Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
🧊 Anders
Modal Homotopy Type System.
type exp =
| EPre of Z.t | EKan of Z.t | EVar of name | EHole (* cosmos *)
| EPi of exp * (name * exp) | ELam of exp * (name * exp) | EApp of exp * exp (* pi *)
| ESig of exp * (name * exp) | EPair of tag * exp * exp | EFst of exp | ESnd of exp (* sigma *)
| EId of exp | ERef of exp | EJ of exp | EField of exp * string (* strict equality *)
| EPathP of exp | EPLam of exp | EAppFormula of exp * exp (* path equality *)
| EI | EDir of dir | EAnd of exp * exp | EOr of exp * exp | ENeg of exp (* CCHM interval *)
| ETransp of exp * exp | EHComp of exp * exp * exp * exp (* Kan operations *)
| EPartial of exp | EPartialP of exp * exp | ESystem of exp System.t (* partial functions *)
| ESub of exp * exp * exp | EInc of exp * exp | EOuc of exp (* cubical subtypes *)
| EGlue of exp | EGlueElem of exp * exp * exp | EUnglue of exp (* glueing *)
| EEmpty | EIndEmpty of exp (* 𝟎 *)
| EUnit | EStar | EIndUnit of exp (* 𝟏 *)
| EBool | EFalse | ETrue | EIndBool of exp (* 𝟐 *)
| EW of exp * (name * exp) | ESup of exp * exp | EIndW of exp * exp * exp (* W *)
| EIm of exp | EInf of exp | EIndIm of exp * exp | EJoin of exp (* Infinitesimal Modality *)
| ECoeq of exp | EIota of exp | EResp of exp | EIndCoeq of exp (* Coequalizer *)
| EDisc of exp | EBase of exp | EHub of exp | ESpoke of exp | EIndDisc of exp (* Disc *)
Features
Homepage: https://groupoid.space/homotopy
Fibrant MLTT-style 0-1-2-Π-Σ-W primitives with Uₙ hierarchy in 500 LOC
Cofibrant CHM-style I primitives with pretypes hierarchy Vₙ in 500 LOC
Generalized Transport and Homogeneous Composition core Kan operations
Partial Elements
Cubical Subtypes
Glue types
Strict Equality on pretypes
Coequalizer
Hub Spokes Disc
Infinitesimal Shape Modality (de Rham Stack)
Parser in 80 LOC
Lexer in 80 LOC
UTF-8 support including universe levels
Lean syntax for ΠΣW
Poor man's records as Σ with named accessors to telescope variables
1D syntax with top-level declarations
Groupoid Infinity CCHM base library: https://groupoid.space/math
Best suited for academic papers and fast type checking
Setup
$ opam install anders
Samples
You can find some examples in the share directory of the Anders package.
def comp-Path⁻¹ (A : U) (a b : A) (p : Path A a b) :
Path (Path A a a) (comp-Path A a b a p (<i> p @ -i)) (<_> a) :=
<k j> hcomp A (∂ j ∨ k) (λ (i : I), [(j = 0) → a, (j = 1) → p @ -i ∧ -k, (k = 1) → a]) (p @ j ∧ -k)
def kan (A : U) (a b c d : A) (p : Path A a c) (q : Path A b d) (r : Path A a b) : Path A c d :=
<i> hcomp A (∂ i) (λ (j : I), [(i = 0) → p @ j, (i = 1) → q @ j]) (r @ i)
def comp (A : I → U) (r : I) (u : Π (i : I), Partial (A i) r) (u₀ : (A 0)[r ↦ u 0]) : A 1 :=
hcomp (A 1) r (λ (i : I), [(r = 1) → transp (<j>A (i ∨ j)) i (u i 1=1)]) (transp(<i> A i) 0 (ouc u₀))
def ghcomp (A : U) (r : I) (u : I → Partial A r) (u₀ : A[r ↦ u 0]) : A :=
hcomp A (∂ r) (λ (j : I), [(r = 1) → u j 1=1, (r = 0) → ouc u₀]) (ouc u₀)
$ anders check library/path.anders
MLTT
Type Checker is based on classical MLTT-80 with 0, 1, 2 and W-types.