package b0

  1. Overview
  2. Docs

Strings.

String

include module type of String

Strings

type t = string

The type for strings.

val make : int -> char -> string

make n c is a string of length n with each index holding the character c.

val init : int -> (int -> char) -> string

init n f is a string of length n with index i holding the character f i (called in increasing index order).

  • since 4.02.0
val of_bytes : bytes -> string

Return a new string that contains the same bytes as the given byte sequence.

  • since 4.13.0
val to_bytes : string -> bytes

Return a new byte sequence that contains the same bytes as the given string.

  • since 4.13.0
val length : string -> int

length s is the length (number of bytes/characters) of s.

val get : string -> int -> char

get s i is the character at index i in s. This is the same as writing s.[i].

Concatenating

Note. The Stdlib.(^) binary operator concatenates two strings.

val concat : string -> string list -> string

concat sep ss concatenates the list of strings ss, inserting the separator string sep between each.

val cat : string -> string -> string

cat s1 s2 concatenates s1 and s2 (s1 ^ s2).

  • since 4.13.0

Predicates and comparisons

val equal : t -> t -> bool

equal s0 s1 is true if and only if s0 and s1 are character-wise equal.

  • since 4.03.0 (4.05.0 in StringLabels)
val compare : t -> t -> int

compare s0 s1 sorts s0 and s1 in lexicographical order. compare behaves like Stdlib.compare on strings but may be more efficient.

val starts_with : prefix:string -> string -> bool

starts_with ~prefix s is true if and only if s starts with prefix.

  • since 4.13.0
val ends_with : suffix:string -> string -> bool

ends_with suffix s is true if and only if s ends with suffix.

  • since 4.13.0
val contains_from : string -> int -> char -> bool

contains_from s start c is true if and only if c appears in s after position start.

val rcontains_from : string -> int -> char -> bool

rcontains_from s stop c is true if and only if c appears in s before position stop+1.

val contains : string -> char -> bool

contains s c is String.contains_from s 0 c.

Extracting substrings

val sub : string -> int -> int -> string

sub s pos len is a string of length len, containing the substring of s that starts at position pos and has length len.

val split_on_char : char -> string -> string list

split_on_char sep s is the list of all (possibly empty) substrings of s that are delimited by the character sep.

The function's result is specified by the following invariants:

  • The list is not empty.
  • Concatenating its elements using sep as a separator returns a string equal to the input (concat (make 1 sep) (split_on_char sep s) = s).
  • No string in the result contains the sep character.
  • since 4.04.0 (4.05.0 in StringLabels)

Transforming

val fold_left : ('a -> char -> 'a) -> 'a -> string -> 'a

fold_left f x s computes f (... (f (f x s.[0]) s.[1]) ...) s.[n-1], where n is the length of the string s.

  • since 4.13.0
val fold_right : (char -> 'a -> 'a) -> string -> 'a -> 'a

fold_right f s x computes f s.[0] (f s.[1] ( ... (f s.[n-1] x) ...)), where n is the length of the string s.

  • since 4.13.0
val trim : string -> string

trim s is s without leading and trailing whitespace. Whitespace characters are: ' ', '\x0C' (form feed), '\n', '\r', and '\t'.

  • since 4.00.0
val escaped : string -> string

escaped s is s with special characters represented by escape sequences, following the lexical conventions of OCaml.

All characters outside the US-ASCII printable range [0x20;0x7E] are escaped, as well as backslash (0x2F) and double-quote (0x22).

The function Scanf.unescaped is a left inverse of escaped, i.e. Scanf.unescaped (escaped s) = s for any string s (unless escaped s fails).

val uppercase_ascii : string -> string

uppercase_ascii s is s with all lowercase letters translated to uppercase, using the US-ASCII character set.

  • since 4.03.0 (4.05.0 in StringLabels)
val lowercase_ascii : string -> string

lowercase_ascii s is s with all uppercase letters translated to lowercase, using the US-ASCII character set.

  • since 4.03.0 (4.05.0 in StringLabels)
val capitalize_ascii : string -> string

capitalize_ascii s is s with the first character set to uppercase, using the US-ASCII character set.

  • since 4.03.0 (4.05.0 in StringLabels)
val uncapitalize_ascii : string -> string

uncapitalize_ascii s is s with the first character set to lowercase, using the US-ASCII character set.

  • since 4.03.0 (4.05.0 in StringLabels)

Traversing

val iter : (char -> unit) -> string -> unit

iter f s applies function f in turn to all the characters of s. It is equivalent to f s.[0]; f s.[1]; ...; f s.[length s - 1]; ().

val iteri : (int -> char -> unit) -> string -> unit

iteri is like iter, but the function is also given the corresponding character index.

  • since 4.00.0

Searching

val index_from : string -> int -> char -> int

index_from s i c is the index of the first occurrence of c in s after position i.

  • raises Not_found

    if c does not occur in s after position i.

val index_from_opt : string -> int -> char -> int option

index_from_opt s i c is the index of the first occurrence of c in s after position i (if any).

  • since 4.05
val rindex_from : string -> int -> char -> int

rindex_from s i c is the index of the last occurrence of c in s before position i+1.

  • raises Not_found

    if c does not occur in s before position i+1.

val rindex_from_opt : string -> int -> char -> int option

rindex_from_opt s i c is the index of the last occurrence of c in s before position i+1 (if any).

  • since 4.05
val index : string -> char -> int

index s c is String.index_from s 0 c.

val index_opt : string -> char -> int option

index_opt s c is String.index_from_opt s 0 c.

  • since 4.05
val rindex : string -> char -> int

rindex s c is String.rindex_from s (length s - 1) c.

val rindex_opt : string -> char -> int option

rindex_opt s c is String.rindex_from_opt s (length s - 1) c.

  • since 4.05

Strings and Sequences

val to_seq : t -> char Seq.t

to_seq s is a sequence made of the string's characters in increasing order. In "unsafe-string" mode, modifications of the string during iteration will be reflected in the sequence.

  • since 4.07
val to_seqi : t -> (int * char) Seq.t

to_seqi s is like to_seq but also tuples the corresponding index.

  • since 4.07
val of_seq : char Seq.t -> t

of_seq s is a string made of the sequence's characters.

  • since 4.07

Deprecated functions

val create : int -> bytes

create n returns a fresh byte sequence of length n. The sequence is uninitialized and contains arbitrary bytes.

val set : bytes -> int -> char -> unit

set s n c modifies byte sequence s in place, replacing the byte at index n with c. You can also write s.[n] <- c instead of set s n c.

val blit : string -> int -> bytes -> int -> int -> unit

blit src src_pos dst dst_pos len copies len bytes from the string src, starting at index src_pos, to byte sequence dst, starting at character number dst_pos.

  • raises Invalid_argument

    if src_pos and len do not designate a valid range of src, or if dst_pos and len do not designate a valid range of dst.

val copy : string -> string

Return a copy of the given string.

  • deprecated

    Because strings are immutable, it doesn't make much sense to make identical copies of them.

val fill : bytes -> int -> int -> char -> unit

fill s pos len c modifies byte sequence s in place, replacing len bytes by c, starting at pos.

val uppercase : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.

  • deprecated

    Functions operating on Latin-1 character set are deprecated.

val lowercase : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.

  • deprecated

    Functions operating on Latin-1 character set are deprecated.

val capitalize : string -> string

Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set..

  • deprecated

    Functions operating on Latin-1 character set are deprecated.

val uncapitalize : string -> string

Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set.

  • deprecated

    Functions operating on Latin-1 character set are deprecated.

Binary decoding of integers

The functions in this section binary decode integers from strings.

All following functions raise Invalid_argument if the characters needed at index i to decode the integer are not available.

Little-endian (resp. big-endian) encoding means that least (resp. most) significant bytes are stored first. Big-endian is also known as network byte order. Native-endian encoding is either little-endian or big-endian depending on Sys.big_endian.

32-bit and 64-bit integers are represented by the int32 and int64 types, which can be interpreted either as signed or unsigned numbers.

8-bit and 16-bit integers are represented by the int type, which has more bits than the binary encoding. These extra bits are sign-extended (or zero-extended) for functions which decode 8-bit or 16-bit integers and represented them with int values.

val get_uint8 : string -> int -> int

get_uint8 b i is b's unsigned 8-bit integer starting at character index i.

  • since 4.13.0
val get_int8 : string -> int -> int

get_int8 b i is b's signed 8-bit integer starting at character index i.

  • since 4.13.0
val get_uint16_ne : string -> int -> int

get_uint16_ne b i is b's native-endian unsigned 16-bit integer starting at character index i.

  • since 4.13.0
val get_uint16_be : string -> int -> int

get_uint16_be b i is b's big-endian unsigned 16-bit integer starting at character index i.

  • since 4.13.0
val get_uint16_le : string -> int -> int

get_uint16_le b i is b's little-endian unsigned 16-bit integer starting at character index i.

  • since 4.13.0
val get_int16_ne : string -> int -> int

get_int16_ne b i is b's native-endian signed 16-bit integer starting at character index i.

  • since 4.13.0
val get_int16_be : string -> int -> int

get_int16_be b i is b's big-endian signed 16-bit integer starting at character index i.

  • since 4.13.0
val get_int16_le : string -> int -> int

get_int16_le b i is b's little-endian signed 16-bit integer starting at character index i.

  • since 4.13.0
val get_int32_ne : string -> int -> int32

get_int32_ne b i is b's native-endian 32-bit integer starting at character index i.

  • since 4.13.0
val get_int32_be : string -> int -> int32

get_int32_be b i is b's big-endian 32-bit integer starting at character index i.

  • since 4.13.0
val get_int32_le : string -> int -> int32

get_int32_le b i is b's little-endian 32-bit integer starting at character index i.

  • since 4.13.0
val get_int64_ne : string -> int -> int64

get_int64_ne b i is b's native-endian 64-bit integer starting at character index i.

  • since 4.13.0
val get_int64_be : string -> int -> int64

get_int64_be b i is b's big-endian 64-bit integer starting at character index i.

  • since 4.13.0
val get_int64_le : string -> int -> int64

get_int64_le b i is b's little-endian 64-bit integer starting at character index i.

  • since 4.13.0
val empty : string

empty is "".

val head : string -> char option

head s if Some s.[0] if s <> "" and None otherwise.

val of_char : char -> string

of_char c is c as a string.

Predicates

val is_empty : string -> bool

is_empty s is equal empty s.

val is_prefix : affix:string -> string -> bool

is_prefix ~affix s is true iff affix.[i] = s.[i] for all indices i of affix.

val is_infix : affix:string -> string -> bool

is_infix ~affix s is true iff there exists an index j such that for all indices i of affix, affix.[i] = s.[j+ 1].

val is_suffix : affix:string -> string -> bool

is_suffix ~affix s is true iff affix.[i] = s.[m - i] for all indices i of affix and with m = String.length s - 1.

val for_all : (char -> bool) -> string -> bool

for_all p s is true iff for all indices i of s, p s.[i] = true.

val exists : (char -> bool) -> string -> bool

exists p s is true iff there exists an index i of s with p s.[i] = true.

Extracting substrings

val with_index_range : ?first:int -> ?last:int -> string -> string

with_index_range ~first ~last s are the consecutive bytes of s whose indices exist in the range [first;last].

first defaults to 0 and last to String.length s - 1.

Note that both first and last can be any integer. If first > last the interval is empty and the empty string is returned.

Breaking

Breaking with magnitudes

val take_left : int -> string -> string

take_left n s are the first n bytes of s. This is s if n >= length s and "" if n <= 0.

val take_right : int -> string -> string

take_right n s are the last n bytes of s. This is s if n >= length s and "" if n <= 0.

val drop_left : int -> string -> string

drop_left n s is s without the first n bytes of s. This is "" if n >= length s and s if n <= 0.

val drop_right : int -> string -> string

drop_right n s is s without the last n bytes of s. This is "" if n >= length s and s if n <= 0.

val break_left : int -> string -> string * string

break_left n v is (take_left n v, drop_left n v).

val break_right : int -> string -> string * string

break_right n v is (drop_left n v, take_right n v).

Breaking with predicates

val keep_left : (char -> bool) -> string -> string

keep_left sat s are the first consecutive sat statisfying bytes of s.

val keep_right : (char -> bool) -> string -> string

keep_right sat s are the last consecutive sat satisfying bytes of s.

val lose_left : (char -> bool) -> string -> string

lose_left sat s is s without the first consecutive sat satisfying bytes of s.

val lose_right : (char -> bool) -> string -> string

lose_right sat s is s without the last consecutive sat satisfying bytes of s.

val span_left : (char -> bool) -> string -> string * string

span_left sat s is (keep_left sat s, lose_left sat s).

val span_right : (char -> bool) -> string -> string * string

span_right sat s is (lose_right sat s, keep_right sat s).

Breaking with separators

val cut_left : sep:string -> string -> (string * string) option

cut ~sep s is either the pair Some (l,r) of the two (possibly empty) substrings of s that are delimited by the first match of the separator character sep or None if sep can't be matched in s. Matching starts from the left of s.

The invariant l ^ sep ^ r = s holds.

val cut_right : sep:string -> string -> (string * string) option

cut_right ~sep s is like cut_left but matching starts on the right of s.

val cuts_left : ?drop_empty:bool -> sep:string -> string -> string list

cuts_left sep s is the list of all substrings of s that are delimited by matches of the non empty separator string sep. Empty substrings are omitted in the list if drop_empty is true (defaults to false).

Matching separators in s starts from the left of s (rev is false, default) or the end (rev is true). Once one is found, the separator is skipped and matching starts again, that is separator matches can't overlap. If there is no separator match in s, the list [s] is returned.

The following invariants hold:

  • concat ~sep (cuts ~drop_empty:false ~sep s) = s
  • cuts ~drop_empty:false ~sep s <> []
val cuts_right : ?drop_empty:bool -> sep:string -> string -> string list

cuts_right sep s is like cuts_left but matching starts on the right of s.

Traversing

val map : (char -> char) -> string -> string

map f s is s' with s'.[i] = f s.[i] for all indices i of s. f is invoked in increasing index order.

val mapi : (int -> char -> char) -> string -> string

mapi f s is s' with s'.[i] = f i s.[i] for all indices i of s. f is invoked in increasing index order.

Formatting

val pp : string Fmt.t

pp ppf s prints s's bytes on ppf.

val dump : string Fmt.t

dump ppf s prints s as a syntactically valid OCaml string on ppf.

Uniqueness

val uniquify : string list -> string list

uniquify ss is ss without duplicates, the list order is preserved.

val unique : exists:(string -> bool) -> string -> (string, string) result

unique ~exist n is n if exists n is false or r = strf "%s~%d" n d with d the smallest integer in [1;1e9] such that exists r is false or an error if there is no such string.

Suggesting

val edit_distance : string -> string -> int

edit_distance s0 s1 is the number of single character edits (insertion, deletion, substitution) that are needed to change s0 into s1.

val suggest : ?dist:int -> string list -> string -> string list

suggest ~dist candidates s are the elements of candidates whose edit distance is the smallest to s and at most at a distance of dist of s (defaults to 2). If multiple results are returned the order of candidates is preserved.

Escaping and unescaping bytes

See also the escunesc.

XXX. Limitation cannot escape/unescape multiple bytes (e.g. UTF-8 byte sequences). This could be achieved by tweaking the sigs to return integer pairs but that would allocate quite a bit.

val escaper : (char -> int) -> (bytes -> int -> char -> int) -> string -> string

escaper char_len set_char is a byte escaper that given a byte c uses char_len c bytes in the escaped form and uses set_char b i c to set the escaped form for c in b at index i returning the next writable index (no bounds check need to be performed). For any b, c and i the invariant i + char_len c = set_char b i c must hold.

exception Illegal_escape of int
val unescaper : (string -> int -> int) -> (bytes -> int -> string -> int -> int) -> string -> (string, int) result

unescaper char_len_at set_char is a byte unescaper that uses char_len_at to determine the length of a byte at a given index in the string to unescape and set_char b k s i to set at index k in b the unescaped character read at index i in s; and returns the next readable index in s (no bound check need to be performed). For any b, s, k and i the invariant i + char_len_at s i = set_char b k s i.

Both char_len_at and set_char may raise Illegal_escape i if the given index i has an illegal or truncated escape. The unescaper only uses this exception internally it returns Error i if it found an illegal escape at index i.

Strings as US-ASCII character sequences

module Ascii : sig ... end

US-ASCII string support.

String map and sets

module Set : sig ... end

String sets.

module Map : sig ... end

String maps.

OCaml

Innovation. Community. Security.