package octez-libs
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
doc/octez-libs.plonk/Plonk/Evaluations_map/Make/argument-1-E/index.html
Parameter Make.E
type scalar = Octez_bls12_381_polynomial.scalartype polynomial = Octez_bls12_381_polynomial.Polynomial.tinit size f degree initializes an evaluation of a polynomial of the given degree.
of_array (d, e) creates a value of type t from the evaluation representation of a polynomial e of degree d, i.e, it converts an OCaml array to a C array
val string_of_eval : t -> stringstring_of_eval e returns the string representation of evaluation e
type domain = Octez_bls12_381_polynomial.Domain.tval zero : tzero returns the evaluation representation of the zero polynomial
val is_zero : t -> boolis_zero p checks whether a polynomial p is the zero polynomial
val degree : t -> intdegree returns the degree of a polynomial. Returns -1 for the zero polynomial
val length : t -> intlength e returns the size of domain where a polynomial is evaluated, or equally, the size of a C array where evaluation e is stored
val create : int -> tcreate len returns the evaluation representation of a zero polynomial of size len
copy ?res a returns a copy of evaluation a. The function writes the result in res if res has the correct size and allocates a new array for the result otherwise
get_inplace p i res copies the i-th element of a given array p in res
mul_by_scalar computes muliplication of a polynomial by a blst_fr element
val mul_c :
?res:t ->
evaluations:t list ->
?composition_gx:(int list * int) ->
?powers:int list ->
unit ->
tmul_c computes p₁(gᶜ₁·x)ᵐ₁·p₂(gᶜ₂·x)ᵐ₂·…·pₖ(gᶜₖ·x)ᵐₖ, where
pᵢ = List.nth evaluations imᵢ = List.nth powers icᵢ = List.nth (fst composition_gx) in = snd composition_gxis the order of generator, i.e.,gⁿ = 1
The function writes the result in res if res has the correct size (= min (size pᵢ)) and allocates a new array for the result otherwise
Note: res and pᵢ are disjoint
val linear_c :
?res:t ->
evaluations:t list ->
?linear_coeffs:scalar list ->
?composition_gx:(int list * int) ->
?add_constant:scalar ->
unit ->
tlinear_c computes λ₁·p₁(gᶜ₁·x) + λ₂·p₂(gᶜ₂·x) + … + λₖ·pₖ(gᶜₖ·x) + add_constant, where
pᵢ = List.nth evaluations iλᵢ = List.nth linear_coeffs icᵢ = List.nth (fst composition_gx) in = snd composition_gxis the order of generator, i.e.,gⁿ = 1
The function writes the result in res if res has the correct size (= min (size pᵢ)) and allocates a new array for the result otherwise
Note: res and pᵢ are disjoint
linear_with_powers p s computes ∑ᵢ sⁱ·p.(i). This function is more efficient than linear + powers for evaluations of the same size
add ?res a b computes polynomial addition of a and b. The function writes the result in res if res has the correct size (= min (size (a, b))) and allocates a new array for the result otherwise
Note: res can be equal to either a or b
equal a b checks whether a polynomial a is equal to a polynomial b
Note: equal is defined as restrictive equality, i.e., the same polynomial evaluated on different domains are said to be different
val evaluation_fft : domain -> polynomial -> tevaluation_fft domain p converts the coefficient representation of a polynomial p to the evaluation representation. domain can be obtained using Domain.build
Note:
- size of domain must be a power of two
- degree of polynomial must be strictly less than the size of domain
val interpolation_fft : domain -> t -> polynomialinterpolation_fft domain p converts the evaluation representation of a polynomial p to the coefficient representation. domain can be obtained using Domain.build
Note:
- size of domain must be a power of two
- size of a polynomial must be equal to size of domain
val interpolation_fft2 : domain -> scalar array -> polynomialval dft : domain -> polynomial -> tdft domain polynomial converts the coefficient representation of a polynomial p to the evaluation representation. domain can be obtained using Domain.build.
Computes the discrete Fourier transform in time O(n^2) where n = size domain.
requires:
size domainto divide Bls12_381.Fr.order - 1size domain != 2^kdegree polynomial < size domain
val idft : domain -> t -> polynomialidft domain t converts the evaluation representation of a polynomial p to the coefficient representation. domain can be obtained using Domain.build.
Computes the inverse discrete Fourier transform in time O(n^2) where n = size domain.
requires:
size domainto divide Bls12_381.Fr.order - 1size domain != 2^ksize domain = size t
val evaluation_fft_prime_factor_algorithm :
domain1:domain ->
domain2:domain ->
polynomial ->
tevaluation_fft_prime_factor_algorithm domain1 domain2 p converts the coefficient representation of a polynomial p to the evaluation representation. domain can be obtained using Domain.build. See the Prime-factor FFT algorithm.
requires:
size domain1 * size domain2to divide Bls12_381.Fr.order - 1size domain1andsize domain2to be coprime- if for some k
size domain1 != 2^kthensize domain1 <= 2^10 - if for some k
size domain2 != 2^kthensize domain2 <= 2^10 degree polynomial < size domain1 * size domain2
val interpolation_fft_prime_factor_algorithm :
domain1:domain ->
domain2:domain ->
t ->
polynomialinterpolation_fft_prime_factor_algorithm domain1 domain2 t converts the evaluation representation of a polynomial p to the coefficient representation. domain can be obtained using Domain.build. See the Prime-factor FFT algorithm.
requires:
size domain1 * size domain2to divide Bls12_381.Fr.order - 1size domain1andsize domain2to be coprime- if for some k
size domain1 != 2^kthensize domain1 <= 2^10 - if for some k
size domain2 != 2^kthensize domain2 <= 2^10 size t = size domain1 * size domain2