package alt-ergo-lib

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

The Legacy module reimplements (most of) the old legacy Intervals module on top of the current implementation to ease the transition.

type t
exception NotConsistent of Explanation.t
exception No_finite_bound
val undefined : Ty.t -> t
val point : Numbers.Q.t -> Ty.t -> Explanation.t -> t
val doesnt_contain_0 : t -> Th_util.answer
val is_strict_smaller : t -> t -> bool
val new_borne_sup : Explanation.t -> Numbers.Q.t -> is_le:bool -> t -> t
val new_borne_inf : Explanation.t -> Numbers.Q.t -> is_le:bool -> t -> t
val only_borne_sup : t -> t

Keep only the upper bound of the interval, setting the lower bound to minus infty.

val only_borne_inf : t -> t

Keep only the lower bound of the interval, setting the upper bound to plus infty.

val is_point : t -> (Numbers.Q.t * Explanation.t) option
val intersect : t -> t -> t
val exclude : ?ex:Explanation.t -> Q.t -> t -> t
val mult : t -> t -> t
val power : int -> t -> t
val root : int -> t -> t
val add : t -> t -> t
val scale : Numbers.Q.t -> t -> t
val affine_scale : const:Numbers.Q.t -> coef:Numbers.Q.t -> t -> t

Perform an affine transformation on the given bounds. Supposing input bounds (b1, b2), this will return (const + coef * b1, const + coef * b2). This function is useful to avoid the incorrect roundings that can take place when scaling down an integer range.

  • raises Invalid_argument

    if coef is zero.

val pretty_print : t Fmt.t
val print : t Fmt.t
val finite_size : t -> Numbers.Q.t option
val integer_hull : t -> (Numbers.Z.t * Explanation.t) option * (Numbers.Z.t * Explanation.t) option
val borne_inf : t -> Numbers.Q.t * Explanation.t * bool

bool is true when bound is large. Raise: No_finite_bound if no finite lower bound

val borne_sup : t -> Numbers.Q.t * Explanation.t * bool

bool is true when bound is large. Raise: No_finite_bound if no finite upper bound

val div : t -> t -> t
val coerce : Ty.t -> t -> t

Coerce an interval to the given type. The main use of that function is to round a rational interval to an integer interval. This is particularly useful to avoid roudning too many times when manipulating intervals that at the end represent an integer interval, but whose intermediate state do not need to represent integer intervals (e.g. computing the interval for an integer polynome from the intervals of the monomes).

val contains : t -> Numbers.Q.t -> bool
val add_explanation : t -> Explanation.t -> t
val equal : t -> t -> bool
val pick : is_max:bool -> t -> Numbers.Q.t

pick ~is_max t returns an element of the union of intervals t. If is_max is true, we pick the largest element of t, if it exists. We look for the smallest element if is_max is false.

val fold : ('a -> Q.t Intervals_intf.bound Intervals_intf.interval -> 'a) -> 'a -> t -> 'a
type interval_matching = ((Numbers.Q.t * bool) option * (Numbers.Q.t * bool) option * Ty.t) Var.Map.t
val match_interval : Symbols.bound -> Symbols.bound -> t -> interval_matching -> interval_matching option

matchs the given lower and upper bounds against the given interval, and update the given accumulator with the constraints. Returns None if the matching problem is inconsistent

OCaml

Innovation. Community. Security.