package octez-libs
- Overview
- No Docs
You can search for identifiers within the package.
in-package search v0.2.0
Install
    
    dune-project
 Dependency
Authors
Maintainers
Sources
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
    
    
  sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
    
    
  doc/octez-libs.plompiler/Plompiler/Lib/argument-1-C/Num/index.html
Module C.Num
type scalar = scalarElement of the native scalar field.
type 'a repr = 'a reprRepresentation of values.
type 'a t = 'a tPlompiler program.
val constant : Csir.Scalar.t -> scalar repr tconstant s returns the constant value s.
range_check ~nb_bits s asserts that s is in the range [0, 2^nb_bits).
val custom : 
  ?qc:Csir.Scalar.t ->
  ?ql:Csir.Scalar.t ->
  ?qr:Csir.Scalar.t ->
  ?qo:Csir.Scalar.t ->
  ?qm:Csir.Scalar.t ->
  ?qx2b:Csir.Scalar.t ->
  ?qx5a:Csir.Scalar.t ->
  scalar repr ->
  scalar repr ->
  scalar repr tcustom ~qc ~ql ~qr ~qo ~qm ~qx2b ~qx5a a b returns a value c for which the following arithmetic constraint is added: qc + ql * a + qr * b + qo * c + qm * a * b + qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val assert_custom : 
  ?qc:Csir.Scalar.t ->
  ?ql:Csir.Scalar.t ->
  ?qr:Csir.Scalar.t ->
  ?qo:Csir.Scalar.t ->
  ?qm:Csir.Scalar.t ->
  scalar repr ->
  scalar repr ->
  scalar repr ->
  unit repr tassert_custom ~qc ~ql ~qr ~qo ~qm a b c asserts the following arithmetic constraint: qc + ql * a + qr * b + qo * c + qm * a * b + qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val add : 
  ?qc:Csir.Scalar.t ->
  ?ql:Csir.Scalar.t ->
  ?qr:Csir.Scalar.t ->
  scalar repr ->
  scalar repr ->
  scalar repr tadd ~qc ~ql ~qr a b returns a value c such that ql * a + qr * b + qc = c.
val add_constant : 
  ?ql:Csir.Scalar.t ->
  Csir.Scalar.t ->
  scalar repr ->
  scalar repr tadd_constant ~ql k a returns a value c such that ql * a + k = c.
mul ~qm a b returns a value c such that qm * a * b = c.
div ~den_coeff a b asserts b is non-zero and returns a value c such that a / (b * den_coeff) = c.
is_zero a returns a boolean c representing whether a is zero.