package acgtk
Abstract Categorial Grammar development toolkit
Install
Dune Dependency
Authors
Maintainers
Sources
acgtk-1.5.3.tar.gz
sha256=2743321ae4cc97400856eb503a876cbcbd08435ebc750276399a97481d001d41
md5=04c1e14f98e2c8fd966ef7ef30b38323
README.html
README
************************************************************************** * * * ACG development toolkit * * * * Copyright 2008-2021 INRIA * * * * More information on "http://acg.gforge.inria.fr/" * * License: CeCILL, see the LICENSE file or "http://www.cecill.info" * * Authors: see the AUTHORS file * * * * * * * * * * $Rev:: $: Revision of last commit * * $Author:: $: Author of last commit * * $Date:: $: Date of last commit * * * ************************************************************************** This distribution provides two executables: acgc and acg ************ *** acgc *** ************ acgc is a "compiler" of ACG source code, i.e. files containing definitions of signatures and lexicons. It basically checks whether they are correctly written (syntactically and wrt types and constant typing) and outputs a .acgo object file. An interactive mode is available to parse terms according to signatures. Run ./acgc --help to get help *********** *** acg *** *********** acg is an interpreter of command meant to be useful when using ACGs. To get a list of command, run ./acg then on the prompt type help; Example files are given in the ./examples directory. Read the ./examples/README file *************** * Basic usage * *************** Let's assume you defined a file my_acg.acg in directory my_dir. A basic usage of the acgc and acg commands could be: $ acgc -o my_acg.acgo my_acg.acg This will produce a my_acg.acgo file (note that this is the default name and location if the -o option is not provided). Then, running : $ acg will open a prompt in which you can type: # load o my_acg.acgo; to load the data contained in the my_acg.acg file. Assuming you have defined the signature Sig and the lexicon Lex, you can then run the following commands: # Sig check lambda x.some_cst x: NP ->S; to check whether "lambda x.cst x" is a term of type "NP ->S" according to Sig. You can type: # Lex realize lambda x.cst x: NP ->S; to compute the image of "lambda x.cst x" is a term of type "NP ->S" by Lex (assuming this term and this type are correct according to the abstract signature of Lex). You can type: # Lex parse John+loves+Mary: S; to check whether the term "John+loves+Mary" has an antecend of type "S" by Lex, assuming that "John+loves+Mary" is a term of type "Lex (S)" in the object signature of Lex. Type CTRL-D to exit from the program, or type: # exit; ************** * SVG output * ************** If the --nsvg option is not set when running acg, a file "realize.svg" (default name) is generated in the current directory whenever a 'realize' command is invoked. In order to set another file name, use the option --svg other_filename. This files contains a representation as a tree of the operations described by the term to realize (applications, abstractions). Each node contains the abstract term and its realizations by each of the lexicons specified on the command line. The graphic file can for instance been observed through a web browser. 4 rendering engines are available to render the terms in each node: + the default engine: just generates a lambda-term following the signature/lexicon syntax + the "logic" engine: formulas are rendered as logical formulas: non logical constants are in bold font, logical connectives are rendered using utf-8 if their names are as follows: | "Ex" -> "∃" | "ExUni" -> "∃!" | "Ex_l" -> "∃ₗ" | "Ex_t" -> "∃ₜ" | "All" -> "∀" | "All_t" -> "∀ₜ" | "TOP" -> "⊤" | "The" -> "ι" | "&" -> "∧" | ">" -> "⇒" | "~" -> "¬" + the "trees" engine: terms are rendered as trees (e.g., derivation trees) + the "unranked trees": terms are rendered as trees, but if a non-terminal is defined as [a-zA-Z]+[0-9]*, it is rendered only using the characters The association between the name of a signature and a rendering engine is declared in a configuration file that can be loaded through the '--realize' option and that looks like: $ cat config.json { "signatures": [ { "name": "TAG", "engine": "trees" }, { "name": "DSTAG", "engine": "trees" }, { "name": "CoTAG", "engine": "trees" }, { "name": "derivations", "engine": "trees" }, { "name": "strings", "engine" : "strings"}, { "name": "Strings", "engine" : "strings"}, { "name": "logic", "engine" : "logic"}, { "name": "low_logic", "engine" : "logic"}, { "name": "derived_trees", "engine" : "unranked trees"}, { "name": "Derived_trees", "engine" : "unranked trees"}, { "name": "trees", "engine" : "unranked trees"} ], "colors": { "node-background": (239, 239, 239), "background": (255,255,255) } } An example file is given in ./examples/config.json ******************** ** ACG emacs mode ** ******************** There is an ACG emacs mode (acg.el) in the emacs directory. Look at the INSTALL file to see how to install it and where you can find the acg.el file if automatically installed (in particular using opam). It's main feature is to be loaded when editing an acg data file (with signatures and lexicons). It is automatically loaded for files with a .acg extension It basically contains compilation directives and next-error searching. 1. First load an acg file 2. then run "M-x compile" (or C-cC-c) to call the compiler (acgc) 3. then run "M-x next-error" (or C-x`) to search for the next error (if any) and highlights it ************************ * Syntax of signatures * ************************ (see the examples/tag.acg file for an example) Signatures are defined by: signature my_sig_name= sig_entries end Sig_entries always ends with a ; and can be: + type declaration as in NP,S : type; + type definition as in o :type; string = o -> o; Note that type constructors are -> and => for the linear and intuitionnistic arrow respectively. + constant declarations as in foo:NP; bar,dummy:NP -> S; infix + : string -> string -> string; prefix - : bool -> bool; binder All : (e =>t) -> t; infix > : bool -> bool -> bool; (*This means implication*) Note that infix and prefix are keywords to introduce symbols (of length 1. This probably will change). Also notes that comments are surrounded by (* and *) + constant definitions as in n = lambda n. bar n : NP -> S; infix + = lambda x y z.x(y z): string -> string -> string; prefix - = lambda p.not p:bool -> bool; everyone = lambda P. All x. (human x) > (P x) ; Note the syntax for binders (All in the last example). Available construction for terms are: lambda x y z.t for linear abstraction Lambda x y z.t for non-linear abstraction t u v for application (equal to (t u) v) t SYM u if SYM is a infix symbol (lowest priority). It is equal to ((SYM) t) u where SYM is used as a usual constant, with the priority of application. SYM t if SYM is a prefic symbol (highest priority) BINDER x y z.t if BINDER is a binder + About associativity and precedence of operators Prefix operators have precedence over application, and application has precedence over infix operators. Relative precedence among infix operators can be defined. When no associativity specification is set, the default is left associative. When no precedece definition is given, the default is higher precedence over any infix operator defined so far. When declaring or defining an infix operator with the keyword 'infix', the optional specification for the associativity and the relative precedence can be set. A specification is given between square brackets. The syntax is as follows: infix [specification] SYM … (the remaining part of the declaration is the same as without the specification) A specification is non-empty comma-separated list of: + an (optional) associativity specification, given by one of the keywords 'Left', 'Right', or 'NonAssoc'. If not present, left associativity is set by default to infix operators + an (optional) precedence declaration (if not present, the highest precedence over all the infix operators defined so far is given). It is defined as '< SYM' (where SYM is a symbol). It assigns to the operator being declared or defined the greates precedence *below* the precedence of SYM. It is possible to use an infix symbol as a normal constant by surrounding it with left and right parenthesis, so that t SYM u = (SYM) t u See examples/infix-examples and examples/infix-examples-script for examples. *********************** * Syntax of lexicons * *********************** There are two ways to define a lexicon: 1. By using the keyword `lexicon` or `nl_lexicon` as in : ``` lexicon my_lex_name(abstract_sig_name) : object_sig_name = lex_entries end ``` or ``` nl_lexicon my_lex_name(abstract_sig_name) : object_sig_name = lex_entries end ``` Lex_entries always ends with a ; and have the following form: abstract_atomic_type1, abstract_atomic_type2 := object_type; abstract_const1, abstract_const2 := object_term; With the `lexicon` keyword, `lambda` (resp. `->`) is interpreted as `lambda` (resp. `->`), whereas with `nl_lexicon`, `lambda` (resp. `->`) is interpreted as `Lambda` (resp. `=>`). I.e., everything is interpreted non linearly. It is useful when not interested in linear constraints in the object signature (as, for instance, in the context-free lambda grammars). 2. By lexicon composition as in: ``` lexicon my_new_lex = lex_2 << lex_1 3. Keywords The keywords are `signature`, `lexicon`, `nl_lexicon`, `end`, `type`, `prefix`, `infix`, `binder`, `lambda`, and `Lambda`. The reserved symbols are `=`, `<<`, `;`, `:`, `,`, `(`, `)`, `.`, `->`, `=>`, and `:=`. Inside a signature or a lexicon, `signature`, `lexicon` and `nl_lexicon` are not considered as keywords and can be used as identifier. Other keywords can be used as identifier when escaped with `\` (e.g., `\end`).
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>