Plus t t' let sub t t' = binary Minus t t' let mul t t' = binary Mul t t' let srem t t' = binary Srem t t' let urem t t' = binary Urem t t' let udiv t t' = binary Udiv t t' let sdiv t t' = binary Sdiv t t' let logor t t' = binary Or t t' let logxor t t' = binary Xor t t' let logand t t' = binary And t t' let equal t t' = binary Eq t t' let diff t t' = binary Diff t t' let ule t t' = binary Ule t t' let sle t t' = binary Sle t t' let ult t t' = binary Ult t t' let slt t t' = binary Slt t t' let uge t t' = binary Uge t t' let sge t t' = binary Sge t t' let ugt t t' = binary Ugt t t' let sgt t t' = binary Sgt t t' let append t t' = binary Concat t t' let shift_left t t' = binary Lsl t t' let shift_right t t' = binary Lsr t t' let shift_right_signed t t' = binary Asr t t' let rotate_left t t' = binary Rol t t' let rotate_right t t' = binary Ror t t' let addi x y = binary Plus x (constant (Bv.of_int ~size:(sizeof x) y)) let addz x y = binary Plus x (constant (Bv.create y (sizeof x))) let byte_swap = let rec iter e i r = if i = 0 then r else iter e (i - 8) (append (restrict ~hi:(i - 1) ~lo:(i - 8) e) r) in fun e -> let size = sizeof e in if size land 0x7 <> 0 then raise (Invalid_argument "byte_swap"); iter e (size - 8) (restrict ~hi:(size - 1) ~lo:(size - 8) e) let rec map : type k a b. (string -> int -> a -> t) -> (int -> Machine.endianness -> t -> b -> t) -> (k, a, b) term -> t = fun a b t -> match Term t with | Term (Var { name; size; label; _ }) -> a name size label | Term (Load { len; dir; addr; label; _ }) -> b len dir (map a b addr) label | Term (Cst _ as c) -> c | Term (Unary { f; x; _ }) -> unary f (map a b x) | Term (Binary { f; x; y; _ }) -> binary f (map a b x) (map a b y) | Term (Ite { c; t; e; _ }) -> ite (map a b c) (map a b t) (map a b e) let _unary = mk_unary let _binary = mk_binary let _ite = mk_ite end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>