package irmin
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Irmin, a distributed database that follows the same design principles as Git
Install
dune-project
Dependency
Authors
Maintainers
Sources
irmin-2.9.0.tbz
sha256=7af11e14d312b9ae340997f8c27907b9fc9a0d19539fb643e1820d5183a76750
sha512=d7b61c6fddab0a8b61efe867b9a0fdc14c01eb1adeda2f5018b8dfee306c8324c77dd648c7cb9860e62a26e224955f9331b49d19cb693ad5d773efc53263d9fd
doc/src/irmin/node_intf.ml.html
Source file node_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336(* * Copyright (c) 2013 Louis Gesbert <louis.gesbert@ocamlpro.com> * Copyright (c) 2013-2017 Thomas Gazagnaire <thomas@gazagnaire.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open! Import open S module Proof = struct type ('hash, 'step, 'value) t = | Blinded of 'hash | Values of ('step * 'value) list | Inode of { length : int; proofs : (int * ('hash, 'step, 'value) t) list } (* TODO(craigfe): fix [ppx_irmin] for recursive types with type parameters. *) let t hash_t step_t value_t = let open Type in mu (fun t -> variant "proof" (fun blinded values inode -> function | Blinded x1 -> blinded x1 | Values x1 -> values x1 | Inode { length; proofs } -> inode (length, proofs)) |~ case1 "Blinded" hash_t (fun x1 -> Blinded x1) |~ case1 "Values" [%typ: (step * value) list] (fun x1 -> Values x1) |~ case1 "Inode" [%typ: int * (int * t) list] (fun (length, proofs) -> Inode { length; proofs }) |> sealv) end module type S = sig (** {1 Node values} *) type t [@@deriving irmin] (** The type for node values. *) type metadata [@@deriving irmin] (** The type for node metadata. *) type hash [@@deriving irmin] (** The type for keys. *) type step [@@deriving irmin] (** The type for steps between nodes. *) type value = [ `Node of hash | `Contents of hash * metadata ] [@@deriving irmin] (** The type for either (node) keys or (contents) keys combined with their metadata. *) val of_list : (step * value) list -> t (** [of_list l] is the node [n] such that [list n = l]. *) val list : ?offset:int -> ?length:int -> ?cache:bool -> t -> (step * value) list (** [list t] is the contents of [t]. [offset] and [length] are used to paginate results. {2 caching} [cache] regulates the caching behaviour regarding the node's internal data which may be lazily loaded from the backend, depending on the node implementation. [cache] defaults to [true] which may greatly reduce the IOs and the runtime but may also increase the memory consumption. [cache = false] doesn't replace a call to [clear], it only prevents the storing of new data, it doesn't discard the existing one. *) val of_seq : (step * value) Seq.t -> t (** [of_seq s] is the node [n] such that [seq n = s]. *) val seq : ?offset:int -> ?length:int -> ?cache:bool -> t -> (step * value) Seq.t (** [seq t] is the contents of [t]. [offset] and [length] are used to paginate results. See {!caching} for an explanation of the [cache] parameter *) val empty : t (** [empty] is the empty node. *) val is_empty : t -> bool (** [is_empty t] is true iff [t] is {!empty}. *) val length : t -> int (** [length t] is the number of entries in [t]. *) val clear : t -> unit (** Cleanup internal caches. *) val find : ?cache:bool -> t -> step -> value option (** [find t s] is the value associated with [s] in [t]. A node can point to user-defined {{!Node.S.contents} contents}. The edge between the node and the contents is labeled by a {{!Node.S.step} step}. See {!caching} for an explanation of the [cache] parameter *) val add : t -> step -> value -> t (** [add t s v] is the node where [find t v] is [Some s] but is similar to [t] otherwise. *) val remove : t -> step -> t (** [remove t s] is the node where [find t s] is [None] but is similar to [t] otherwise. *) val default : metadata (** [default] is the default metadata value. *) (** {1 Proofs} *) type nonrec proof = (hash, step, value) Proof.t [@@deriving irmin] (** The type for proof trees. *) val to_proof : t -> proof val of_proof : proof -> t end module type Maker = functor (H : Hash.S) (P : sig type step [@@deriving irmin] end) (M : METADATA) -> S with type metadata = M.t and type hash = H.t and type step = P.step module type STORE = sig include CONTENT_ADDRESSABLE_STORE module Path : Path.S (** [Path] provides base functions on node paths. *) val merge : [> read_write ] t -> key option Merge.t (** [merge] is the 3-way merge function for nodes keys. *) (** [Key] provides base functions for node keys. *) module Key : Hash.TYPED with type t = key and type value = value module Metadata : METADATA (** [Metadata] provides base functions for node metadata. *) (** [Val] provides base functions for node values. *) module Val : S with type t = value and type hash = key and type metadata = Metadata.t and type step = Path.step module Contents : Contents.STORE with type key = Val.hash (** [Contents] is the underlying contents store. *) end module type GRAPH = sig (** {1 Node Graphs} *) type 'a t (** The type for store handles. *) type metadata (** The type for node metadata. *) type contents (** The type of user-defined contents. *) type node (** The type for node values. *) type step (** The type of steps. A step is used to pass from one node to another. *) type path (** The type of store paths. A path is composed of {{!step} steps}. *) type value = [ `Node of node | `Contents of contents * metadata ] (** The type for store values. *) val empty : [> write ] t -> node Lwt.t (** The empty node. *) val v : [> write ] t -> (step * value) list -> node Lwt.t (** [v t n] is a new node containing [n]. *) val list : [> read ] t -> node -> (step * value) list Lwt.t (** [list t n] is the contents of the node [n]. *) val find : [> read ] t -> node -> path -> value option Lwt.t (** [find t n p] is the contents of the path [p] starting form [n]. *) val add : [> read_write ] t -> node -> path -> value -> node Lwt.t (** [add t n p v] is the node [x] such that [find t x p] is [Some v] and it behaves the same [n] for other operations. *) val remove : [> read_write ] t -> node -> path -> node Lwt.t (** [remove t n path] is the node [x] such that [find t x] is [None] and it behhaves then same as [n] for other operations. *) val closure : [> read ] t -> min:node list -> max:node list -> node list Lwt.t (** [closure t min max] is the unordered list of nodes [n] reachable from a node of [max] along a path which: (i) either contains no [min] or (ii) it ends with a [min]. {b Note:} Both [min] and [max] are subsets of [n]. *) val iter : [> read ] t -> min:node list -> max:node list -> ?node:(node -> unit Lwt.t) -> ?contents:(contents -> unit Lwt.t) -> ?edge:(node -> node -> unit Lwt.t) -> ?skip_node:(node -> bool Lwt.t) -> ?skip_contents:(contents -> bool Lwt.t) -> ?rev:bool -> unit -> unit Lwt.t (** [iter t min max node edge skip rev ()] iterates in topological order over the closure of [t]. It applies the following functions while traversing the graph: [node] on the nodes; [edge n predecessor_of_n] on the directed edges; [skip_node n] to not include a node [n], its predecessors and the outgoing edges of [n] and [skip_contents c] to not include content [c]. If [rev] is true (the default) then the graph is traversed in the reverse order: [node n] is applied only after it was applied on all its predecessors; [edge n p] is applied after [node n]. Note that [edge n p] is applied even if [p] is skipped. *) (** {1 Value Types} *) val metadata_t : metadata Type.t (** [metadat_t] is the value type for {!metadata}. *) val contents_t : contents Type.t (** [contents_t] is the value type for {!contents}. *) val node_t : node Type.t (** [node_t] is the value type for {!node}. *) val step_t : step Type.t (** [step_t] is the value type for {!step}. *) val path_t : path Type.t (** [path_t] is the value type for {!path}. *) val value_t : value Type.t (** [value_t] is the value type for {!value}. *) end module type Node = sig module Proof : sig type ('hash, 'step, 'value) t = ('hash, 'step, 'value) Proof.t = | Blinded of 'hash | Values of ('step * 'value) list | Inode of { length : int; proofs : (int * ('hash, 'step, 'value) t) list; } [@@deriving irmin] end module type S = S module type Maker = Maker module Make : Maker (** [Make] provides a simple node implementation, parameterized by the contents and notes keys [K], paths [P] and metadata [M]. *) (** v1 serialisation *) module V1 (N : S with type step = string) : sig include S with type hash = N.hash and type step = N.step and type metadata = N.metadata val import : N.t -> t val export : t -> N.t end module type STORE = STORE (** [STORE] specifies the signature for node stores. *) (** [Store] creates node stores. *) module Store (C : Contents.STORE) (P : Path.S) (M : METADATA) (N : sig include CONTENT_ADDRESSABLE_STORE with type key = C.key module Key : Hash.S with type t = key module Val : S with type t = value and type hash = key and type metadata = M.t and type step = P.step end) : STORE with type 'a t = 'a C.t * 'a N.t and type key = N.key and type value = N.value and module Path = P and module Metadata = M and type Key.t = N.key and module Val = N.Val module type GRAPH = GRAPH (** [Graph] specifies the signature for node graphs. A node graph is a deterministic DAG, labeled by steps. *) module Graph (N : STORE) : GRAPH with type 'a t = 'a N.t and type contents = N.Contents.key and type metadata = N.Metadata.t and type node = N.key and type step = N.Path.step and type path = N.Path.t module No_metadata : METADATA with type t = unit end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>