Package index
batteries
Library batteries.unthreaded
BatFingerTree
Module
Module BatFingerTree This module implements a generic finger tree datastructure as described here: Finger Trees: A Simple General-purpose Data Structure http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf
The finger tree itself is polymorphic over the measure and the measurement function (this is needed because sometimes the type of the measure depends on the type of the elements).
This module also contains an instantiation of a finger tree that implements a functional sequence with the following characteristics:
amortized constant time addition and deletions at both ends constant time size operation logarithmic lookup, update or deletion of the element at a given index logarithmic splitting and concatenation If you are trying to understand the signature at first, whenever you see a type (something, _, _) wrap, just pretend it is simply the type something (this is what the documentation does).
Complexities are given assuming that the monoid combination operation and the measurement functions are constant time and space.
None of the functions on finger trees can cause stack overflow: they use at worst a logarithmic amount of stack space.
type 'a monoid = { zero : 'a ; The neutral element of the monoid.
combine : 'a -> 'a -> 'a ; combine should be associative, and have zero as neutral element.
} The type of the element of a monoid.
An exception that is thrown by various operations when trying to get a non existing element.
module type S = sig ... end include S
with type ('wrapped_type, 'a, 'm) wrap = 'wrapped_type
and type ('a, 'm) fg = 'a t The type of finger trees containing elements of type 'a measured by 'm.
type ('wrapped_type, 'a, 'm) wrap = 'wrapped_type A type meant to avoid duplication of signatures.
For the generic finger tree, this type will be monoid:'m monoid -> measure:('a -> 'm) -> 'wrapped_type.
Once the finger tree has been specialized, the resulting module should be reexported in such a way that the type is now simply 'wrapped_type.
Constructionempty is the sequence with no elements.
val singleton : 'a -> ('a , 'm ) fg singleton elt build the sequence containing elt as its sole element.
O(1).
val cons : (('a , 'm ) fg -> 'a -> ('a , 'm ) fg , 'a , 'm ) wrap cons t elt adds elt to the left of t.
O(1) amortized, O(log(n)) worst case.
val snoc : (('a , 'm ) fg -> 'a -> ('a , 'm ) fg , 'a , 'm ) wrap snoc t elt adds elt to the right of t.
O(1) amortized, O(log(n)) worst case.
Deconstructionval front : (('a , 'm ) fg -> (('a , 'm ) fg * 'a ) option , 'a , 'm ) wrap front t returns None when t is empty, or Some (tl, hd) when hd is the first element of the sequence and tl is the rest of the sequence.
O(1) amortized, O(log(n)) worst case.
val front_exn : (('a , 'm ) fg -> ('a , 'm ) fg * 'a , 'a , 'm ) wrap front_exn t returns (tl, hd) when hd is the first element of the sequence and tl is the rest of the sequence.
O(1) amortized, O(log(n)) worst case.
val head : ('a , 'm ) fg -> 'a optionhead t returns None if t is empty, or Some hd otherwise, where hd is the first element of the sequence.
O(1).
val head_exn : ('a , 'm ) fg -> 'a head_exn t returns the first element of the sequence.
O(1).
val last : ('a , 'm ) fg -> 'a optionlast t returns None if t is empty, or Some hd otherwise, where hd is the last element of the sequence.
O(1).
val last_exn : ('a , 'm ) fg -> 'a last_exn t returns the last element of the sequence.
O(1).
val tail : (('a , 'm ) fg -> ('a , 'm ) fg option , 'a , 'm ) wrap tail t returns None when t is empty, or Some tl where tl is the sequence t where the first element has been removed.
O(1) amortized, O(log(n)) worst case.
val tail_exn : (('a , 'm ) fg -> ('a , 'm ) fg , 'a , 'm ) wrap tail_exn t returns the sequence t where the first element has been removed.
O(1) amortized, O(log(n)) worst case.
val init : (('a , 'm ) fg -> ('a , 'm ) fg option , 'a , 'm ) wrap init t returns None if t is empty, or Some init where init is the sequence t where the last element has been removed.
O(1) amortized, O(log(n)) worst case.
val init_exn : (('a , 'm ) fg -> ('a , 'm ) fg , 'a , 'm ) wrap init_exn t returns the sequence t where the last element has been removed.
O(1) amortized, O(log(n)) worst case.
val rear : (('a , 'm ) fg -> (('a , 'm ) fg * 'a ) option , 'a , 'm ) wrap rear t returns None when t is empty, or Some (init, last) where last is the last element of the sequence and init is the rest of the sequence.
O(1) amortized, O(log(n)) worst case.
val rear_exn : (('a , 'm ) fg -> ('a , 'm ) fg * 'a , 'a , 'm ) wrap rear_exn t returns (init, last) when last is the last element of the sequence and init is the rest of the sequence.
O(1) amortized, O(log(n)) worst case.
Inspectionval is_empty : ('a , 'm ) fg -> boolis_empty t returns true when the sequence has no elements.
O(1).
val fold_left : ('acc -> 'a -> 'acc ) -> 'acc -> ('a , 'm ) fg -> 'acc fold_left is equivalent to List.fold_left.
O(n).
val fold_right : ('acc -> 'a -> 'acc ) -> 'acc -> ('a , 'm ) fg -> 'acc fold_right is equivalent to List.fold_right.
O(n).
val iter : ('a -> unit) -> ('a , 'm ) fg -> unititer is equivalent to List.iter.
O(n).
val iter_right : ('a -> unit) -> ('a , 'm ) fg -> unititer_right is equivalent to List.iter o List.rev.
O(n).
val compare : ('a -> 'a -> int) -> ('a , 'm ) fg -> ('a , 'm ) fg -> intcompare cmp t1 t2 compares the two sequences lexicographically.
O(n).
val equal : ('a -> 'a -> bool) -> ('a , 'm ) fg -> ('a , 'm ) fg -> boolequal eq t1 t2 returns true when the two sequences contain the the same elements.
O(n).
Conversions Conversions to other structuresenum t builds an enumeration of the elements of t going from left to right.
O(1).
Forcing the whole enumeration takes O(n).
backwards t builds an enumeration of the elements of t going from right to left. Same complexity as enum .
val to_list : ('a , 'm ) fg -> 'a listto_list t is equivalent to BatList.of_enum (enum t).
O(n).
val to_list_backwards : ('a , 'm ) fg -> 'a listto_list_backwards t is equivalent to BatList.of_enum (backwards t).
O(n).
Conversions from other structuresof_enum e build the sequence containing the elements of e in the same order.
Its complexity is the complexity of forcing the enumeration.
of_backwards e is equivalent to reverse (of_enum e).
O(n).
val of_list : ('a list -> ('a , 'm ) fg , 'a , 'm ) wrap of_list l is equivalent to of_enum (BatList.enum l).
O(n).
val of_list_backwards : ('a list -> ('a , 'm ) fg , 'a , 'm ) wrap of_list_backwards l is equivalent to of_enum_backwards (BatList.enum l).
O(n).
Combining/reorganizingval map : (('a -> 'b ) -> ('a , 'm ) fg -> ('b , 'm ) fg , 'b , 'm ) wrap val map_right : (('a -> 'b ) -> ('a , 'm ) fg -> ('b , 'm ) fg , 'b , 'm ) wrap map_right is equivalent to List.rev o List.map o List.rev.
O(n).
val append : (('a , 'm ) fg -> ('a , 'm ) fg -> ('a , 'm ) fg , 'a , 'm ) wrap append is equivalent to List.append.
O(log(min(n,m))).
val reverse : (('a , 'm ) fg -> ('a , 'm ) fg , 'a , 'm ) wrap reverse t is equivalent to of_list (List.rev (to_list t)).
O(n).
Boilerplate codesize t returns the number of elements in the sequence.
Unlike the generic size on finger trees, this one has complexity O(1).
val split_at : 'a t -> int -> 'a t * 'a t split_at is equivalent to List.split_at.
O(log(n)).
val get : 'a t -> int -> 'a get t i returns the i-th element of t.
O(log(n)).
val set : 'a t -> int -> 'a -> 'a t set t i v returns t where the i-th element is now v.
O(log(n)).
val update : 'a t -> int -> ('a -> 'a ) -> 'a t update t i f returns t where the i-th element is now f (get i t).
O(log(n)).