package async_unix
Monadic concurrency library
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.17.0.tar.gz
sha256=814d3a9997ec1316b8b2a601b24471740641647a25002761f7df7869c3ac9e33
doc/src/async_unix/raw_scheduler.ml.html
Source file raw_scheduler.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
open Core open Import module Fd = Raw_fd module Watching = Fd.Watching module Signal = Core.Signal module Timerfd = Linux_ext.Timerfd module Tsc = Time_stamp_counter let debug = Debug.scheduler module File_descr_watcher = struct (* A file descriptor watcher implementation + a watcher. We need the file-descr watcher as a first-class value to support choosing which file-descr watcher to use in [go_main]. We could define [t] as [Epoll of ... | Select of ...] and dispatch every call, but it is simpler to just pack the file descriptor watcher with its associated functions (OO-programming with modules...). *) module type S = sig include File_descr_watcher_intf.S val watcher : t end type t = (module S) let sexp_of_t t = let module F = (val t : S) in (* Include the backend information so we know which one it is. *) [%sexp_of: Config.File_descr_watcher.t * F.t] (F.backend, F.watcher) ;; end module Which_watcher = struct module Custom = struct module type S = File_descr_watcher_intf.S with type 'a additional_create_args = handle_fd_read_bad:(File_descr.t -> unit) -> handle_fd_write_bad:(File_descr.t -> unit) -> 'a type t = (module S) end type t = | Config of Config.File_descr_watcher.t | Custom of Custom.t end module External_fd_event = struct type t = { file_descr : File_descr.t ; read_or_write : Read_write_pair.Key.t ; event_type : [ `Ready | `Bad_fd ] (* HUP is reported as `Ready *) } end module Thread_pool_stuck_status = struct type t = | No_unstarted_work | Stuck of { stuck_since : Time_ns.t ; num_work_completed : int } [@@deriving sexp_of] end include Async_kernel_scheduler type start_type = | Not_started | Called_go | Called_block_on_async (* Thread_safe.block_on_async started the scheduler *) | Called_external_run of { active : bool ref } [@@deriving sexp_of] type t = { (* The scheduler [mutex] must be locked by all code that is manipulating scheduler data structures, which is almost all async code. The [mutex] is automatically locked in the main thread when the scheduler is first created. A [Nano_mutex] keeps track of which thread is holding the lock. This means we can detect errors in which code incorrectly accesses async from a thread not holding the lock. We do this when [detect_invalid_access_from_thread = true]. We also detect errors in which code tries to acquire the async lock while it already holds it, or releases the lock when it doesn't hold it. *) mutex : Nano_mutex.t ; mutable start_type : start_type ; (* [fds_whose_watching_has_changed] holds all fds whose watching has changed since the last time their desired state was set in the [file_descr_watcher]. *) fds_whose_watching_has_changed : Fd.t Stack.t ; file_descr_watcher : File_descr_watcher.t ; (* Returns how many events the poll has processed. *) busy_pollers : (Busy_poller.packed Uniform_array.t[@sexp.opaque]) ; mutable num_busy_pollers : int ; mutable time_spent_waiting_for_io : Tsc.Span.t ; (* [fd_by_descr] holds every file descriptor that Async manages. Fds are added when they are created, and removed when they transition to [Closed]. *) fd_by_descr : Fd.t By_descr.t ; (* [external_fd_by_descr] holds file descriptors registered via External. Async does no I/O on these, nor does it open or close them, but it reports readiness of them from External.run_one_cycle *) external_fd_by_descr : bool Read_write_pair.t By_descr.t ; (* [external_ready_fds] communicates the set of ready external file descriptors from [post_check_handle_fd] to [run_one_cycle], and is empty at other times *) mutable external_fd_events : (External_fd_event.t list[@sexp.opaque]) ; (* If we are using a file descriptor watcher that does not support sub-millisecond timeout, [timerfd] contains a timerfd used to handle the next expiration. [timerfd_set_at] holds the the time at which [timerfd] is set to expire. This lets us avoid calling [Time_ns.now] and [Linux_ext.Timerfd.set_after] unless we need to change that time. *) mutable timerfd : Linux_ext.Timerfd.t option ; mutable timerfd_set_at : Time_ns.t ; (* A distinguished thread, called the "scheduler" thread, is continually looping, checking file descriptors for I/O and then running a cycle. It manages the [file_descr_watcher] and runs signal handlers. [scheduler_thread_id] is mutable because we create the scheduler before starting the scheduler running. Once we start running the scheduler, [scheduler_thread_id] is set and never changes again. *) mutable scheduler_thread_id : int ; (* The [interruptor] is used to wake up the scheduler when it is blocked on the file descriptor watcher. *) interruptor : Interruptor.t ; signal_manager : Signal_manager.t ; (* The [thread_pool] is used for making blocking system calls in threads other than the scheduler thread, and for servicing [In_thread.run] requests. *) thread_pool : Thread_pool.t ; (* [handle_thread_pool_stuck] is called once per second if the thread pool is"stuck", i.e has not completed a job for one second and has no available threads. *) mutable handle_thread_pool_stuck : Thread_pool.t -> stuck_for:Time_ns.Span.t -> unit ; mutable thread_pool_stuck : Thread_pool_stuck_status.t ; dns_lookup_throttle : unit Throttle.t (* [dns_lookup_throttle] exists to prevent the entire thread pool from being used on DNS lookups. DNS is being special-cased here compared to other blocking operations as it's somewhat common for processes to do lots of concurrent DNS lookups, and DNS lookups can block for a long time, especially in the presence network unavailability. *) ; mutable next_tsc_calibration : Tsc.t ; kernel_scheduler : Kernel_scheduler.t ; (* [have_lock_do_cycle] is used to customize the implementation of running a cycle. E.g. in Ecaml it is set to something that causes Emacs to run a cycle. *) mutable have_lock_do_cycle : (unit -> unit) option (* configuration*) ; mutable max_inter_cycle_timeout : Max_inter_cycle_timeout.t ; mutable min_inter_cycle_timeout : Min_inter_cycle_timeout.t ; (* [initialized_at] is the call stack from when the scheduler was initialized. It's generally more confusing than useful if it's shown on crash, so we omit it from the sexp. *) initialized_at : (Backtrace.t[@sexp.opaque]) ; uring : (Io_uring_raw.t option[@sexp.opaque]) } [@@deriving fields ~iterators:(fold, iter), sexp_of] let max_num_threads t = Thread_pool.max_num_threads t.thread_pool let max_num_open_file_descrs t = By_descr.capacity t.fd_by_descr let current_execution_context t = Kernel_scheduler.current_execution_context t.kernel_scheduler ;; let with_execution_context t context ~f = Kernel_scheduler.with_execution_context t.kernel_scheduler context ~f ;; let thread_pool_cpu_affinity t = Thread_pool.cpu_affinity t.thread_pool let lock t = (* The following debug message is outside the lock, and so there can be races between multiple threads printing this message. *) if debug then Debug.log_string "waiting on lock"; Nano_mutex.lock_exn t.mutex ;; let try_lock t = match Nano_mutex.try_lock_exn t.mutex with | `Acquired -> true | `Not_acquired -> false ;; let unlock t = if debug then Debug.log_string "lock released"; Nano_mutex.unlock_exn t.mutex ;; let with_lock t f = lock t; protect ~f ~finally:(fun () -> unlock t) ;; let am_holding_lock t = Nano_mutex.current_thread_has_lock t.mutex type the_one_and_only = | Not_ready_to_initialize of (* this [unit] makes the representation always be a pointer, thus making the pattern-match faster *) unit | Ready_to_initialize of (unit -> t) | Initialized of t (* We use a mutex to protect creation of the one-and-only scheduler in the event that multiple threads attempt to call [the_one_and_only] simultaneously, which can happen in programs that are using [Thread_safe.run_in_async]. *) let mutex_for_initializing_the_one_and_only_ref = Nano_mutex.create () let the_one_and_only_ref : the_one_and_only ref = ref (Not_ready_to_initialize ()) let is_ready_to_initialize () = match !the_one_and_only_ref with | Not_ready_to_initialize () | Initialized _ -> false | Ready_to_initialize _ -> true ;; let is_initialized () = match !the_one_and_only_ref with | Initialized _ -> true | Not_ready_to_initialize () | Ready_to_initialize _ -> false ;; (* Handling the uncommon cases in this function allows [the_one_and_only] to be inlined. The presence of a string constant (and the cold annotation) keeps this function from being inlined. *) let[@cold] the_one_and_only_uncommon_case () = Nano_mutex.critical_section mutex_for_initializing_the_one_and_only_ref ~f:(fun () -> match !the_one_and_only_ref with | Initialized t -> t | Not_ready_to_initialize () -> raise_s [%message "Async the_one_and_only not ready to initialize"] | Ready_to_initialize f -> let t = f () in the_one_and_only_ref := Initialized t; t) ;; let the_one_and_only () = match !the_one_and_only_ref with | Initialized t -> t | Not_ready_to_initialize () | Ready_to_initialize _ -> the_one_and_only_uncommon_case () ;; let fds_created_before_initialization = ref [] let create_fd_registration t fd = match By_descr.add t.fd_by_descr fd.Fd.file_descr fd with | Ok () -> () | Error error -> let backtrace = if Ppx_inline_test_lib.am_running then None else Some (Backtrace.get ()) in raise_s [%message "Async was unable to add a file descriptor to its table of open file descriptors" ~file_descr:(Fd.file_descr fd : File_descr.t) (error : Error.t) (backtrace : (Backtrace.t option[@sexp.option])) ~scheduler: (if Ppx_inline_test_lib.am_running then None else Some t : (t option[@sexp.option]))] ;; let create_fd ?avoid_setting_nonblock kind file_descr info = (* We make it possible to create a writer without initializing the async scheduler, as this is something that happens a fair amount at toplevel of programs. *) let fd = Fd.create ?avoid_setting_nonblock kind file_descr info in if is_initialized () then create_fd_registration (the_one_and_only ()) fd else Nano_mutex.critical_section mutex_for_initializing_the_one_and_only_ref ~f:(fun () -> if is_initialized () then create_fd_registration (the_one_and_only ()) fd else fds_created_before_initialization := fd :: !fds_created_before_initialization); fd ;; let current_thread_id () = Core_thread.(id (self ())) (* OCaml runtime happens to assign the thread id of [0] to the main thread (the initial thread that starts the program). *) let is_main_thread () = current_thread_id () = 0 let remove_fd t fd = By_descr.remove t.fd_by_descr fd.Fd.file_descr let maybe_start_closing_fd t (fd : Fd.t) = if fd.num_active_syscalls = 0 then ( match fd.state with | Closed | Open _ -> () | Close_requested (execution_context, do_close_syscall) -> (* We must remove the fd now and not after the close has finished. If we waited until after the close had finished, then the fd might have already been reused by the OS and replaced. *) remove_fd t fd; Fd.set_state fd Closed; Kernel_scheduler.enqueue t.kernel_scheduler execution_context do_close_syscall ()) ;; let dec_num_active_syscalls_fd t (fd : Fd.t) = fd.num_active_syscalls <- fd.num_active_syscalls - 1; maybe_start_closing_fd t fd ;; let invariant t : unit = try let check invariant field = invariant (Field.get field t) in Fields.iter ~mutex:ignore ~have_lock_do_cycle:ignore ~start_type:ignore ~fds_whose_watching_has_changed: (check (fun fds_whose_watching_has_changed -> Stack.iter fds_whose_watching_has_changed ~f:(fun (fd : Fd.t) -> assert fd.watching_has_changed; match By_descr.find t.fd_by_descr fd.file_descr with | None -> assert false | Some fd' -> assert (phys_equal fd fd')))) ~file_descr_watcher: (check (fun file_descr_watcher -> let module F = (val file_descr_watcher : File_descr_watcher.S) in F.invariant F.watcher; F.iter F.watcher ~f:(fun file_descr _ -> try match By_descr.find t.fd_by_descr file_descr with | None -> raise_s [%message "missing from fd_by_descr"] | Some fd -> assert (Fd.num_active_syscalls fd > 0) with | exn -> raise_s [%message "fd problem" (exn : exn) (file_descr : File_descr.t)]))) ~busy_pollers:ignore ~num_busy_pollers:ignore ~time_spent_waiting_for_io:ignore ~fd_by_descr: (check (fun fd_by_descr -> By_descr.invariant fd_by_descr; By_descr.iter fd_by_descr ~f:(fun fd -> if fd.watching_has_changed then assert ( Stack.exists t.fds_whose_watching_has_changed ~f:(fun fd' -> phys_equal fd fd'))))) ~external_fd_by_descr:ignore ~external_fd_events:(check (fun fds -> assert (List.is_empty fds))) ~timerfd:ignore ~timerfd_set_at:ignore ~scheduler_thread_id:ignore ~interruptor:(check Interruptor.invariant) ~signal_manager:(check Signal_manager.invariant) ~thread_pool:(check Thread_pool.invariant) ~handle_thread_pool_stuck:ignore ~thread_pool_stuck:ignore ~dns_lookup_throttle:ignore ~next_tsc_calibration:ignore ~kernel_scheduler:(check Kernel_scheduler.invariant) ~max_inter_cycle_timeout:ignore ~min_inter_cycle_timeout: (check (fun min_inter_cycle_timeout -> assert ( Time_ns.Span.( <= ) (Min_inter_cycle_timeout.raw min_inter_cycle_timeout) (Max_inter_cycle_timeout.raw t.max_inter_cycle_timeout)))) ~initialized_at:ignore ~uring:ignore with | exn -> raise_s [%message "Scheduler.invariant failed" (exn : exn) ~scheduler:(t : t)] ;; let update_check_access t do_check = Kernel_scheduler.set_check_access t.kernel_scheduler (if not do_check then None else Some (fun () -> if not (am_holding_lock t) then ( Debug.log "attempt to access Async from thread not holding the Async lock" (Backtrace.get (), t, Time.now ()) [%sexp_of: Backtrace.t * t * Time.t]; exit 1))) ;; (* Try to create a timerfd. It returns [None] if [Core] is not built with timerfd support or if it is not available on the current system. *) let try_create_timerfd () = match Timerfd.create with | Error _ -> None | Ok create -> let clock = Timerfd.Clock.realtime in (try Some (create clock ~flags:Timerfd.Flags.(nonblock + cloexec)) with | Unix.Unix_error (ENOSYS, _, _) -> (* Kernel too old. *) None | Unix.Unix_error (EINVAL, _, _) -> (* Flags are only supported with Linux >= 2.6.27, try without them. *) let timerfd = create clock in Unix.set_close_on_exec (timerfd : Timerfd.t :> Unix.File_descr.t); Unix.set_nonblock (timerfd : Timerfd.t :> Unix.File_descr.t); Some timerfd) ;; let default_handle_thread_pool_stuck thread_pool ~stuck_for = if Time_ns.Span.( >= ) stuck_for Config.report_thread_pool_stuck_for then ( let should_abort = Time_ns.Span.( >= ) stuck_for Config.abort_after_thread_pool_stuck_for in let text = "Async's thread pool is stuck" in let text = if should_abort then text else sprintf "%s, and will raise an exception in %s" text (Time_ns.Span.to_short_string (Time_ns.Span.( - ) Config.abort_after_thread_pool_stuck_for stuck_for)) in let message = [%message "" ~_:(if am_running_test then Time_ns.epoch else Time_ns.now () : Time_ns.t) text ~stuck_for:(Time_ns.Span.to_short_string stuck_for : string) ~num_threads_created:(Thread_pool.num_threads thread_pool : int) ~max_num_threads:(Thread_pool.max_num_threads thread_pool : int) ~last_thread_creation_failure: (Thread_pool.last_thread_creation_failure thread_pool : (Sexp.t option[@sexp.option]))] in if should_abort then ( (* Core dumps are exceptionally useful when investigating thread pool stuck errors, since they give you access to all the call stacks that got stuck, so dump it here (core dump in [be_the_scheduler] is not kicking in here because this error is classified as [`User_uncaught], not [`Async_uncaught]). Not dumping when [am_running_test] to avoid potentially making some existing tests slower in case they are deliberately testing this scenario. *) if not am_running_test then Dump_core_on_job_delay.dump_core (); Monitor.send_exn Monitor.main (Error.to_exn (Error.create_s message))) else Core.Debug.eprint_s message) ;; let thread_pool_has_unfinished_work t = Thread_pool.unfinished_work t.thread_pool <> 0 let thread_safe_wakeup_scheduler t = Interruptor.thread_safe_interrupt t.interruptor let i_am_the_scheduler t = current_thread_id () = t.scheduler_thread_id let set_fd_desired_watching t (fd : Fd.t) read_or_write desired = Read_write_pair.set fd.watching read_or_write desired; if not fd.watching_has_changed then ( fd.watching_has_changed <- true; Stack.push t.fds_whose_watching_has_changed fd) ;; let give_up_on_watching t fd read_or_write (watching : Watching.t) = if Debug.file_descr_watcher then Debug.log "give_up_on_watching" (read_or_write, fd, t) [%sexp_of: Read_write_pair.Key.t * Fd.t * t]; match watching with | Stop_requested | Not_watching -> () | Watch_once ready_to -> Ivar.fill_exn ready_to `Unsupported; set_fd_desired_watching t fd read_or_write Stop_requested | Watch_repeatedly (job, finished) -> Kernel_scheduler.free_job t.kernel_scheduler job; Ivar.fill_exn finished `Unsupported; set_fd_desired_watching t fd read_or_write Stop_requested ;; let request_start_watching t fd read_or_write watching = if Debug.file_descr_watcher then Debug.log "request_start_watching" (read_or_write, fd, t) [%sexp_of: Read_write_pair.Key.t * Fd.t * t]; let result = match Read_write_pair.get fd.watching read_or_write with | Watch_once _ | Watch_repeatedly _ -> `Already_watching | Stop_requested -> (* We don't [inc_num_active_syscalls] in this case, because we already did when we transitioned from [Not_watching] to [Watching]. Also, it is possible that [fd] was closed since we transitioned to [Stop_requested], in which case we don't want to [start_watching]; we want to report that it was closed and leave it [Stop_requested] so the the file-descr-watcher will stop watching it and we can actually close it. *) if Fd.is_closed fd then `Already_closed else `Watching | Not_watching -> (match Fd.inc_num_active_syscalls fd with | `Already_closed -> `Already_closed | `Ok -> `Watching) in (match result with | `Already_closed | `Already_watching -> () | `Watching -> set_fd_desired_watching t fd read_or_write watching; if not (i_am_the_scheduler t) then thread_safe_wakeup_scheduler t); result ;; let request_stop_watching t fd read_or_write value = if Debug.file_descr_watcher then Debug.log "request_stop_watching" (read_or_write, value, fd, t) [%sexp_of: Read_write_pair.Key.t * Fd.ready_to_result * Fd.t * t]; match Read_write_pair.get fd.watching read_or_write with | Stop_requested | Not_watching -> () | Watch_once ready_to -> Ivar.fill_exn ready_to value; set_fd_desired_watching t fd read_or_write Stop_requested; if not (i_am_the_scheduler t) then thread_safe_wakeup_scheduler t | Watch_repeatedly (job, finished) -> (match value with | `Ready -> Kernel_scheduler.enqueue_job t.kernel_scheduler job ~free_job:false | (`Closed | `Bad_fd | `Interrupted | `Unsupported) as value -> Kernel_scheduler.free_job t.kernel_scheduler job; Ivar.fill_exn finished value; set_fd_desired_watching t fd read_or_write Stop_requested; if not (i_am_the_scheduler t) then thread_safe_wakeup_scheduler t) ;; let[@cold] post_check_got_timerfd file_descr = raise_s [%message "File_descr_watcher returned the timerfd as ready to be written to" (file_descr : File_descr.t)] ;; let[@cold] post_check_invalid_fd file_descr = raise_s [%message "File_descr_watcher returned unknown file descr" (file_descr : File_descr.t)] ;; let post_check_handle_fd t file_descr read_or_write (event_type : [ `Ready | `Bad_fd ]) = if By_descr.mem t.fd_by_descr file_descr then ( let fd = By_descr.find_exn t.fd_by_descr file_descr in request_stop_watching t fd read_or_write (event_type :> Fd.ready_to_result)) else ( match t.timerfd with | Some tfd when File_descr.equal file_descr (tfd :> Unix.File_descr.t) -> (match read_or_write with | `Read -> (* We don't need to actually call [read] since we are using the edge-triggered behavior. *) () | `Write -> post_check_got_timerfd file_descr) | _ -> if By_descr.mem t.external_fd_by_descr file_descr then ( let ev : External_fd_event.t = { file_descr; read_or_write; event_type } in t.external_fd_events <- ev :: t.external_fd_events) else post_check_invalid_fd file_descr) ;; external magic_trace_long_async_cycle : unit -> unit = "magic_trace_long_async_cycle" [@@noalloc] let cycle_took_longer_than_100us = let open Bool.Non_short_circuiting in let ( > ) = Time_ns.Span.( > ) in let too_long = ref false in let[@inline] too_long_if bool = too_long := !too_long || bool in fun [@inline never] ~cycle_time -> too_long := false; [%probe "magic_trace_async_cycle_longer_than_100us" (too_long := true)]; [%probe "magic_trace_async_cycle_longer_than_300us" (too_long_if (cycle_time > Time_ns.Span.of_int_us 300))]; [%probe "magic_trace_async_cycle_longer_than_1ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 1))]; [%probe "magic_trace_async_cycle_longer_than_3ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 3))]; [%probe "magic_trace_async_cycle_longer_than_10ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 10))]; [%probe "magic_trace_async_cycle_longer_than_30ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 30))]; [%probe "magic_trace_async_cycle_longer_than_100ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 100))]; [%probe "magic_trace_async_cycle_longer_than_300ms" (too_long_if (cycle_time > Time_ns.Span.of_int_ms 300))]; [%probe "magic_trace_async_cycle_longer_than_1s" (too_long_if (cycle_time > Time_ns.Span.of_int_sec 1))]; [%probe "magic_trace_async_cycle_longer_than_3s" (too_long_if (cycle_time > Time_ns.Span.of_int_sec 3))]; [%probe "magic_trace_async_cycle_longer_than_10s" (too_long_if (cycle_time > Time_ns.Span.of_int_sec 10))]; [%probe "magic_trace_async_cycle_longer_than_30s" (too_long_if (cycle_time > Time_ns.Span.of_int_sec 30))]; [%probe "magic_trace_async_cycle_longer_than_1m" (too_long_if (cycle_time > Time_ns.Span.of_int_sec 60))]; if !too_long then magic_trace_long_async_cycle () ;; let[@inline] maybe_report_long_async_cycles_to_magic_trace ~cycle_time = let ( > ) = Time_ns.Span.( > ) in (* This first check is lifted out to avoid the linear scan through each probe during short async cycles. *) if cycle_time > Time_ns.Span.of_int_us 100 then cycle_took_longer_than_100us ~cycle_time ;; let%test_unit ("maybe_report_long_async_cycles_to_magic_trace doesn't allocate" [@tags "64-bits-only"]) = let cycle_time = Time_ns.Span.of_int_sec 15 in let words_before = Gc.major_plus_minor_words () in maybe_report_long_async_cycles_to_magic_trace ~cycle_time; let words_after = Gc.major_plus_minor_words () in [%test_result: int] (words_after - words_before) ~expect:0 ;; let[@inline] maybe_report_long_async_cycles_to_magic_trace t : unit = maybe_report_long_async_cycles_to_magic_trace ~cycle_time:t.kernel_scheduler.last_cycle_time ;; let create ~mutex ?(thread_pool_cpu_affinity = Config.thread_pool_cpu_affinity) ?(file_descr_watcher = Which_watcher.Config Config.file_descr_watcher) ?(max_num_open_file_descrs = Config.max_num_open_file_descrs) ?(max_num_threads = Config.max_num_threads) () = if debug then Debug.log_string "creating scheduler"; let thread_pool = ok_exn (Thread_pool.create () ~cpu_affinity:thread_pool_cpu_affinity ~max_num_threads:(Max_num_threads.raw max_num_threads)) in let num_file_descrs = Max_num_open_file_descrs.raw max_num_open_file_descrs in let fd_by_descr = By_descr.create ~num_file_descrs in let create_fd kind file_descr info = let fd = Fd.create kind file_descr info in ok_exn (By_descr.add fd_by_descr fd.Fd.file_descr fd); fd in let external_fd_by_descr = By_descr.create ~num_file_descrs in let interruptor = Interruptor.create ~create_fd in let t_ref = ref None in (* set below, after [t] is defined *) let handle_fd read_or_write ready_or_bad_fd file_descr = match !t_ref with | None -> assert false | Some t -> post_check_handle_fd t file_descr read_or_write ready_or_bad_fd in let handle_fd_read_ready = handle_fd `Read `Ready in let handle_fd_read_bad = handle_fd `Read `Bad_fd in let handle_fd_write_ready = handle_fd `Write `Ready in let handle_fd_write_bad = handle_fd `Write `Bad_fd in let file_descr_watcher, timerfd, uring = match file_descr_watcher with | Custom (module Custom) -> let watcher = Custom.create ~num_file_descrs ~handle_fd_read_ready ~handle_fd_read_bad ~handle_fd_write_ready ~handle_fd_write_bad in let module W = struct include Custom let watcher = watcher end in (module W : File_descr_watcher.S), None, None | Config Select -> let watcher = Select_file_descr_watcher.create ~num_file_descrs ~handle_fd_read_ready ~handle_fd_read_bad ~handle_fd_write_ready ~handle_fd_write_bad in let module W = struct include Select_file_descr_watcher let watcher = watcher end in (module W : File_descr_watcher.S), None, None | Config (Epoll | Epoll_if_timerfd) -> let timerfd = match try_create_timerfd () with | None -> raise_s [%message {|Async refuses to run using epoll on a system that doesn't support timer FDs, since Async will be unable to timeout with sub-millisecond precision.|}] | Some timerfd -> timerfd in let watcher = Epoll_file_descr_watcher.create ~num_file_descrs ~timerfd ~handle_fd_read_ready ~handle_fd_write_ready in let module W = struct include Epoll_file_descr_watcher let watcher = watcher end in (module W : File_descr_watcher.S), Some timerfd, None | Config Io_uring -> let uring = Io_uring_raw.create ~queue_depth: (Io_uring_max_submission_entries.raw Config.io_uring_max_submission_entries) () |> Or_error.ok_exn in let watcher = Io_uring_file_descr_watcher.create ~uring ~num_file_descrs ~handle_fd_read_ready ~handle_fd_write_ready in let module W = struct include Io_uring_file_descr_watcher let watcher = watcher end in (module W : File_descr_watcher.S), None, Some uring in let dns_lookup_throttle = let max_concurrent_dns_lookups = Int.max (Thread_pool.max_num_threads thread_pool / 2) 1 in Throttle.create ~continue_on_error:true ~max_concurrent_jobs:max_concurrent_dns_lookups in let kernel_scheduler = Kernel_scheduler.t () in let t = { mutex ; start_type = Not_started ; fds_whose_watching_has_changed = Stack.create () ; file_descr_watcher ; busy_pollers = Uniform_array.create ~len:256 Busy_poller.empty ; num_busy_pollers = 0 ; time_spent_waiting_for_io = Tsc.Span.of_int_exn 0 ; fd_by_descr ; external_fd_by_descr ; external_fd_events = [] ; timerfd ; timerfd_set_at = Time_ns.max_value_for_1us_rounding ; scheduler_thread_id = -1 (* set when [be_the_scheduler] is called *) ; interruptor ; signal_manager = Signal_manager.create ~thread_safe_notify_signal_delivered:(fun () -> Interruptor.thread_safe_interrupt interruptor) ; thread_pool ; handle_thread_pool_stuck = default_handle_thread_pool_stuck ; thread_pool_stuck = No_unstarted_work ; dns_lookup_throttle ; next_tsc_calibration = Tsc.now () ; kernel_scheduler ; have_lock_do_cycle = None ; max_inter_cycle_timeout = Config.max_inter_cycle_timeout ; min_inter_cycle_timeout = Config.min_inter_cycle_timeout ; initialized_at = Backtrace.get () ; uring } in t_ref := Some t; update_check_access t Config.detect_invalid_access_from_thread; List.iter (List.rev !fds_created_before_initialization) ~f:(create_fd_registration t); fds_created_before_initialization := []; t ;; let init ~take_the_lock = let mutex = Nano_mutex.create () in if take_the_lock then (* We create a mutex that's initially locked by the main thread to support the case when the user does async stuff at the top level before calling [Scheduler.go]. This lock makes sure that async jobs don't run until [Scheduler.go] is called. That could happen, e.g. by creating a reader that does a read system call in another (true) thread. The scheduler remains locked until the scheduler unlocks it. *) Nano_mutex.lock_exn mutex; the_one_and_only_ref := Ready_to_initialize (fun () -> create ~mutex ()) ;; let () = init ~take_the_lock:true let reset_in_forked_process ~take_the_lock = (match !the_one_and_only_ref with | Not_ready_to_initialize () | Ready_to_initialize _ -> () | Initialized { file_descr_watcher; timerfd; _ } -> let module F = (val file_descr_watcher : File_descr_watcher.S) in F.reset_in_forked_process F.watcher; (match timerfd with | None -> () | Some tfd -> Unix.close (tfd :> Unix.File_descr.t))); Kernel_scheduler.reset_in_forked_process (); fds_created_before_initialization := []; init ~take_the_lock ;; let reset_in_forked_process_without_taking_lock () = reset_in_forked_process ~take_the_lock:false ;; let reset_in_forked_process () = reset_in_forked_process ~take_the_lock:true let make_async_unusable () = reset_in_forked_process (); Kernel_scheduler.make_async_unusable (); the_one_and_only_ref := Ready_to_initialize (fun () -> raise_s [%sexp "Async is unusable due to [Scheduler.make_async_unusable]"]) ;; let thread_safe_enqueue_external_job t f = Kernel_scheduler.thread_safe_enqueue_external_job t.kernel_scheduler f ;; let have_lock_do_cycle t = if debug then Debug.log "have_lock_do_cycle" t [%sexp_of: t]; match t.have_lock_do_cycle with | Some f -> f () | None -> Kernel_scheduler.run_cycle t.kernel_scheduler; maybe_report_long_async_cycles_to_magic_trace t; (* If we are not the scheduler, wake it up so it can process any remaining jobs, clock events, or an unhandled exception. *) if not (i_am_the_scheduler t) then thread_safe_wakeup_scheduler t ;; let[@cold] log_sync_changed_fds_to_file_descr_watcher t file_descr desired = let module F = (val t.file_descr_watcher : File_descr_watcher.S) in Debug.log "File_descr_watcher.set" (file_descr, desired, F.watcher) [%sexp_of: File_descr.t * bool Read_write_pair.t * F.t] ;; let[@cold] sync_changed_fd_failed t fd desired exn = let bt = Backtrace.Exn.most_recent () in raise_s [%message "sync_changed_fds_to_file_descr_watcher unable to set fd" (desired : bool Read_write_pair.t) (fd : Fd.t) (exn : exn) (bt : Backtrace.t) ~scheduler:(t : t)] ;; let sync_changed_fds_to_file_descr_watcher t = (* We efficiently do nothing if nothing has changed, avoiding even the definition of [module F], which can have some cost. *) if not (Stack.is_empty t.fds_whose_watching_has_changed) then let module F = (val t.file_descr_watcher : File_descr_watcher.S) in while not (Stack.is_empty t.fds_whose_watching_has_changed) do let fd = Stack.pop_exn t.fds_whose_watching_has_changed in fd.watching_has_changed <- false; let desired = Read_write_pair.map fd.watching ~f:(fun watching -> match watching with | Watch_once _ | Watch_repeatedly _ -> true | Not_watching | Stop_requested -> false) in if Debug.file_descr_watcher then log_sync_changed_fds_to_file_descr_watcher t fd.file_descr desired; match try F.set F.watcher fd.file_descr desired with | exn -> sync_changed_fd_failed t fd desired exn with | `Unsupported -> Read_write_pair.iteri fd.watching ~f:(give_up_on_watching t fd) | `Ok -> (* We modify Async's data structures after calling [F.set], so that the error message produced by [sync_changed_fd_failed] displays them as they were before the call. *) Read_write_pair.iteri fd.watching ~f:(fun read_or_write watching -> match watching with | Watch_once _ | Watch_repeatedly _ | Not_watching -> () | Stop_requested -> Read_write_pair.set fd.watching read_or_write Not_watching; dec_num_active_syscalls_fd t fd) done ;; let maybe_calibrate_tsc t = if Lazy.is_val Tsc.calibrator then ( let now = Tsc.now () in if Tsc.( >= ) now t.next_tsc_calibration then ( let calibrator = force Tsc.calibrator in Tsc.Calibrator.calibrate calibrator; t.next_tsc_calibration <- Tsc.add now (Tsc.Span.of_ns (Int63.of_int 1_000_000_000) ~calibrator))) ;; let create_job ?execution_context t f x = let execution_context = match execution_context with | Some e -> e | None -> current_execution_context t in Kernel_scheduler.create_job t.kernel_scheduler execution_context f x ;; let dump_core_on_job_delay () = match Config.dump_core_on_job_delay with | Do_not_watch -> () | Watch { dump_if_delayed_by; how_to_dump } -> Dump_core_on_job_delay.start_watching ~dump_if_delayed_by:(Time_ns.Span.to_span_float_round_nearest dump_if_delayed_by) ~how_to_dump ;; let num_busy_pollers t = t.num_busy_pollers let add_busy_poller t ~max_busy_wait_duration f = if t.num_busy_pollers = Uniform_array.length t.busy_pollers then raise_s [%message "[add_busy_poller] maximum number of pollers exceeded"]; Uniform_array.set t.busy_pollers t.num_busy_pollers f; t.num_busy_pollers <- t.num_busy_pollers + 1; t.max_inter_cycle_timeout <- Max_inter_cycle_timeout.create_exn (Time_ns.Span.min (Max_inter_cycle_timeout.raw t.max_inter_cycle_timeout) max_busy_wait_duration) ;; let init t = dump_core_on_job_delay (); Kernel_scheduler.set_thread_safe_external_job_hook t.kernel_scheduler (fun () -> thread_safe_wakeup_scheduler t); t.scheduler_thread_id <- current_thread_id (); (* We handle [Signal.pipe] so that write() calls on a closed pipe/socket get EPIPE but the process doesn't die due to an unhandled SIGPIPE. *) Signal_manager.manage t.signal_manager Signal.pipe; let interruptor_finished = Ivar.create () in let interruptor_read_fd = Interruptor.read_fd t.interruptor in let problem_with_interruptor () = raise_s [%message "can not watch interruptor" (interruptor_read_fd : Fd.t) ~scheduler:(t : t)] in (match request_start_watching t interruptor_read_fd `Read (Watch_repeatedly ( Kernel_scheduler.create_job t.kernel_scheduler Execution_context.main Fn.ignore () , interruptor_finished )) with | `Already_watching | `Watching -> () | `Unsupported | `Already_closed -> problem_with_interruptor ()); upon (Ivar.read interruptor_finished) (fun _ -> problem_with_interruptor ()) ;; let fds_may_produce_events t = let interruptor_fd = Interruptor.read_fd t.interruptor in By_descr.exists t.fd_by_descr ~f:(fun fd -> (* Jobs created by the interruptor don't do anything, so we don't need to count them as something that can drive progress. When interruptor is involved, the progress is driven by other modules (e.g. the thread_pool). The caller should inspect those directly. We don't need a similar special-case for [timerfd] because that's never added to [fd_by_descr], in the first place. *) (not (Fd.equal fd interruptor_fd)) && Read_write_pair.exists (Fd.watching fd) ~f:(fun watching -> match (watching : Fd.Watching.t) with | Not_watching -> false (* Stop_requested will enqueue a single job, so we have jobs to do still at this point. *) | Watch_once _ | Watch_repeatedly _ | Stop_requested -> true)) ;; (* We avoid allocation in [check_file_descr_watcher], since it is called every time in the scheduler loop. *) let check_file_descr_watcher t ~timeout span_or_unit = let module F = (val t.file_descr_watcher : File_descr_watcher.S) in if Debug.file_descr_watcher then Debug.log "File_descr_watcher.pre_check" t [%sexp_of: t]; let pre = F.pre_check F.watcher in unlock t; (* We yield so that other OCaml threads (especially thread-pool threads) get a chance to run. This is a good point to yield, because we do not hold the Async lock, which allows other threads to acquire it. [Thread.yield] only yields if other OCaml threads are waiting to acquire the OCaml lock, and is fast if not. As of OCaml 4.07, [Thread.yield] on Linux calls [nanosleep], which causes the Linux scheduler to actually switch to other threads. *) Thread.yield (); if Debug.file_descr_watcher then Debug.log "File_descr_watcher.thread_safe_check" (File_descr_watcher_intf.Timeout.variant_of timeout span_or_unit, t) [%sexp_of: [ `Immediately | `After of Time_ns.Span.t ] * t]; let before = Tsc.now () in let check_result = F.thread_safe_check F.watcher pre timeout span_or_unit in let after = Tsc.now () in t.time_spent_waiting_for_io <- Tsc.Span.( + ) t.time_spent_waiting_for_io (Tsc.diff after before); lock t; (* We call [Interruptor.clear] after [thread_safe_check] and before any of the processing that needs to happen in response to [thread_safe_interrupt]. That way, even if [Interruptor.clear] clears out an interrupt that hasn't been serviced yet, the interrupt will still be serviced by the immediately following processing. *) Interruptor.clear t.interruptor; if Debug.file_descr_watcher then Debug.log "File_descr_watcher.post_check" (check_result, t) [%sexp_of: F.Check_result.t * t]; F.post_check F.watcher check_result ;; let[@inline always] run_busy_pollers_once t ~deadline = let did_work = ref false in (try for i = 0 to t.num_busy_pollers - 1 do let poller = Uniform_array.unsafe_get t.busy_pollers i in if Busy_poller.poll poller ~deadline > 0 then did_work := true done with | exn -> Monitor.send_exn Monitor.main exn); !did_work ;; let run_busy_pollers t ~timeout = let calibrator = force Tsc.calibrator in let deadline = ref (Tsc.add (Tsc.now ()) (Tsc.Span.of_time_ns_span timeout ~calibrator)) in while let pollers_did_something = run_busy_pollers_once t ~deadline:!deadline in let now = Tsc.now () in if pollers_did_something then if Kernel_scheduler.can_run_a_job t.kernel_scheduler then deadline := now else if Kernel_scheduler.has_upcoming_event t.kernel_scheduler then ( let new_timeout = Time_ns.diff (Kernel_scheduler.next_upcoming_event_exn t.kernel_scheduler) (Tsc.to_time_ns now ~calibrator) |> Tsc.Span.of_time_ns_span ~calibrator in deadline := Tsc.min !deadline (Tsc.add now new_timeout)); Tsc.( < ) now !deadline do () done ;; (* We compute the timeout as the last thing before [check_file_descr_watcher], because we want to make sure the timeout is zero if there are any scheduled jobs. The code is structured to avoid calling [Time_ns.now] and [Linux_ext.Timerfd.set_*] if possible. In particular, we only call [Time_ns.now] if we need to compute the timeout-after span. And we only call [Linux_ext.Timerfd.set_after] if the time that we want it to fire is different than the time it is already set to fire. *) let compute_timeout_and_check_file_descr_watcher t = let min_inter_cycle_timeout = (t.min_inter_cycle_timeout :> Time_ns.Span.t) in let max_inter_cycle_timeout = (t.max_inter_cycle_timeout :> Time_ns.Span.t) in let have_busy_pollers = t.num_busy_pollers > 0 in let file_descr_watcher_timeout = match t.timerfd, have_busy_pollers with | None, _ | Some _, true -> (* Since there is no timerfd, use the file descriptor watcher timeout. *) if Kernel_scheduler.can_run_a_job t.kernel_scheduler then min_inter_cycle_timeout else if not (Kernel_scheduler.has_upcoming_event t.kernel_scheduler) then max_inter_cycle_timeout else ( let next_event_at = Kernel_scheduler.next_upcoming_event_exn t.kernel_scheduler in Time_ns.Span.min max_inter_cycle_timeout (Time_ns.Span.max min_inter_cycle_timeout (Time_ns.diff next_event_at (Time_ns.now ())))) | Some timerfd, false -> (* Set [timerfd] to fire if necessary, taking into account [can_run_a_job], [min_inter_cycle_timeout], and [next_event_at]. *) let have_min_inter_cycle_timeout = Time_ns.Span.( > ) min_inter_cycle_timeout Time_ns.Span.zero in if Kernel_scheduler.can_run_a_job t.kernel_scheduler then if not have_min_inter_cycle_timeout then Time_ns.Span.zero else ( t.timerfd_set_at <- Time_ns.max_value_for_1us_rounding; Linux_ext.Timerfd.set_after timerfd min_inter_cycle_timeout; max_inter_cycle_timeout) else if not (Kernel_scheduler.has_upcoming_event t.kernel_scheduler) then max_inter_cycle_timeout else ( let next_event_at = Kernel_scheduler.next_upcoming_event_exn t.kernel_scheduler in let set_timerfd_at = if not have_min_inter_cycle_timeout then next_event_at else Time_ns.max next_event_at (Time_ns.add (Time_ns.now ()) min_inter_cycle_timeout) in if not (Time_ns.equal t.timerfd_set_at set_timerfd_at) then ( t.timerfd_set_at <- set_timerfd_at; Linux_ext.Timerfd.set_at timerfd set_timerfd_at); max_inter_cycle_timeout) in if Time_ns.Span.( <= ) file_descr_watcher_timeout Time_ns.Span.zero then ( ignore (run_busy_pollers_once t ~deadline:Tsc.zero : bool); check_file_descr_watcher t ~timeout:Immediately ()) else if have_busy_pollers then ( run_busy_pollers t ~timeout:file_descr_watcher_timeout; check_file_descr_watcher t ~timeout:Immediately ()) else check_file_descr_watcher t ~timeout:After file_descr_watcher_timeout ;; let one_iter t = if Kernel_scheduler.check_invariants t.kernel_scheduler then invariant t; maybe_calibrate_tsc t; sync_changed_fds_to_file_descr_watcher t; compute_timeout_and_check_file_descr_watcher t; if debug then Debug.log_string "handling delivered signals"; Signal_manager.handle_delivered t.signal_manager; have_lock_do_cycle t; Kernel_scheduler.uncaught_exn t.kernel_scheduler ;; let be_the_scheduler ?(raise_unhandled_exn = false) t = init t; let rec loop () = match one_iter t with | Some error -> error | None -> loop () in let error_kind, error = try `User_uncaught, loop () with | exn -> unlock t; `Async_uncaught, Error.create "bug in async scheduler" (exn, t) [%sexp_of: exn * t] in if raise_unhandled_exn then Error.raise error else ( (* One reason to run [do_at_exit] handlers before printing out the error message is that it helps curses applications bring the terminal in a good state, otherwise the error message might get corrupted. Also, the OCaml top-level uncaught exception handler does the same. *) (try Stdlib.do_at_exit () with | _ -> ()); (match error_kind with | `User_uncaught -> (* Don't use Debug.log, to avoid redundant error (task_id in particular) *) eprintf !"%{Sexp#hum}\n%!" [%sexp (Time_ns.now () : Time_ns.t), (error : Error.t)] | `Async_uncaught -> Debug.log "unhandled exception in Async scheduler" error [%sexp_of: Error.t]; Debug.log_string "dumping core"; Dump_core_on_job_delay.dump_core ()); Unix.exit_immediately 1) ;; let add_finalizer t heap_block f = Kernel_scheduler.add_finalizer t.kernel_scheduler heap_block f ;; let add_finalizer_exn t x f = add_finalizer t (Heap_block.create_exn x) (fun heap_block -> f (Heap_block.value heap_block)) ;; let async_kernel_config_task_id () = let pid = Unix.getpid () in let thread_id = Thread.id (Thread.self ()) in [%sexp_of: [ `pid of Pid.t ] * [ `thread_id of int ]] (`pid pid, `thread_id thread_id) ;; let set_task_id () = Async_kernel_config.task_id := async_kernel_config_task_id let raise_if_any_jobs_were_scheduled () = match Kernel_scheduler.backtrace_of_first_job (Kernel_scheduler.t ()) with | None -> () | Some bt -> raise_s [%sexp "error: program is attempting to schedule async work too soon (at toplevel of a \ library, usually)" , (bt : Backtrace.t)] ;; let is_running t = match t.start_type with | Not_started -> false | _ -> true ;; let go ?raise_unhandled_exn () = if debug then Debug.log_string "Scheduler.go"; set_task_id (); let t = the_one_and_only () in (* [go] can be called from a thread other than the main thread, for example in programs that reset scheduler after fork, so in some cases it must acquire the lock if the thread has not already done so. *) if not (am_holding_lock t) then lock t; match t.start_type with | Not_started -> t.start_type <- Called_go; be_the_scheduler t ?raise_unhandled_exn | Called_block_on_async -> (* This case can occur if the main thread uses Thread_safe.block_on_async before starting Async. Then, the scheduler is started and running in another thread, so we block forever instead of calling [be_the_scheduler] *) unlock t; (* We wakeup the scheduler so it can respond to whatever async changes this thread made. *) thread_safe_wakeup_scheduler t; (* Since the scheduler is already running, so we just pause forever. *) Time.pause_forever () | Called_external_run _ -> raise_s [%message "cannot mix Scheduler.go and Scheduler.External"] | Called_go -> raise_s [%message "cannot Scheduler.go more than once"] ;; let go_main ?raise_unhandled_exn ?file_descr_watcher ?max_num_open_file_descrs ?max_num_threads ~main () = (match !the_one_and_only_ref with | Not_ready_to_initialize () | Ready_to_initialize _ -> () | Initialized { initialized_at; _ } -> raise_s [%message "Async was initialized prior to [Scheduler.go_main]" (initialized_at : Backtrace.t)]); let max_num_open_file_descrs = Option.map max_num_open_file_descrs ~f:Max_num_open_file_descrs.create_exn in let max_num_threads = Option.map max_num_threads ~f:Max_num_threads.create_exn in let mutex = Nano_mutex.create () in Nano_mutex.lock_exn mutex; the_one_and_only_ref := Ready_to_initialize (fun () -> create ~mutex ?file_descr_watcher ?max_num_open_file_descrs ?max_num_threads ()); Deferred.upon (return ()) main; go ?raise_unhandled_exn () ;; let is_the_one_and_only_running () = if is_ready_to_initialize () then false else is_running (the_one_and_only ()) ;; let report_long_cycle_times ?(cutoff = sec 1.) () = Stream.iter (long_cycles ~at_least:(cutoff |> Time_ns.Span.of_span_float_round_nearest)) ~f:(fun span -> eprintf "%s\n%!" (Error.to_string_hum (Error.create "long async cycle" span [%sexp_of: Time_ns.Span.t]))) ;; let set_check_invariants bool = Kernel_scheduler.(set_check_invariants (t ()) bool) let set_detect_invalid_access_from_thread bool = update_check_access (the_one_and_only ()) bool ;; let set_max_inter_cycle_timeout span = (the_one_and_only ()).max_inter_cycle_timeout <- Max_inter_cycle_timeout.create_exn (Time_ns.Span.of_span_float_round_nearest span) ;; type 'b folder = { folder : 'a. 'b -> t -> (t, 'a) Field.t -> 'b } let t () = the_one_and_only () let with_t_once_started ~f = match !the_one_and_only_ref with | Initialized t when is_running t -> f t | _ -> Deferred.bind (return ()) ~f:(fun () -> f (t ())) ;; let fold_fields (type a) ~init folder : a = let t = t () in let f ac field = folder.folder ac t field in Fields.fold ~init ~mutex:f ~start_type:f ~fds_whose_watching_has_changed:f ~file_descr_watcher:f ~busy_pollers:f ~num_busy_pollers:f ~time_spent_waiting_for_io:f ~fd_by_descr:f ~external_fd_by_descr:f ~external_fd_events:f ~timerfd:f ~timerfd_set_at:f ~scheduler_thread_id:f ~interruptor:f ~signal_manager:f ~thread_pool:f ~handle_thread_pool_stuck:f ~thread_pool_stuck:f ~dns_lookup_throttle:f ~next_tsc_calibration:f ~kernel_scheduler:f ~have_lock_do_cycle:f ~max_inter_cycle_timeout:f ~min_inter_cycle_timeout:f ~initialized_at:f ~uring:f ;; let handle_thread_pool_stuck f = let t = t () in let kernel_scheduler = t.kernel_scheduler in let execution_context = Kernel_scheduler.current_execution_context kernel_scheduler in t.handle_thread_pool_stuck <- (fun _ ~stuck_for -> Kernel_scheduler.enqueue kernel_scheduler execution_context (fun () -> f ~stuck_for) ()) ;; module For_metrics = struct module Thread_pool_stats_subscription = struct type t = unit let created = ref false let create_exn () = if !created then failwith "Thread_pool_stats_subscription.create_exn can only be called once"; created := true; () ;; let get_and_reset () = let t = t () in Thread_pool.get_and_reset_stats t.thread_pool ;; end end module External = struct let current_thread_can_cycle () = if is_ready_to_initialize () then true else ( let t = the_one_and_only () in if not (am_holding_lock t) then raise_s [%message "Attempt to call current_thread_can_cycle without holding Async lock"]; match t.start_type with | Not_started -> true | Called_external_run { active } when not !active -> i_am_the_scheduler t | Called_go | Called_block_on_async | Called_external_run _ -> if i_am_the_scheduler t then raise_s [%message "Scheduler.External.current_thread_can_cycle called from within Async"]; false) ;; let collect_events event_list = List.map event_list ~f:(fun (ev : External_fd_event.t) -> match ev.event_type with | `Bad_fd -> raise_s [%message "Bad file descriptor" (ev.file_descr : File_descr.t)] | `Ready -> ev.file_descr, ev.read_or_write) ;; let run_one_cycle t = set_task_id (); let active = match t.start_type with | Called_external_run { active } -> active | Called_go | Called_block_on_async -> if t.scheduler_thread_id = current_thread_id () then raise_s [%message "Scheduler.External.run_one_cycle called from within Async"] else raise_s [%message "Scheduler.External.run_one_cycle called while scheduler already running \ in another thread"] | Not_started -> let active = ref false in t.start_type <- Called_external_run { active }; init t; active in if !active then raise_s [%message "Scheduler.External.run_one_cycle called recursively"]; if t.scheduler_thread_id <> current_thread_id () then raise_s [%message "Scheduler.External.run_one_cycle called from wrong thread"]; active := true; Exn.protect ~finally:(fun () -> active := false; t.external_fd_events <- []) ~f:(fun () -> Option.iter (one_iter t) ~f:Error.raise; collect_events t.external_fd_events) ;; let check_thread () = if not (current_thread_can_cycle ()) then raise_s [%message "FD registration must only be done from the scheduler thread"] ;; let register_fd fd ops = check_thread (); let t = the_one_and_only () in match t.uring with | Some _ -> (* Unlike with the [epoll] or [select] fd watchers, the fd checking in uring happens asynchronously, so we can't implement a synchronous version of [unregister_fd]: we need to wait for the cancellation to be acknowledged by the kernel, which means waiting for asynchronous io_uring completions. *) raise_s [%message "Cannot watch external fds while using the Ocaml_uring fd watcher"] | None -> let module F = (val t.file_descr_watcher : File_descr_watcher.S) in let%bind.Result () = By_descr.add t.external_fd_by_descr fd ops in (match F.set F.watcher fd ops with | exception exn -> By_descr.remove t.external_fd_by_descr fd; Error (Error.of_exn ~backtrace:`Get exn) | `Unsupported -> By_descr.remove t.external_fd_by_descr fd; Error (Error.of_string "Unsupported file descriptor type in register_fd") | `Ok -> Ok ()) ;; let not_watching = Read_write_pair.create ~read:false ~write:false let unregister_fd fd = check_thread (); let t = the_one_and_only () in let module F = (val t.file_descr_watcher : File_descr_watcher.S) in if not (By_descr.mem t.external_fd_by_descr fd) then Error (Error.of_string "Attempt to unregister an FD which is not registered") else ( By_descr.remove t.external_fd_by_descr fd; match F.set F.watcher fd not_watching with | exception exn -> Error (Error.of_exn ~backtrace:`Get exn) | `Unsupported -> (* Probably this can't happen because unsupported fd can't be registered in the first place *) Error (Error.of_string "Unsupported file descriptor type in unregister_fd") | `Ok -> Ok ()) ;; let is_registered fd = check_thread (); let t = the_one_and_only () in By_descr.mem t.external_fd_by_descr fd ;; let run_one_cycle ~max_wait = let t = the_one_and_only () in if not (am_holding_lock t) then raise_s [%message "Attempt to run_one_cycle without holding Async lock"]; match max_wait with | `Zero -> (* Ensure there is at least one ready-to-run job, so that Async doesn't block *) Kernel_scheduler.enqueue t.kernel_scheduler Execution_context.main ignore (); run_one_cycle t | `Until wake_at -> let wake = Clock_ns.Event.at wake_at in Exn.protect ~f:(fun () -> run_one_cycle t) ~finally:(fun () -> Clock_ns.Event.abort_if_possible wake ()) | `Indefinite -> run_one_cycle t ;; let rec run_cycles_until_determined d = match Deferred.peek d with | Some x -> x | None -> (match run_one_cycle ~max_wait:`Indefinite with | [] -> run_cycles_until_determined d | ready_fds -> (* We're blocking until [d] is determined, so we ignore the fact that some fds are ready. Readiness is level-triggered so the events will reappear in the next [run_one_cycle] if ignored. However, if we just call [run_one_cycle] again these fds will still be ready, and we'll spin instead of blocking if we need to wait. So, to let Async wait without spinning uselessly, we temporarily unregister the ready fds and re-register afterwards. This is not tail recursive, but the stack depth is bounded by the number of externally registered FDs that are or become ready *) let t = the_one_and_only () in let fd_ops = List.map ~f:fst ready_fds (* FDs may be duplicated in ready_fds if they are simultaneously ready for reading and writing *) |> List.dedup_and_sort ~compare:[%compare: File_descr.t] |> List.map ~f:(fun fd -> fd, By_descr.find_exn t.external_fd_by_descr fd) in (* Try to ensure that we leave the set of registered fds unchanged, even if an exception is raised somewhere *) let rec temporarily_unregister = function | [] -> run_cycles_until_determined d | (fd, ops) :: fd_ops -> unregister_fd fd |> Or_error.ok_exn; Exn.protect ~finally:(fun () -> register_fd fd ops |> Or_error.ok_exn) ~f:(fun () -> temporarily_unregister fd_ops) in temporarily_unregister fd_ops) ;; end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>