Source file disassembly.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
module IntTbl = Basic_types.Integers.Int.Htbl
module IntSet = Basic_types.Integers.Int.Set
module VarSet = Dba_types.Var.Set
module Revision = struct
type vertex = Ir.Graph.vertex
type edge = Ir.Graph.edge
type t = { n : vertex; graph : Ir.Graph.t }
module V = Ir.Graph.V
module E = Ir.Graph.E
let is_directed = Ir.Graph.is_directed
let is_empty { graph; _ } = Ir.Graph.is_empty graph
let nb_vertex { graph; _ } = Ir.Graph.nb_vertex graph
let nb_edges { graph; _ } = Ir.Graph.nb_edges graph
let out_degree { graph; _ } vertex = Ir.Graph.out_degree graph vertex
let in_degree { graph; _ } vertex = Ir.Graph.in_degree graph vertex
let mem_vertex { graph; _ } vertex = Ir.Graph.mem_vertex graph vertex
let mem_edge { graph; _ } src dst = Ir.Graph.mem_edge graph src dst
let mem_edge_e { graph; _ } edge = Ir.Graph.mem_edge_e graph edge
let find_edge { graph; _ } src dst = Ir.Graph.find_edge graph src dst
let find_all_edges { graph; _ } src dst =
Ir.Graph.find_all_edges graph src dst
let succ { graph; _ } vertex = Ir.Graph.succ graph vertex
let pred { graph; _ } vertex = Ir.Graph.pred graph vertex
let succ_e { graph; _ } vertex = Ir.Graph.succ_e graph vertex
let pred_e { graph; _ } vertex = Ir.Graph.pred_e graph vertex
let iter_vertex f { graph; _ } = Ir.Graph.iter_vertex f graph
let fold_vertex f { graph; _ } data = Ir.Graph.fold_vertex f graph data
let iter_edges f { graph; _ } = Ir.Graph.iter_edges f graph
let fold_edges f { graph; _ } data = Ir.Graph.fold_edges f graph data
let iter_edges_e f { graph; _ } = Ir.Graph.iter_edges_e f graph
let fold_edges_e f { graph; _ } data = Ir.Graph.fold_edges_e f graph data
let map_vertex f { n; graph } = { n; graph = Ir.Graph.map_vertex f graph }
let iter_succ f { graph; _ } vertex = Ir.Graph.iter_succ f graph vertex
let fold_succ f { graph; _ } data = Ir.Graph.fold_succ f graph data
let iter_pred f { graph; _ } vertex = Ir.Graph.iter_pred f graph vertex
let fold_pred f { graph; _ } data = Ir.Graph.fold_pred f graph data
let iter_succ_e f { graph; _ } vertex = Ir.Graph.iter_succ_e f graph vertex
let fold_succ_e f { graph; _ } data = Ir.Graph.fold_succ_e f graph data
let iter_pred_e f { graph; _ } vertex = Ir.Graph.iter_pred_e f graph vertex
let fold_pred_e f { graph; _ } data = Ir.Graph.fold_pred_e f graph data
let node { graph; _ } vertex = Ir.Graph.node graph vertex
let iter_entries f { graph; _ } = Ir.Graph.iter_entries f graph
let iter_exits f { graph; _ } = Ir.Graph.iter_exits f graph
let fold_entries f { graph; _ } data = Ir.Graph.fold_entries f graph data
let fold_exits f { graph; _ } data = Ir.Graph.fold_exits f graph data
let insert_before_v { n; graph } vertex ?label opcode =
if vertex < n then raise (Invalid_argument "insert_before");
Ir.Graph.insert_before_v graph vertex ?label opcode
let insert_before ir vertex ?label opcode =
ignore (insert_before_v ir vertex ?label opcode)
let insert_list_before_v { n; graph } vertex ?label opcodes =
if vertex < n then raise (Invalid_argument "insert_list_before");
Ir.Graph.insert_list_before_v graph vertex ?label opcodes
let insert_list_before ir vertex ?label opcodes =
ignore (insert_list_before_v ir vertex ?label opcodes)
let make graph = { n = Ir.Graph.length graph; graph }
let is_new_vertex { n; _ } vertex = n <= vertex
let iter_new_vertex f { n; graph } =
let last = Ir.Graph.length graph - 1 in
for i = n to last do
f i
done
end
module Hook = struct
type fetch = Virtual_address.t -> Ir.Graph.t option
and decode = Virtual_address.t -> int Reader.t -> Ir.Graph.t option
and disasm = Instruction.t -> Ir.Graph.t option
and rewrite = Ir.Graph.t -> unit
and instrument = Revision.t -> unit
end
type stage = Early | Late
type 'a staged = { early : 'a; late : 'a }
let get : stage -> 'a staged -> 'a =
fun stage { early; late } -> match stage with Early -> early | Late -> late
let stage_update : stage -> ('a -> 'a) -> 'a staged -> 'a staged =
fun stage f { early; late } ->
match stage with
| Early -> { early = f early; late }
| Late -> { early; late = f late }
type 'a hook =
| Fetch : Hook.fetch hook
| Decode : Hook.decode hook
| Disasm : Hook.disasm hook
| Rewrite : Hook.rewrite hook
(** Information to be used by optimization. *)
type 'a knowledge =
| May_read : VarSet.t option knowledge
| Must_write : VarSet.t knowledge
module Callback = struct
module Q = Basic_types.Integers.Int.Map
type t = {
n : int;
fetch : Hook.fetch Q.t Zmap.t staged;
decode : Hook.decode Q.t Zmap.t staged;
disasm : Hook.disasm Q.t Zmap.t staged;
rewrite : Hook.rewrite Q.t Zmap.t staged;
instrument : Hook.instrument Q.t;
may_read : (Ir.builtin -> VarSet.t option option) list;
must_write : (Ir.builtin -> VarSet.t option) list;
}
let empty : t =
{
n = 0;
fetch = { early = Zmap.empty; late = Zmap.empty };
decode = { early = Zmap.empty; late = Zmap.empty };
disasm = { early = Zmap.empty; late = Zmap.empty };
rewrite = { early = Zmap.empty; late = Zmap.empty };
instrument = Q.empty;
may_read = [];
must_write = [];
}
let update : 'a Q.t Zmap.item -> 'a Q.t Zmap.item -> 'a Q.t Zmap.t =
let union_left : 'a Q.t -> 'a Q.t -> 'a Q.t =
fun q0 q1 -> Q.union (fun _ v _ -> Some v) q0 q1
in
let update_ordered : 'a Q.t Zmap.item -> 'a Q.t Zmap.item -> 'a Q.t Zmap.t =
fun (Item { lo = lo0; hi = hi0; elt = q0 })
(Item { lo = lo1; hi = hi1; elt = q1 }) ->
match Interval.overlap { lo = lo0; hi = hi0 } { lo = lo1; hi = hi1 } with
| LRl_LRh (ep0, ep1) -> Zmap.singleton ~lo:ep0 ~hi:ep1 (union_left q0 q1)
| LRl_Lh_Rh (ep0, ep1, ep2) ->
Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) (union_left q0 q1))
(Zmap.singleton ~lo:ep1 ~hi:ep2 q1)
| LRl_Rh_Lh (ep0, ep1, ep2) ->
Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) (union_left q0 q1))
(Zmap.singleton ~lo:ep1 ~hi:ep2 q0)
| Ll_Rl_LRh (ep0, ep1, ep2) ->
Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q0)
(Zmap.singleton ~lo:ep1 ~hi:ep2 (union_left q0 q1))
| Rl_Ll_LRh (ep0, ep1, ep2) ->
Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q1)
(Zmap.singleton ~lo:ep1 ~hi:ep2 (union_left q0 q1))
| Ll_Rl_Lh_Rh (ep0, ep1, ep2, ep3) ->
Zmap.union_left
(Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q0)
(Zmap.singleton ~lo:ep1 ~hi:(Z.pred ep2) (union_left q0 q1)))
(Zmap.singleton ~lo:ep2 ~hi:ep3 q1)
| Ll_Rl_Rh_Lh (ep0, ep1, ep2, ep3) ->
Zmap.union_left
(Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q0)
(Zmap.singleton ~lo:ep1 ~hi:(Z.pred ep2) (union_left q0 q1)))
(Zmap.singleton ~lo:ep2 ~hi:ep3 q0)
| Rl_Ll_Lh_Rh (ep0, ep1, ep2, ep3) ->
Zmap.union_left
(Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q1)
(Zmap.singleton ~lo:ep1 ~hi:(Z.pred ep2) (union_left q0 q1)))
(Zmap.singleton ~lo:ep2 ~hi:ep3 q1)
| Rl_Ll_Rh_Lh (ep0, ep1, ep2, ep3) ->
Zmap.union_left
(Zmap.union_left
(Zmap.singleton ~lo:ep0 ~hi:(Z.pred ep1) q1)
(Zmap.singleton ~lo:ep1 ~hi:(Z.pred ep2) (union_left q0 q1)))
(Zmap.singleton ~lo:ep2 ~hi:ep3 q0)
in
fun (Item { lo = lo0; _ } as item0) (Item { lo = lo1; _ } as item1) ->
if Z.lt lo0 lo1 then update_ordered item1 item0
else update_ordered item0 item1
let register_hook :
type a.
t -> Virtual_address.t Interval.t -> ?stage:stage -> a hook -> a -> t =
fun ({ n; fetch; decode; disasm; rewrite; _ } as env) { lo; hi }
?(stage = Early) hook f ->
let lo = Virtual_address.to_bigint lo
and hi = Virtual_address.to_bigint hi in
match hook with
| Fetch ->
{
env with
n = n + 1;
fetch =
stage_update stage
(Zmap.union_update update
(Zmap.singleton ~lo ~hi (Q.singleton n f)))
fetch;
}
| Decode ->
{
env with
n = n + 1;
decode =
stage_update stage
(Zmap.union_update update
(Zmap.singleton ~lo ~hi (Q.singleton n f)))
decode;
}
| Disasm ->
{
env with
n = n + 1;
disasm =
stage_update stage
(Zmap.union_update update
(Zmap.singleton ~lo ~hi (Q.singleton n f)))
disasm;
}
| Rewrite ->
{
env with
n = n + 1;
rewrite =
stage_update stage
(Zmap.union_update update
(Zmap.singleton ~lo ~hi (Q.singleton n f)))
rewrite;
}
let register_instrumentation : t -> Hook.instrument -> t =
fun ({ n; instrument; _ } as env) f ->
{ env with n = n + 1; instrument = Q.add n f instrument }
let register_knowledge :
type a. t -> a knowledge -> (Ir.builtin -> a option) -> t =
fun ({ may_read; must_write; _ } as env) info callback ->
match info with
| May_read -> { env with may_read = callback :: may_read }
| Must_write -> { env with must_write = callback :: must_write }
let fetch : t -> Virtual_address.t -> stage -> Hook.fetch Seq.t =
fun { fetch; _ } addr stage ->
match Zmap.find (Virtual_address.to_bigint addr) (get stage fetch) with
| exception Not_found -> Seq.empty
| Item { elt = q; _ } -> Seq.map snd (Q.to_seq q)
let decode : t -> Virtual_address.t -> stage -> Hook.decode Seq.t =
fun { decode; _ } addr stage ->
match Zmap.find (Virtual_address.to_bigint addr) (get stage decode) with
| exception Not_found -> Seq.empty
| Item { elt = q; _ } -> Seq.map snd (Q.to_seq q)
let disasm : t -> Virtual_address.t -> stage -> Hook.disasm Seq.t =
fun { disasm; _ } addr stage ->
match Zmap.find (Virtual_address.to_bigint addr) (get stage disasm) with
| exception Not_found -> Seq.empty
| Item { elt = q; _ } -> Seq.map snd (Q.to_seq q)
let rewrite : t -> Virtual_address.t -> stage -> Ir.Graph.t -> unit =
fun { rewrite; _ } addr stage ir ->
match Zmap.find (Virtual_address.to_bigint addr) (get stage rewrite) with
| exception Not_found -> ()
| Item { elt = q; _ } -> Q.iter (fun _ f -> f ir) q
let instrument : t -> Revision.t -> unit =
fun { instrument; _ } ir -> Q.iter (fun _ f -> f ir) instrument
let rec resolve_knowledge :
Ir.builtin -> (Ir.builtin -> 'a option) list -> default:'a -> 'a =
fun builtin callbacks ~default ->
match callbacks with
| [] -> default
| f :: callbacks -> (
match f builtin with
| None -> resolve_knowledge builtin callbacks ~default
| Some knowledge -> knowledge)
let may_read : t -> Ir.builtin -> VarSet.t option =
fun { may_read; _ } builtin ->
resolve_knowledge builtin may_read ~default:None
let must_write : t -> Ir.builtin -> VarSet.t =
fun { must_write; _ } builtin ->
resolve_knowledge builtin must_write ~default:VarSet.empty
end
type t = {
callback : Callback.t;
decoder : int Reader.t -> Virtual_address.t -> Instruction.t;
base : Virtual_address.t;
reader : Virtual_address.t Reader.t;
size : Z.t;
mutable graph : Ir.Graph.t;
entries : Ir.Graph.vertex Virtual_address.Htbl.t;
killset : VarSet.t IntTbl.t;
}
let create :
Callback.t ->
decoder:(int Reader.t -> Virtual_address.t -> Instruction.t) ->
Virtual_address.t ->
Virtual_address.t Reader.t ->
Z.t ->
t =
fun callback ~decoder base reader size ->
{
callback;
decoder;
base;
reader;
size;
graph = Ir.Graph.empty ();
entries = Virtual_address.Htbl.create 16;
killset = IntTbl.create 16;
}
let create_small :
Callback.t ->
decoder:(int Reader.t -> Virtual_address.t -> Instruction.t) ->
Virtual_address.t ->
int Reader.t ->
int ->
t =
let offset addr n = Virtual_address.add_int n addr in
fun callback ~decoder base reader size ->
{
callback;
decoder;
base;
reader = Reader.rebase ~offset ~distance:Virtual_address.diff base reader;
size = Z.of_int size;
graph = Ir.Graph.empty ();
entries = Virtual_address.Htbl.create 16;
killset = IntTbl.create 16;
}
let callback : t -> Callback.t = fun { callback; _ } -> callback
let address : t -> Virtual_address.t = fun { base; _ } -> base
let graph : t -> Ir.View.t = fun { graph; _ } -> (graph :> Ir.View.t)
let killset : t -> Ir.Graph.vertex -> VarSet.t =
fun { killset; _ } vertex ->
try IntTbl.find killset vertex with Not_found -> VarSet.empty
exception Continue
let relink_eoh : Ir.Graph.t -> unit =
fun acc ->
let succ = Ir.Graph.length acc in
Ir.Graph.iter_exits
(fun vertex ->
match Ir.Graph.node acc vertex with
| Terminator { label; kind = Builtin Ir.EndOfHook; _ } ->
Ir.Graph.replace_node acc vertex
(Fallthrough { label; kind = Nop; succ })
| _ -> ())
acc
let has_eoh : Ir.Graph.t -> bool =
fun acc ->
match
Ir.Graph.iter_exits
(fun vertex ->
match Ir.Graph.node acc vertex with
| Terminator { kind = Builtin Ir.EndOfHook; _ } ->
raise_notrace Continue
| _ -> ())
acc
with
| exception Continue -> true
| () -> false
let sub : t -> Virtual_address.t -> int Reader.t =
fun code address ->
Reader.move code.reader address;
Reader.sub code.reader
(try
Z.to_int
(Z.sub code.size
(Z.sub
(Virtual_address.to_bigint address)
(Virtual_address.to_bigint code.base)))
with Z.Overflow -> max_int)
let rec fetch :
t ->
Virtual_address.t ->
stage ->
Hook.fetch Seq.t ->
Ir.Graph.t ->
Ir.Graph.t =
fun code address stage hooks acc ->
match hooks () with
| Nil -> (
match stage with
| Early ->
fetch code address Late
(Callback.fetch code.callback address Late)
acc
| Late ->
decode code address Early
(Callback.decode code.callback address Early)
acc (sub code address))
| Cons (hook, hooks) -> (
match hook address with
| None -> fetch code address stage hooks acc
| Some ir ->
relink_eoh acc;
ignore (Ir.Graph.append ~from:ir acc);
if has_eoh acc then fetch code address stage hooks acc
else rewrite code address acc)
and decode :
t ->
Virtual_address.t ->
stage ->
Hook.decode Seq.t ->
Ir.Graph.t ->
int Reader.t ->
Ir.Graph.t =
fun code address stage hooks acc reader ->
Reader.move reader 0;
match hooks () with
| Nil -> (
match stage with
| Early ->
decode code address Late
(Callback.decode code.callback address Late)
acc reader
| Late ->
disasm code
(code.decoder reader address)
Early
(Callback.disasm code.callback address Early)
acc)
| Cons (hook, hooks) -> (
match hook address reader with
| None -> decode code address stage hooks acc reader
| Some ir ->
relink_eoh acc;
ignore (Ir.Graph.append ~from:ir acc);
if has_eoh acc then decode code address stage hooks acc reader
else rewrite code address acc)
and disasm :
t -> Instruction.t -> stage -> Hook.disasm Seq.t -> Ir.Graph.t -> Ir.Graph.t
=
fun code inst stage hooks acc ->
match hooks () with
| Nil -> (
let address = Instruction.address inst in
match stage with
| Early ->
disasm code inst Late (Callback.disasm code.callback address Late) acc
| Late ->
let ir = Ir.Graph.of_instruction inst in
relink_eoh acc;
ignore (Ir.Graph.append ~from:ir acc);
rewrite code address acc)
| Cons (hook, hooks) -> (
match hook inst with
| None -> disasm code inst stage hooks acc
| Some ir ->
relink_eoh acc;
ignore (Ir.Graph.append ~from:ir acc);
if has_eoh acc then disasm code inst stage hooks acc
else rewrite code (Instruction.address inst) acc)
and rewrite : t -> Virtual_address.t -> Ir.Graph.t -> Ir.Graph.t =
fun code address acc ->
Callback.rewrite code.callback address Early acc;
Callback.rewrite code.callback address Late acc;
acc
let fetch_no_link : t -> Virtual_address.t -> Ir.Graph.vertex =
fun code address ->
try Virtual_address.Htbl.find code.entries address
with Not_found ->
let offset =
Z.sub
(Virtual_address.to_bigint address)
(Virtual_address.to_bigint code.base)
in
if Z.lt offset Z.zero || Z.leq code.size offset then raise Not_found
else
let ir =
fetch code address Early
(Callback.fetch code.callback address Early)
(Ir.Graph.empty ())
in
let revision = Revision.make code.graph in
let vertex = Ir.Graph.append ~from:ir code.graph in
let sink =
Ir.Graph.fold_exits
(fun i sink -> IntSet.add (vertex + i) sink)
ir IntSet.empty
in
Callback.instrument code.callback revision;
code.graph <- Ir.Graph.copy code.graph;
Ir.Killset.analyze
~may_read:(Callback.may_read code.callback)
~must_write:(Callback.must_write code.callback)
(code.graph :> Ir.View.t)
~sink code.killset;
Virtual_address.Htbl.add code.entries address vertex;
vertex
let disassemble_from : t -> Virtual_address.t -> Ir.Graph.vertex =
let rec fetch_and_link :
t ->
(Ir.Graph.vertex * Ir.label * Dba.tag) list Virtual_address.Map.t ->
IntSet.t ->
IntSet.t =
fun code addresses sink ->
if Virtual_address.Map.is_empty addresses then sink
else
let address, to_link = Virtual_address.Map.choose addresses in
let addresses = Virtual_address.Map.remove address addresses in
match Virtual_address.Htbl.find code.entries address with
| vertex -> link_and_fetch code addresses sink address vertex to_link
| exception Not_found ->
let offset =
Z.sub
(Virtual_address.to_bigint address)
(Virtual_address.to_bigint code.base)
in
if Z.lt offset Z.zero || Z.leq code.size offset then
fetch_and_link code addresses sink
else
let ir =
fetch code address Early
(Callback.fetch code.callback address Early)
(Ir.Graph.empty ())
in
let vertex = Ir.Graph.append ~from:ir code.graph in
let sink =
Ir.Graph.fold_exits
(fun i sink -> IntSet.add (vertex + i) sink)
ir sink
in
let addresses =
Ir.Graph.fold_exits
(fun pred addresses ->
match Ir.Graph.node ir pred with
| Terminator { label; kind = Goto { target; tag } } ->
Virtual_address.Map.add target
((vertex + pred, label, tag)
::
(try Virtual_address.Map.find target addresses
with Not_found -> []))
addresses
| _ -> addresses)
ir addresses
in
Virtual_address.Htbl.add code.entries address vertex;
link_and_fetch code addresses sink address vertex to_link
and link_and_fetch :
t ->
(Ir.Graph.vertex * Ir.label * Dba.tag) list Virtual_address.Map.t ->
IntSet.t ->
Virtual_address.t ->
Ir.Graph.vertex ->
(Ir.Graph.vertex * Ir.label * Dba.tag) list ->
IntSet.t =
fun code addresses sink address vertex to_link ->
List.iter
(fun (pred, label, tag) ->
Ir.Graph.replace_node code.graph pred
(Fallthrough
{ label; kind = Goto { target = address; tag }; succ = vertex }))
to_link;
fetch_and_link code addresses sink
in
fun code address ->
try Virtual_address.Htbl.find code.entries address
with Not_found ->
let revision = Revision.make code.graph in
let sink =
IntSet.filter
(fun vertex ->
match Ir.Graph.node code.graph vertex with
| Fallthrough { succ = vertex; _ } -> vertex < revision.n
| _ -> true)
(fetch_and_link code
(Virtual_address.Map.singleton address [])
IntSet.empty)
in
Callback.instrument code.callback revision;
code.graph <- Ir.Graph.copy code.graph;
Ir.Killset.analyze
(code.graph :> Ir.View.t)
~may_read:(Callback.may_read code.callback)
~must_write:(Callback.must_write code.callback)
~sink code.killset;
Virtual_address.Htbl.find code.entries address