package eio
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Effect-based direct-style IO API for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
eio-1.3.tbz
sha256=8ed5c13e6689f31c85dca5f12762d84b8cc0042a7b07d3e464df6eb4b72b3dfc
sha512=46e8f817f32c3316e7f35835a136ad177a295b3306351eb2efa2386482b0169a5b19ed2925b32da2a1f10d40f083fe3d588dd401908f9fec6e4a44cd68535204
doc/src/eio/buf_write.ml.html
Source file buf_write.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581(* This module is based on code from Faraday (0.7.2), which had the following license: ---------------------------------------------------------------------------- Copyright (c) 2016 Inhabited Type LLC. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author nor the names of his contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------*) type bigstring = Bigstringaf.t exception Dequeue_empty module Deque(T:sig type t val sentinel : t end) : sig type elem = T.t type t val create : int -> t (* [t = create n] creates a new deque with initial capacity [n]. [to_list t = []] *) val is_empty : t -> bool (* [is_empty t = (to_list t = []) *) val enqueue : elem -> t -> unit (* [enqueue elem t] [to_list t'] = to_list t @ [elem] *) val dequeue_exn : t -> elem (* [dequeue_exn t = List.hd (to_list t)] [to_list t' = List.tl (to_list t)] *) val enqueue_front : elem -> t -> unit (* [enqueue_front elem t] to_list t' = elem :: to_list t *) val to_list : t -> elem list end = struct type elem = T.t type t = { mutable elements : elem array ; mutable front : int ; mutable back : int } let sentinel = T.sentinel let create size = { elements = Array.make size sentinel; front = 0; back = 0 } let is_empty t = t.front = t.back let ensure_space t = if t.back = Array.length t.elements - 1 then begin let len = t.back - t.front in if t.front > 0 then begin (* Shift everything to the front of the array and then clear out * dangling pointers to elements from their previous locations. *) Array.blit t.elements t.front t.elements 0 len; Array.fill t.elements len t.front sentinel end else begin let old = t.elements in let new_ = Array.(make (2 * length old) sentinel) in Array.blit old t.front new_ 0 len; t.elements <- new_ end; t.front <- 0; t.back <- len end let enqueue e t = ensure_space t; t.elements.(t.back) <- e; t.back <- t.back + 1 let dequeue_exn t = if is_empty t then raise Dequeue_empty else let result = Array.unsafe_get t.elements t.front in Array.unsafe_set t.elements t.front sentinel; t.front <- t.front + 1; result let enqueue_front e t = (* This is in general not true for Deque data structures, but the usage * below ensures that there is always space to push an element back on the * front. An [enqueue_front] is always preceded by a [dequeue], with no * intervening operations. *) assert (t.front > 0); t.front <- t.front - 1; t.elements.(t.front) <- e let to_list t = let result = ref [] in for i = t.back - 1 downto t.front do result := t.elements.(i) :: !result done; !result end module Buffers = Deque(struct type t = Cstruct.t let sentinel = let deadbeef = "\222\173\190\239" in Cstruct.of_string deadbeef end) module Flushes = Deque(struct type t = int * ((unit, exn) result Promise.u) let sentinel = let _, r = Promise.create () in Promise.resolve_ok r (); 0, r end) type state = | Active | Paused | Closed type t = { mutable buffer : bigstring ; mutable scheduled_pos : int (* How much of [buffer] is in [scheduled] *) ; mutable write_pos : int (* How much of [buffer] has been written to *) ; scheduled : Buffers.t ; flushed : Flushes.t ; mutable bytes_received : int (* Total scheduled bytes. Wraps. *) ; mutable bytes_written : int (* Total written bytes. Wraps. *) ; mutable state : state ; mutable wake_writer : unit -> unit ; mutable printf : (Format.formatter * bool ref) option } (* Invariant: [write_pos >= scheduled_pos] *) exception Flush_aborted let writable_exn t = match t.state with | Active | Paused -> () | Closed -> failwith "cannot write to closed writer" let wake_writer t = match t.state with | Paused -> () | Active | Closed -> let wake = t.wake_writer in if wake != ignore then ( t.wake_writer <- ignore; wake () ) (* Schedule [cs] now, without any checks. Users use {!schedule_cstruct} instead. *) let schedule_iovec t cs = t.bytes_received <- t.bytes_received + Cstruct.length cs; Buffers.enqueue cs t.scheduled (* Schedule all pending data in [buffer]. *) let flush_buffer t = let len = t.write_pos - t.scheduled_pos in if len > 0 then begin let off = t.scheduled_pos in schedule_iovec t (Cstruct.of_bigarray ~off ~len t.buffer); t.scheduled_pos <- t.write_pos end let free_bytes_in_buffer t = let buf_len = Bigstringaf.length t.buffer in buf_len - t.write_pos let schedule_cstruct t cs = writable_exn t; flush_buffer t; if Cstruct.length cs > 0 then ( schedule_iovec t cs; wake_writer t; ) let ensure_space t len = if free_bytes_in_buffer t < len then begin flush_buffer t; t.buffer <- Bigstringaf.create (max (Bigstringaf.length t.buffer) len); t.write_pos <- 0; t.scheduled_pos <- 0 end let advance_pos t n = t.write_pos <- t.write_pos + n; wake_writer t let write_gen t ~blit ~off ~len a = writable_exn t; ensure_space t len; blit a ~src_off:off t.buffer ~dst_off:t.write_pos ~len; advance_pos t len let string = let blit = Bigstringaf.blit_from_string in fun t ?(off=0) ?len a -> let len = match len with | None -> String.length a - off | Some len -> len in write_gen t ~blit ~off ~len a let bytes = let blit = Bigstringaf.blit_from_bytes in fun t ?(off=0) ?len a -> let len = match len with | None -> Bytes.length a - off | Some len -> len in write_gen t ~blit ~off ~len a let cstruct t { Cstruct.buffer; off; len } = write_gen t ~off ~len buffer ~blit:Bigstringaf.unsafe_blit let char t c = writable_exn t; ensure_space t 1; Bigstringaf.unsafe_set t.buffer t.write_pos c; advance_pos t 1 let uint8 t b = writable_exn t; ensure_space t 1; Bigstringaf.unsafe_set t.buffer t.write_pos (Char.unsafe_chr b); advance_pos t 1 module BE = struct let uint16 t i = writable_exn t; ensure_space t 2; Bigstringaf.unsafe_set_int16_be t.buffer t.write_pos i; advance_pos t 2 let uint32 t i = writable_exn t; ensure_space t 4; Bigstringaf.unsafe_set_int32_be t.buffer t.write_pos i; advance_pos t 4 let uint48 t i = writable_exn t; ensure_space t 6; Bigstringaf.unsafe_set_int16_be t.buffer t.write_pos Int64.(to_int (shift_right_logical i 32)); Bigstringaf.unsafe_set_int32_be t.buffer (t.write_pos + 2) Int64.(to_int32 i); advance_pos t 6 let uint64 t i = writable_exn t; ensure_space t 8; Bigstringaf.unsafe_set_int64_be t.buffer t.write_pos i; advance_pos t 8 let float t f = writable_exn t; ensure_space t 4; Bigstringaf.unsafe_set_int32_be t.buffer t.write_pos (Int32.bits_of_float f); advance_pos t 4 let double t d = writable_exn t; ensure_space t 8; Bigstringaf.unsafe_set_int64_be t.buffer t.write_pos (Int64.bits_of_float d); advance_pos t 8 end module LE = struct let uint16 t i = writable_exn t; ensure_space t 2; Bigstringaf.unsafe_set_int16_le t.buffer t.write_pos i; advance_pos t 2 let uint32 t i = writable_exn t; ensure_space t 4; Bigstringaf.unsafe_set_int32_le t.buffer t.write_pos i; advance_pos t 4 let uint48 t i = writable_exn t; ensure_space t 6; Bigstringaf.unsafe_set_int16_le t.buffer t.write_pos Int64.(to_int i); Bigstringaf.unsafe_set_int32_le t.buffer (t.write_pos + 2) Int64.(to_int32 (shift_right_logical i 16)); advance_pos t 6 let uint64 t i = writable_exn t; ensure_space t 8; Bigstringaf.unsafe_set_int64_le t.buffer t.write_pos i; advance_pos t 8 let float t f = writable_exn t; ensure_space t 4; Bigstringaf.unsafe_set_int32_le t.buffer t.write_pos (Int32.bits_of_float f); advance_pos t 4 let double t d = writable_exn t; ensure_space t 8; Bigstringaf.unsafe_set_int64_le t.buffer t.write_pos (Int64.bits_of_float d); advance_pos t 8 end let close t = t.state <- Closed; flush_buffer t; wake_writer t let is_closed t = match t.state with | Closed -> true | Active | Paused -> false let abort t = close t; let rec aux () = match Flushes.dequeue_exn t.flushed with | exception Dequeue_empty -> () | (_threshold, r) -> Promise.resolve_error r Flush_aborted; aux () in aux () let of_buffer ?sw buffer = let t = { buffer ; write_pos = 0 ; scheduled_pos = 0 ; scheduled = Buffers.create 4 ; flushed = Flushes.create 1 ; bytes_received = 0 ; bytes_written = 0 ; state = Active ; wake_writer = ignore ; printf = None } in begin match sw with | Some sw -> Switch.on_release sw (fun () -> abort t) | None -> () end; t let create ?sw size = of_buffer ?sw (Bigstringaf.create size) let pending_bytes t = (t.write_pos - t.scheduled_pos) + (t.bytes_received - t.bytes_written) let has_pending_output t = pending_bytes t <> 0 let pause t = match t.state with | Active -> t.state <- Paused | Paused | Closed -> () let unpause t = match t.state with | Active | Closed -> () | Paused -> t.state <- Active; if has_pending_output t then wake_writer t let flush t = flush_buffer t; unpause t; if not (Buffers.is_empty t.scheduled) then ( let p, r = Promise.create () in Flushes.enqueue (t.bytes_received, r) t.flushed; Promise.await_exn p ) let make_formatter t = Format.make_formatter (fun buf off len -> write_gen t buf ~off ~len ~blit:Bigstringaf.blit_from_string) (fun () -> flush t) let printf t = let ppf, is_formatting = match t.printf with | Some (_, is_formatting as x) -> is_formatting := true; x | None -> let is_formatting = ref true in let ppf = Format.make_formatter (fun buf off len -> write_gen t buf ~off ~len ~blit:Bigstringaf.blit_from_string) (fun () -> (* As per the Format module manual, an explicit flush writes to the output channel and ensures that "all pending text is displayed" and "these explicit flush calls [...] could dramatically impact efficiency". Therefore it is clear that we need to call `flush t` instead of `flush_buffer t`. *) if !is_formatting then flush t) in t.printf <- Some (ppf, is_formatting); ppf, is_formatting in Format.kfprintf (fun ppf -> if not !is_formatting then raise (Sys_error "Buf_write.printf: invalid concurrent access"); (* Ensure that [ppf]'s internal buffer is flushed to [t], but without flushing [t] itself: *) is_formatting := false; Format.pp_print_flush ppf () ) ppf let rec shift_buffers t written = match Buffers.dequeue_exn t.scheduled with | { Cstruct.len; _ } as iovec -> if len <= written then shift_buffers t (written - len) else Buffers.enqueue_front (Cstruct.shift iovec written) t.scheduled | exception Dequeue_empty -> assert (written = 0); if t.scheduled_pos = t.write_pos then begin t.scheduled_pos <- 0; t.write_pos <- 0 end (* Resolve any flushes that are now due. *) let rec shift_flushes t = match Flushes.dequeue_exn t.flushed with | exception Dequeue_empty -> () | (threshold, r) as flush -> (* Be careful: [bytes_written] and [threshold] both wrap, so subtract first. *) if t.bytes_written - threshold >= 0 then ( (* We have written at least up to [threshold] (or we're more than [max_int] behind, which we assume won't happen). *) Promise.resolve_ok r (); shift_flushes t ) else ( Flushes.enqueue_front flush t.flushed ) let shift t written = shift_buffers t written; t.bytes_written <- t.bytes_written + written; shift_flushes t let rec await_batch t = flush_buffer t; match t.state, has_pending_output t with | Closed, false -> raise End_of_file | (Active | Closed), true -> Buffers.to_list t.scheduled | Paused, _ | Active, false -> Suspend.enter "Buf_write.await_batch" (fun ctx enqueue -> Fiber_context.set_cancel_fn ctx (fun ex -> t.wake_writer <- ignore; enqueue (Error ex) ); t.wake_writer <- (fun () -> (* Our caller has already set [wake_writer <- ignore]. *) Fiber_context.clear_cancel_fn ctx; enqueue (Ok ()) ); ); await_batch t (* We have to do our own copy, because we can't [shift] until the write is complete. *) let copy t flow = let rec aux () = let iovecs = await_batch t in let wrote = Flow.single_write flow iovecs in shift t wrote; aux () in try aux () with End_of_file -> () let with_flow ?(initial_size=0x1000) flow fn = Switch.run ~name:"Buf_write.with_flow" @@ fun sw -> let t = create ~sw initial_size in Fiber.fork ~sw (fun () -> copy t flow); match fn t with | x -> close t; x | exception ex -> close t; (* Raising the exception will cancel the writer thread, so do a flush first. We don't want to flush if cancelled, but in that case the switch will end the writer thread itself (and [flush] will raise). *) flush t; raise ex let rec serialize t writev = match await_batch t with | exception End_of_file -> Ok () | iovecs -> match writev iovecs with | Error `Closed as e -> close t; e | Ok n -> shift t n; if not (Buffers.is_empty t.scheduled) then Fiber.yield (); serialize t writev let serialize_to_string t = close t; match await_batch t with | exception End_of_file -> "" | iovecs -> let len = Cstruct.lenv iovecs in let bytes = Bytes.create len in let pos = ref 0 in List.iter (function | { Cstruct.buffer; off; len } -> Bigstringaf.unsafe_blit_to_bytes buffer ~src_off:off bytes ~dst_off:!pos ~len; pos := !pos + len) iovecs; shift t len; assert (not (has_pending_output t)); Bytes.unsafe_to_string bytes let serialize_to_cstruct t = close t; match await_batch t with | exception End_of_file -> Cstruct.empty | iovecs -> let data = Cstruct.concat iovecs in shift t (Cstruct.length data); assert (not (has_pending_output t)); data let drain = let rec loop t acc = match await_batch t with | exception End_of_file -> acc | iovecs -> let len = Cstruct.lenv iovecs in shift t len; loop t (len + acc) in fun t -> loop t 0
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>