package octez-libs
- Overview
 - No Docs
 
You can search for identifiers within the package.
in-package search v0.2.0
Install
    
    dune-project
 Dependency
Authors
Maintainers
Sources
sha256=55ea1fb8bb3273a7fc270ca8f650d45c56449665619482aad9bc12f3ea736b7e
    
    
  sha512=fec850fc2d17d7490bbabd5147d62aad13b3aaed8774270f8a38ab419670ed03e0fd30cf8642a97984eca5c2446726fe590ad99c015f7ec50919dc7652f25053
    
    
  doc/octez-libs.mec/Mec/Curve/Utils/PBT/MakeEdwardsCurveProperties/argument-1-G/index.html
Parameter MakeEdwardsCurveProperties.G
au^2 + v^2 = 1 + du^2v^2
exception Not_on_curve of Bytes.tRepresents an element on the curve. In the case of a curve with a cofactor, the element is not necessarily in the prime subgroup.
module Scalar : Bls12_381.Ff_sig.PRIMEmodule Base : Bls12_381.Ff_sig.PRIMEval check_bytes : Bytes.t -> boolCheck if a point, represented as a byte array, is on the curve *
Attempt to construct a point from a byte array. Raise Not_on_curve if the point is not on the curve
val zero : tZero of the elliptic curve
val one : tA fixed generator of the elliptic curve
val is_zero : t -> boolReturn true if the given element is zero
val random : ?state:Random.State.t -> unit -> tGenerate a random element
val a : Base.tThe parameter a of the curve, from the equation a * u^2 + v^2 = 1 + d * u^2 * v^2
val d : Base.tThe parameter d of the curve, from the equation a * u^2 + v^2 = 1 + d * u^2 * v^2
The cofactor of the curve. The parameter is used in is_small_order and in the random point generator.
is_on_curve ~u ~v returns true if the coordinates (u, v) represents a point on the curve. It does not check the point is in the prime subgroup.
is_in_prime_subgroup ~u ~v returns true if the coordinates (u, v) represents a point in the prime subgroup. The coordinates must be a point on the curve
Return the affine coordinate u (such that au^2 + v^2 = 1 + d u^2 v^2
Return the affine coordinate u (such that au^2 + v^2 = 1 + d u^2 v^2
Build a point from the affine coordinates. If the point is not on the curve and in the subgroup, returns None
Build a point from the affine coordinates. If the point is not on the curve and in the subgroup, raise Not_on_curve.