package base
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Full standard library replacement for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.15.1.tar.gz
sha256=755e303171ea267e3ba5af7aa8ea27537f3394d97c77d340b10f806d6ef61a14
doc/src/base/string.ml.html
Source file string.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613open! Import module Array = Array0 include String0 module Bytes = Bytes0 (* This alias is necessary despite [String0] defining [Bytes = Bytes0], in order to convince ocamldep that this file doesn't depend on bytes.ml. *) let invalid_argf = Printf.invalid_argf let raise_s = Error.raise_s let stage = Staged.stage module T = struct type t = string [@@deriving_inline hash, sexp, sexp_grammar] let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) = hash_fold_string and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) = let func = hash_string in fun x -> func x ;; let t_of_sexp = (string_of_sexp : Sexplib0.Sexp.t -> t) let sexp_of_t = (sexp_of_string : t -> Sexplib0.Sexp.t) let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = string_sexp_grammar [@@@end] let hashable : t Hashable.t = { hash; compare; sexp_of_t } let compare = compare end include T include Comparator.Make (T) type elt = char let invariant (_ : t) = () (* This is copied/adapted from 'blit.ml'. [sub], [subo] could be implemented using [Blit.Make(Bytes)] plus unsafe casts to/from string but were inlined here to avoid using [Bytes.unsafe_of_string] as much as possible. *) let sub src ~pos ~len = if pos = 0 && len = String.length src then src else ( Ordered_collection_common.check_pos_len_exn ~pos ~len ~total_length:(length src); if len = 0 then "" else ( let dst = Bytes.create len in Bytes.unsafe_blit_string ~src ~src_pos:pos ~dst ~dst_pos:0 ~len; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:dst)) ;; let subo ?(pos = 0) ?len src = sub src ~pos ~len: (match len with | Some i -> i | None -> length src - pos) ;; let rec contains_unsafe t ~pos ~end_ char = pos < end_ && (Char.equal (unsafe_get t pos) char || contains_unsafe t ~pos:(pos + 1) ~end_ char) ;; let contains ?(pos = 0) ?len t char = let total_length = String.length t in let len = Option.value len ~default:(total_length - pos) in Ordered_collection_common.check_pos_len_exn ~pos ~len ~total_length; contains_unsafe t ~pos ~end_:(pos + len) char ;; let is_empty t = length t = 0 let rec index_from_exn_internal string ~pos ~len ~not_found char = if pos >= len then raise not_found else if Char.equal (unsafe_get string pos) char then pos else index_from_exn_internal string ~pos:(pos + 1) ~len ~not_found char ;; let index_exn_internal t ~not_found char = index_from_exn_internal t ~pos:0 ~len:(length t) ~not_found char ;; let index_exn = let not_found = Not_found_s (Atom "String.index_exn: not found") in let index_exn t char = index_exn_internal t ~not_found char in (* named to preserve symbol in compiled binary *) index_exn ;; let index_from_exn = let not_found = Not_found_s (Atom "String.index_from_exn: not found") in let index_from_exn t pos char = let len = length t in if pos < 0 || pos > len then invalid_arg "String.index_from_exn" else index_from_exn_internal t ~pos ~len ~not_found char in (* named to preserve symbol in compiled binary *) index_from_exn ;; let rec rindex_from_exn_internal string ~pos ~len ~not_found char = if pos < 0 then raise not_found else if Char.equal (unsafe_get string pos) char then pos else rindex_from_exn_internal string ~pos:(pos - 1) ~len ~not_found char ;; let rindex_exn_internal t ~not_found char = let len = length t in rindex_from_exn_internal t ~pos:(len - 1) ~len ~not_found char ;; let rindex_exn = let not_found = Not_found_s (Atom "String.rindex_exn: not found") in let rindex_exn t char = rindex_exn_internal t ~not_found char in (* named to preserve symbol in compiled binary *) rindex_exn ;; let rindex_from_exn = let not_found = Not_found_s (Atom "String.rindex_from_exn: not found") in let rindex_from_exn t pos char = let len = length t in if pos < -1 || pos >= len then invalid_arg "String.rindex_from_exn" else rindex_from_exn_internal t ~pos ~len ~not_found char in (* named to preserve symbol in compiled binary *) rindex_from_exn ;; let index t char = try Some (index_exn t char) with | Not_found_s _ | Caml.Not_found -> None ;; let rindex t char = try Some (rindex_exn t char) with | Not_found_s _ | Caml.Not_found -> None ;; let index_from t pos char = try Some (index_from_exn t pos char) with | Not_found_s _ | Caml.Not_found -> None ;; let rindex_from t pos char = try Some (rindex_from_exn t pos char) with | Not_found_s _ | Caml.Not_found -> None ;; module Search_pattern0 = struct type t = { pattern : string ; case_sensitive : bool ; kmp_array : int array } let sexp_of_t { pattern; case_sensitive; kmp_array = _ } : Sexp.t = List [ List [ Atom "pattern"; sexp_of_string pattern ] ; List [ Atom "case_sensitive"; sexp_of_bool case_sensitive ] ] ;; let pattern t = t.pattern let case_sensitive t = t.case_sensitive (* Find max number of matched characters at [next_text_char], given the current [matched_chars]. Try to extend the current match, if chars don't match, try to match fewer chars. If chars match then extend the match. *) let kmp_internal_loop ~matched_chars ~next_text_char ~pattern ~kmp_array ~char_equal = let matched_chars = ref matched_chars in while !matched_chars > 0 && not (char_equal next_text_char (unsafe_get pattern !matched_chars)) do matched_chars := Array.unsafe_get kmp_array (!matched_chars - 1) done; if char_equal next_text_char (unsafe_get pattern !matched_chars) then matched_chars := !matched_chars + 1; !matched_chars ;; let get_char_equal ~case_sensitive = match case_sensitive with | true -> Char.equal | false -> Char.Caseless.equal ;; (* Classic KMP pre-processing of the pattern: build the int array, which, for each i, contains the length of the longest non-trivial prefix of s which is equal to a suffix ending at s.[i] *) let create pattern ~case_sensitive = let n = length pattern in let kmp_array = Array.create ~len:n (-1) in if n > 0 then ( let char_equal = get_char_equal ~case_sensitive in Array.unsafe_set kmp_array 0 0; let matched_chars = ref 0 in for i = 1 to n - 1 do matched_chars := kmp_internal_loop ~matched_chars:!matched_chars ~next_text_char:(unsafe_get pattern i) ~pattern ~kmp_array ~char_equal; Array.unsafe_set kmp_array i !matched_chars done); { pattern; case_sensitive; kmp_array } ;; (* Classic KMP: use the pre-processed pattern to optimize look-behinds on non-matches. We return int to avoid allocation in [index_exn]. -1 means no match. *) let index_internal ?(pos = 0) { pattern; case_sensitive; kmp_array } ~in_:text = if pos < 0 || pos > length text - length pattern then -1 else ( let char_equal = get_char_equal ~case_sensitive in let j = ref pos in let matched_chars = ref 0 in let k = length pattern in let n = length text in while !j < n && !matched_chars < k do let next_text_char = unsafe_get text !j in matched_chars := kmp_internal_loop ~matched_chars:!matched_chars ~next_text_char ~pattern ~kmp_array ~char_equal; j := !j + 1 done; if !matched_chars = k then !j - k else -1) ;; let matches t str = index_internal t ~in_:str >= 0 let index ?pos t ~in_ = let p = index_internal ?pos t ~in_ in if p < 0 then None else Some p ;; let index_exn ?pos t ~in_ = let p = index_internal ?pos t ~in_ in if p >= 0 then p else raise_s (Sexp.message "Substring not found" [ "substring", sexp_of_string t.pattern ]) ;; let index_all { pattern; case_sensitive; kmp_array } ~may_overlap ~in_:text = if length pattern = 0 then List.init (1 + length text) ~f:Fn.id else ( let char_equal = get_char_equal ~case_sensitive in let matched_chars = ref 0 in let k = length pattern in let n = length text in let found = ref [] in for j = 0 to n do if !matched_chars = k then ( found := (j - k) :: !found; (* we just found a match in the previous iteration *) match may_overlap with | true -> matched_chars := Array.unsafe_get kmp_array (k - 1) | false -> matched_chars := 0); if j < n then ( let next_text_char = unsafe_get text j in matched_chars := kmp_internal_loop ~matched_chars:!matched_chars ~next_text_char ~pattern ~kmp_array ~char_equal) done; List.rev !found) ;; let replace_first ?pos t ~in_:s ~with_ = match index ?pos t ~in_:s with | None -> s | Some i -> let len_s = length s in let len_t = length t.pattern in let len_with = length with_ in let dst = Bytes.create (len_s + len_with - len_t) in Bytes.blit_string ~src:s ~src_pos:0 ~dst ~dst_pos:0 ~len:i; Bytes.blit_string ~src:with_ ~src_pos:0 ~dst ~dst_pos:i ~len:len_with; Bytes.blit_string ~src:s ~src_pos:(i + len_t) ~dst ~dst_pos:(i + len_with) ~len:(len_s - i - len_t); Bytes.unsafe_to_string ~no_mutation_while_string_reachable:dst ;; let replace_all t ~in_:s ~with_ = let matches = index_all t ~may_overlap:false ~in_:s in match matches with | [] -> s | _ :: _ -> let len_s = length s in let len_t = length t.pattern in let len_with = length with_ in let num_matches = List.length matches in let dst = Bytes.create (len_s + ((len_with - len_t) * num_matches)) in let next_dst_pos = ref 0 in let next_src_pos = ref 0 in List.iter matches ~f:(fun i -> let len = i - !next_src_pos in Bytes.blit_string ~src:s ~src_pos:!next_src_pos ~dst ~dst_pos:!next_dst_pos ~len; Bytes.blit_string ~src:with_ ~src_pos:0 ~dst ~dst_pos:(!next_dst_pos + len) ~len:len_with; next_dst_pos := !next_dst_pos + len + len_with; next_src_pos := !next_src_pos + len + len_t); Bytes.blit_string ~src:s ~src_pos:!next_src_pos ~dst ~dst_pos:!next_dst_pos ~len:(len_s - !next_src_pos); Bytes.unsafe_to_string ~no_mutation_while_string_reachable:dst ;; let split_on t s = let pattern_len = String.length t.pattern in let matches = index_all t ~may_overlap:false ~in_:s in List.map2_exn (-pattern_len :: matches) (matches @ [ String.length s ]) ~f:(fun i j -> sub s ~pos:(i + pattern_len) ~len:(j - i - pattern_len)) ;; module Private = struct type public = t type nonrec t = t = { pattern : string ; case_sensitive : bool ; kmp_array : int array } [@@deriving_inline equal, sexp_of] let equal = (fun a__002_ b__003_ -> if Ppx_compare_lib.phys_equal a__002_ b__003_ then true else Ppx_compare_lib.( && ) (equal_string a__002_.pattern b__003_.pattern) (Ppx_compare_lib.( && ) (equal_bool a__002_.case_sensitive b__003_.case_sensitive) (equal_array equal_int a__002_.kmp_array b__003_.kmp_array)) : t -> t -> bool) ;; let sexp_of_t = (fun { pattern = pattern__007_ ; case_sensitive = case_sensitive__009_ ; kmp_array = kmp_array__011_ } -> let bnds__006_ = [] in let bnds__006_ = let arg__012_ = sexp_of_array sexp_of_int kmp_array__011_ in Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "kmp_array"; arg__012_ ] :: bnds__006_ in let bnds__006_ = let arg__010_ = sexp_of_bool case_sensitive__009_ in Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "case_sensitive"; arg__010_ ] :: bnds__006_ in let bnds__006_ = let arg__008_ = sexp_of_string pattern__007_ in Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "pattern"; arg__008_ ] :: bnds__006_ in Sexplib0.Sexp.List bnds__006_ : t -> Sexplib0.Sexp.t) ;; [@@@end] let representation = Fn.id end end module Search_pattern_helper = struct module Search_pattern = Search_pattern0 end open Search_pattern_helper let substr_index_gen ~case_sensitive ?pos t ~pattern = Search_pattern.index ?pos (Search_pattern.create ~case_sensitive pattern) ~in_:t ;; let substr_index_exn_gen ~case_sensitive ?pos t ~pattern = Search_pattern.index_exn ?pos (Search_pattern.create ~case_sensitive pattern) ~in_:t ;; let substr_index_all_gen ~case_sensitive t ~may_overlap ~pattern = Search_pattern.index_all (Search_pattern.create ~case_sensitive pattern) ~may_overlap ~in_:t ;; let substr_replace_first_gen ~case_sensitive ?pos t ~pattern = Search_pattern.replace_first ?pos (Search_pattern.create ~case_sensitive pattern) ~in_:t ;; let substr_replace_all_gen ~case_sensitive t ~pattern = Search_pattern.replace_all (Search_pattern.create ~case_sensitive pattern) ~in_:t ;; let is_substring_gen ~case_sensitive t ~substring = Option.is_some (substr_index_gen t ~pattern:substring ~case_sensitive) ;; let substr_index = substr_index_gen ~case_sensitive:true let substr_index_exn = substr_index_exn_gen ~case_sensitive:true let substr_index_all = substr_index_all_gen ~case_sensitive:true let substr_replace_first = substr_replace_first_gen ~case_sensitive:true let substr_replace_all = substr_replace_all_gen ~case_sensitive:true let is_substring = is_substring_gen ~case_sensitive:true let is_substring_at_gen = let rec loop ~str ~str_pos ~sub ~sub_pos ~sub_len ~char_equal = if sub_pos = sub_len then true else if char_equal (unsafe_get str str_pos) (unsafe_get sub sub_pos) then loop ~str ~str_pos:(str_pos + 1) ~sub ~sub_pos:(sub_pos + 1) ~sub_len ~char_equal else false in fun str ~pos:str_pos ~substring:sub ~char_equal -> let str_len = length str in let sub_len = length sub in if str_pos < 0 || str_pos > str_len then invalid_argf "String.is_substring_at: invalid index %d for string of length %d" str_pos str_len (); str_pos + sub_len <= str_len && loop ~str ~str_pos ~sub ~sub_pos:0 ~sub_len ~char_equal ;; let is_suffix_gen string ~suffix ~char_equal = let string_len = length string in let suffix_len = length suffix in string_len >= suffix_len && is_substring_at_gen string ~pos:(string_len - suffix_len) ~substring:suffix ~char_equal ;; let is_prefix_gen string ~prefix ~char_equal = let string_len = length string in let prefix_len = length prefix in string_len >= prefix_len && is_substring_at_gen string ~pos:0 ~substring:prefix ~char_equal ;; module Caseless = struct module T = struct type t = string [@@deriving_inline sexp, sexp_grammar] let t_of_sexp = (string_of_sexp : Sexplib0.Sexp.t -> t) let sexp_of_t = (sexp_of_string : t -> Sexplib0.Sexp.t) let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = string_sexp_grammar [@@@end] let char_compare_caseless c1 c2 = Char.compare (Char.lowercase c1) (Char.lowercase c2) let rec compare_loop ~pos ~string1 ~len1 ~string2 ~len2 = if pos = len1 then if pos = len2 then 0 else -1 else if pos = len2 then 1 else ( let c = char_compare_caseless (unsafe_get string1 pos) (unsafe_get string2 pos) in match c with | 0 -> compare_loop ~pos:(pos + 1) ~string1 ~len1 ~string2 ~len2 | _ -> c) ;; let compare string1 string2 = if phys_equal string1 string2 then 0 else compare_loop ~pos:0 ~string1 ~len1:(String.length string1) ~string2 ~len2:(String.length string2) ;; let hash_fold_t state t = let len = length t in let state = ref (hash_fold_int state len) in for pos = 0 to len - 1 do state := hash_fold_char !state (Char.lowercase (unsafe_get t pos)) done; !state ;; let hash t = Hash.run hash_fold_t t let is_suffix s ~suffix = is_suffix_gen s ~suffix ~char_equal:Char.Caseless.equal let is_prefix s ~prefix = is_prefix_gen s ~prefix ~char_equal:Char.Caseless.equal let substr_index = substr_index_gen ~case_sensitive:false let substr_index_exn = substr_index_exn_gen ~case_sensitive:false let substr_index_all = substr_index_all_gen ~case_sensitive:false let substr_replace_first = substr_replace_first_gen ~case_sensitive:false let substr_replace_all = substr_replace_all_gen ~case_sensitive:false let is_substring = is_substring_gen ~case_sensitive:false let is_substring_at = is_substring_at_gen ~char_equal:Char.Caseless.equal end include T include Comparable.Make (T) end let of_string = Fn.id let to_string = Fn.id let init n ~f = if n < 0 then invalid_argf "String.init %d" n (); let t = Bytes.create n in for i = 0 to n - 1 do Bytes.set t i (f i) done; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:t ;; let to_list s = let rec loop acc i = if i < 0 then acc else loop (s.[i] :: acc) (i - 1) in loop [] (length s - 1) ;; let to_list_rev s = let len = length s in let rec loop acc i = if i = len then acc else loop (s.[i] :: acc) (i + 1) in loop [] 0 ;; let rev t = let len = length t in let res = Bytes.create len in for i = 0 to len - 1 do unsafe_set res i (unsafe_get t (len - 1 - i)) done; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:res ;; (** Efficient string splitting *) let lsplit2_exn = let not_found = Not_found_s (Atom "String.lsplit2_exn: not found") in let lsplit2_exn line ~on:delim = let pos = index_exn_internal line ~not_found delim in sub line ~pos:0 ~len:pos, sub line ~pos:(pos + 1) ~len:(length line - pos - 1) in (* named to preserve symbol in compiled binary *) lsplit2_exn ;; let rsplit2_exn = let not_found = Not_found_s (Atom "String.rsplit2_exn: not found") in let rsplit2_exn line ~on:delim = let pos = rindex_exn_internal line ~not_found delim in sub line ~pos:0 ~len:pos, sub line ~pos:(pos + 1) ~len:(length line - pos - 1) in (* named to preserve symbol in compiled binary *) rsplit2_exn ;; let lsplit2 line ~on = try Some (lsplit2_exn line ~on) with | Not_found_s _ | Caml.Not_found -> None ;; let rsplit2 line ~on = try Some (rsplit2_exn line ~on) with | Not_found_s _ | Caml.Not_found -> None ;; let rec char_list_mem l (c : char) = match l with | [] -> false | hd :: tl -> Char.equal hd c || char_list_mem tl c ;; let split_gen str ~on = let is_delim = match on with | `char c' -> fun c -> Char.equal c c' | `char_list l -> fun c -> char_list_mem l c in let len = length str in let rec loop acc last_pos pos = if pos = -1 then sub str ~pos:0 ~len:last_pos :: acc else if is_delim str.[pos] then ( let pos1 = pos + 1 in let sub_str = sub str ~pos:pos1 ~len:(last_pos - pos1) in loop (sub_str :: acc) pos (pos - 1)) else loop acc last_pos (pos - 1) in loop [] len (len - 1) ;; let split str ~on = split_gen str ~on:(`char on) let split_on_chars str ~on:chars = split_gen str ~on:(`char_list chars) let split_lines = let back_up_at_newline ~t ~pos ~eol = pos := !pos - if !pos > 0 && Char.equal t.[!pos - 1] '\r' then 2 else 1; eol := !pos + 1 in fun t -> let n = length t in if n = 0 then [] else ( (* Invariant: [-1 <= pos < eol]. *) let pos = ref (n - 1) in let eol = ref n in let ac = ref [] in (* We treat the end of the string specially, because if the string ends with a newline, we don't want an extra empty string at the end of the output. *) if Char.equal t.[!pos] '\n' then back_up_at_newline ~t ~pos ~eol; while !pos >= 0 do if Char.( <> ) t.[!pos] '\n' then decr pos else ( (* Because [pos < eol], we know that [start <= eol]. *) let start = !pos + 1 in ac := sub t ~pos:start ~len:(!eol - start) :: !ac; back_up_at_newline ~t ~pos ~eol) done; sub t ~pos:0 ~len:!eol :: !ac) ;; let is_suffix s ~suffix = is_suffix_gen s ~suffix ~char_equal:Char.equal let is_prefix s ~prefix = is_prefix_gen s ~prefix ~char_equal:Char.equal let is_substring_at s ~pos ~substring = is_substring_at_gen s ~pos ~substring ~char_equal:Char.equal ;; let wrap_sub_n t n ~name ~pos ~len ~on_error = if n < 0 then invalid_arg (name ^ " expecting nonnegative argument") else ( try sub t ~pos ~len with | _ -> on_error) ;; let drop_prefix t n = wrap_sub_n ~name:"drop_prefix" t n ~pos:n ~len:(length t - n) ~on_error:"" ;; let drop_suffix t n = wrap_sub_n ~name:"drop_suffix" t n ~pos:0 ~len:(length t - n) ~on_error:"" ;; let prefix t n = wrap_sub_n ~name:"prefix" t n ~pos:0 ~len:n ~on_error:t let suffix t n = wrap_sub_n ~name:"suffix" t n ~pos:(length t - n) ~len:n ~on_error:t let lfindi ?(pos = 0) t ~f = let n = length t in let rec loop i = if i = n then None else if f i t.[i] then Some i else loop (i + 1) in loop pos ;; let find t ~f = match lfindi t ~f:(fun _ c -> f c) with | None -> None | Some i -> Some t.[i] ;; let find_map t ~f = let n = length t in let rec loop i = if i = n then None else ( match f t.[i] with | None -> loop (i + 1) | Some _ as res -> res) in loop 0 ;; let rfindi ?pos t ~f = let rec loop i = if i < 0 then None else if f i t.[i] then Some i else loop (i - 1) in let pos = match pos with | Some pos -> pos | None -> length t - 1 in loop pos ;; let last_non_drop ~drop t = rfindi t ~f:(fun _ c -> not (drop c)) let rstrip ?(drop = Char.is_whitespace) t = match last_non_drop t ~drop with | None -> "" | Some i -> if i = length t - 1 then t else prefix t (i + 1) ;; let first_non_drop ~drop t = lfindi t ~f:(fun _ c -> not (drop c)) let lstrip ?(drop = Char.is_whitespace) t = match first_non_drop t ~drop with | None -> "" | Some 0 -> t | Some n -> drop_prefix t n ;; (* [strip t] could be implemented as [lstrip (rstrip t)]. The implementation below saves (at least) a factor of two allocation, by only allocating the final result. This also saves some amount of time. *) let strip ?(drop = Char.is_whitespace) t = let length = length t in if length = 0 || not (drop t.[0] || drop t.[length - 1]) then t else ( match first_non_drop t ~drop with | None -> "" | Some first -> (match last_non_drop t ~drop with | None -> assert false | Some last -> sub t ~pos:first ~len:(last - first + 1))) ;; let mapi t ~f = let l = length t in let t' = Bytes.create l in for i = 0 to l - 1 do Bytes.unsafe_set t' i (f i t.[i]) done; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:t' ;; (* repeated code to avoid requiring an extra allocation for a closure on each call. *) let map t ~f = let l = length t in let t' = Bytes.create l in for i = 0 to l - 1 do Bytes.unsafe_set t' i (f t.[i]) done; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:t' ;; let to_array s = Array.init (length s) ~f:(fun i -> s.[i]) let exists = let rec loop s i ~len ~f = i < len && (f s.[i] || loop s (i + 1) ~len ~f) in fun s ~f -> loop s 0 ~len:(length s) ~f ;; let for_all = let rec loop s i ~len ~f = i = len || (f s.[i] && loop s (i + 1) ~len ~f) in fun s ~f -> loop s 0 ~len:(length s) ~f ;; let fold = let rec loop t i ac ~f ~len = if i = len then ac else loop t (i + 1) (f ac t.[i]) ~f ~len in fun t ~init ~f -> loop t 0 init ~f ~len:(length t) ;; let foldi = let rec loop t i ac ~f ~len = if i = len then ac else loop t (i + 1) (f i ac t.[i]) ~f ~len in fun t ~init ~f -> loop t 0 init ~f ~len:(length t) ;; let iteri t ~f = for i = 0 to length t - 1 do f i (unsafe_get t i) done ;; let count t ~f = Container.count ~fold t ~f let sum m t ~f = Container.sum ~fold m t ~f let min_elt t = Container.min_elt ~fold t let max_elt t = Container.max_elt ~fold t let fold_result t ~init ~f = Container.fold_result ~fold ~init ~f t let fold_until t ~init ~f = Container.fold_until ~fold ~init ~f t let find_mapi t ~f = Indexed_container.find_mapi ~iteri t ~f let findi t ~f = Indexed_container.findi ~iteri t ~f let counti t ~f = Indexed_container.counti ~foldi t ~f let for_alli t ~f = Indexed_container.for_alli ~iteri t ~f let existsi t ~f = Indexed_container.existsi ~iteri t ~f let mem = let rec loop t c ~pos:i ~len = i < len && (Char.equal c (unsafe_get t i) || loop t c ~pos:(i + 1) ~len) in fun t c -> loop t c ~pos:0 ~len:(length t) ;; let tr ~target ~replacement s = if Char.equal target replacement then s else if mem s target then map s ~f:(fun c -> if Char.equal c target then replacement else c) else s ;; let tr_multi ~target ~replacement = if is_empty target then stage Fn.id else if is_empty replacement then invalid_arg "tr_multi replacement is empty string" else ( match Bytes_tr.tr_create_map ~target ~replacement with | None -> stage Fn.id | Some tr_map -> stage (fun s -> if exists s ~f:(fun c -> Char.( <> ) c (unsafe_get tr_map (Char.to_int c))) then map s ~f:(fun c -> unsafe_get tr_map (Char.to_int c)) else s)) ;; (* fast version, if we ever need it: {[ let concat_array ~sep ar = let ar_len = Array.length ar in if ar_len = 0 then "" else let sep_len = length sep in let res_len_ref = ref (sep_len * (ar_len - 1)) in for i = 0 to ar_len - 1 do res_len_ref := !res_len_ref + length ar.(i) done; let res = create !res_len_ref in let str_0 = ar.(0) in let len_0 = length str_0 in blit ~src:str_0 ~src_pos:0 ~dst:res ~dst_pos:0 ~len:len_0; let pos_ref = ref len_0 in for i = 1 to ar_len - 1 do let pos = !pos_ref in blit ~src:sep ~src_pos:0 ~dst:res ~dst_pos:pos ~len:sep_len; let new_pos = pos + sep_len in let str_i = ar.(i) in let len_i = length str_i in blit ~src:str_i ~src_pos:0 ~dst:res ~dst_pos:new_pos ~len:len_i; pos_ref := new_pos + len_i done; res ]} *) let concat_array ?sep ar = concat ?sep (Array.to_list ar) let concat_map ?sep s ~f = concat_array ?sep (Array.map (to_array s) ~f) (* [filter t f] is implemented by the following algorithm. Let [n = length t]. 1. Find the lowest [i] such that [not (f t.[i])]. 2. If there is no such [i], then return [t]. 3. If there is such an [i], allocate a string, [out], to hold the result. [out] has length [n - 1], which is the maximum possible output size given that there is at least one character not satisfying [f]. 4. Copy characters at indices 0 ... [i - 1] from [t] to [out]. 5. Walk through characters at indices [i+1] ... [n-1] of [t], copying those that satisfy [f] from [t] to [out]. 6. If we completely filled [out], then return it. If not, return the prefix of [out] that we did fill in. This algorithm has the property that it doesn't allocate a new string if there's nothing to filter, which is a common case. *) let filter t ~f = let n = length t in let i = ref 0 in while !i < n && f t.[!i] do incr i done; if !i = n then t else ( let out = Bytes.create (n - 1) in Bytes.blit_string ~src:t ~src_pos:0 ~dst:out ~dst_pos:0 ~len:!i; let out_pos = ref !i in incr i; while !i < n do let c = t.[!i] in if f c then ( Bytes.set out !out_pos c; incr out_pos); incr i done; let out = Bytes.unsafe_to_string ~no_mutation_while_string_reachable:out in if !out_pos = n - 1 then out else sub out ~pos:0 ~len:!out_pos) ;; (* repeated code to avoid requiring an extra allocation for a closure on each call. *) let filteri t ~f = let n = length t in let i = ref 0 in while !i < n && f !i t.[!i] do incr i done; if !i = n then t else ( let out = Bytes.create (n - 1) in Bytes.blit_string ~src:t ~src_pos:0 ~dst:out ~dst_pos:0 ~len:!i; let out_pos = ref !i in incr i; while !i < n do let c = t.[!i] in if f !i c then ( Bytes.set out !out_pos c; incr out_pos); incr i done; let out = Bytes.unsafe_to_string ~no_mutation_while_string_reachable:out in if !out_pos = n - 1 then out else sub out ~pos:0 ~len:!out_pos) ;; let chop_prefix s ~prefix = if is_prefix s ~prefix then Some (drop_prefix s (length prefix)) else None ;; let chop_prefix_if_exists s ~prefix = if is_prefix s ~prefix then drop_prefix s (length prefix) else s ;; let chop_prefix_exn s ~prefix = match chop_prefix s ~prefix with | Some str -> str | None -> invalid_argf "String.chop_prefix_exn %S %S" s prefix () ;; let chop_suffix s ~suffix = if is_suffix s ~suffix then Some (drop_suffix s (length suffix)) else None ;; let chop_suffix_if_exists s ~suffix = if is_suffix s ~suffix then drop_suffix s (length suffix) else s ;; let chop_suffix_exn s ~suffix = match chop_suffix s ~suffix with | Some str -> str | None -> invalid_argf "String.chop_suffix_exn %S %S" s suffix () ;; module For_common_prefix_and_suffix = struct (* When taking a string prefix or suffix, we extract from the shortest input available in case we can just return one of our inputs without allocating a new string. *) let shorter a b = if length a <= length b then a else b let shortest list = match list with | [] -> "" | first :: rest -> List.fold rest ~init:first ~f:shorter ;; (* Our generic accessors for common prefix/suffix abstract over [get_pos], which is either [pos_from_left] or [pos_from_right]. *) let pos_from_left (_ : t) (i : int) = i let pos_from_right t i = length t - i - 1 let rec common_generic2_length_loop a b ~get_pos ~max_len ~len_so_far = if len_so_far >= max_len then max_len else if Char.equal (unsafe_get a (get_pos a len_so_far)) (unsafe_get b (get_pos b len_so_far)) then common_generic2_length_loop a b ~get_pos ~max_len ~len_so_far:(len_so_far + 1) else len_so_far ;; let common_generic2_length a b ~get_pos = let max_len = min (length a) (length b) in common_generic2_length_loop a b ~get_pos ~max_len ~len_so_far:0 ;; let rec common_generic_length_loop first list ~get_pos ~max_len = match list with | [] -> max_len | second :: rest -> let max_len = (* We call [common_generic2_length_loop] rather than [common_generic2_length] so that [max_len] limits our traversal of [first] and [second]. *) common_generic2_length_loop first second ~get_pos ~max_len ~len_so_far:0 in common_generic_length_loop second rest ~get_pos ~max_len ;; let common_generic_length list ~get_pos = match list with | [] -> 0 | first :: rest -> (* Precomputing [max_len] based on [shortest list] saves us work in longer strings, at the cost of an extra pass over the spine of [list]. For example, if you're looking for the longest prefix of the strings: {v let long_a = List.init 1000 ~f:(Fn.const 'a') [ long_a; long_a; 'aa' ] v} the approach below will just check the first two characters of all the strings. *) let max_len = length (shortest list) in common_generic_length_loop first rest ~get_pos ~max_len ;; (* Our generic accessors that produce a string abstract over [take], which is either [prefix] or [suffix]. *) let common_generic2 a b ~get_pos ~take = let len = common_generic2_length a b ~get_pos in (* Use the shorter of the two strings, so that if the shorter one is the shared prefix, [take] won't allocate another string. *) take (shorter a b) len ;; let common_generic list ~get_pos ~take = match list with | [] -> "" | first :: rest -> (* As with [common_generic_length], we base [max_len] on [shortest list]. We also use this result for [take], below, to potentially avoid allocating a string. *) let s = shortest list in let max_len = length s in if max_len = 0 then "" else ( let len = (* We call directly into [common_generic_length_loop] rather than [common_generic_length] to avoid recomputing [shortest list]. *) common_generic_length_loop first rest ~get_pos ~max_len in take s len) ;; end include struct open For_common_prefix_and_suffix let common_prefix list = common_generic list ~take:prefix ~get_pos:pos_from_left let common_suffix list = common_generic list ~take:suffix ~get_pos:pos_from_right let common_prefix2 a b = common_generic2 a b ~take:prefix ~get_pos:pos_from_left let common_suffix2 a b = common_generic2 a b ~take:suffix ~get_pos:pos_from_right let common_prefix_length list = common_generic_length list ~get_pos:pos_from_left let common_suffix_length list = common_generic_length list ~get_pos:pos_from_right let common_prefix2_length a b = common_generic2_length a b ~get_pos:pos_from_left let common_suffix2_length a b = common_generic2_length a b ~get_pos:pos_from_right end (* There used to be a custom implementation that was faster for very short strings (peaking at 40% faster for 4-6 char long strings). This new function is around 20% faster than the default hash function, but slower than the previous custom implementation. However, the new OCaml function is well behaved, and this implementation is less likely to diverge from the default OCaml implementation does, which is a desirable property. (The only way to avoid the divergence is to expose the macro redefined in hash_stubs.c in the hash.h header of the OCaml compiler.) *) module Hash = struct external hash : string -> int = "Base_hash_string" [@@noalloc] end (* [include Hash] to make the [external] version override the [hash] from [Hashable.Make_binable], so that we get a little bit of a speedup by exposing it as external in the mli. *) let _ = hash include Hash (* for interactive top-levels -- modules deriving from String should have String's pretty printer. *) let pp ppf string = Caml.Format.fprintf ppf "%S" string let of_char c = make 1 c let of_char_list l = let t = Bytes.create (List.length l) in List.iteri l ~f:(fun i c -> Bytes.set t i c); Bytes.unsafe_to_string ~no_mutation_while_string_reachable:t ;; module Escaping = struct (* If this is changed, make sure to update [escape], which attempts to ensure all the invariants checked here. *) let build_and_validate_escapeworthy_map escapeworthy_map escape_char func = let escapeworthy_map = if List.Assoc.mem escapeworthy_map ~equal:Char.equal escape_char then escapeworthy_map else (escape_char, escape_char) :: escapeworthy_map in let arr = Array.create ~len:256 (-1) in let vals = Array.create ~len:256 false in let rec loop = function | [] -> Ok arr | (c_from, c_to) :: l -> let k, v = match func with | `Escape -> Char.to_int c_from, c_to | `Unescape -> Char.to_int c_to, c_from in if arr.(k) <> -1 || vals.(Char.to_int v) then Or_error.error_s (Sexp.message "escapeworthy_map not one-to-one" [ "c_from", sexp_of_char c_from ; "c_to", sexp_of_char c_to ; ( "escapeworthy_map" , sexp_of_list (sexp_of_pair sexp_of_char sexp_of_char) escapeworthy_map ) ]) else ( arr.(k) <- Char.to_int v; vals.(Char.to_int v) <- true; loop l) in loop escapeworthy_map ;; let escape_gen ~escapeworthy_map ~escape_char = match build_and_validate_escapeworthy_map escapeworthy_map escape_char `Escape with | Error _ as x -> x | Ok escapeworthy -> Ok (fun src -> (* calculate a list of (index of char to escape * escaped char) first, the order is from tail to head *) let to_escape_len = ref 0 in let to_escape = foldi src ~init:[] ~f:(fun i acc c -> match escapeworthy.(Char.to_int c) with | -1 -> acc | n -> (* (index of char to escape * escaped char) *) incr to_escape_len; (i, Char.unsafe_of_int n) :: acc) in match to_escape with | [] -> src | _ -> (* [to_escape] divide [src] to [List.length to_escape + 1] pieces separated by the chars to escape. Lets take {[ escape_gen_exn ~escapeworthy_map:[('a', 'A'); ('b', 'B'); ('c', 'C')] ~escape_char:'_' ]} for example, and assume the string to escape is "000a111b222c333" then [to_escape] is [(11, 'C'); (7, 'B'); (3, 'A')]. Then we create a [dst] of length [length src + 3] to store the result, copy piece "333" to [dst] directly, then copy '_' and 'C' to [dst]; then move on to next; after 3 iterations, copy piece "000" and we are done. Finally the result will be "000_A111_B222_C333" *) let src_len = length src in let dst_len = src_len + !to_escape_len in let dst = Bytes.create dst_len in let rec loop last_idx last_dst_pos = function | [] -> (* copy "000" at last *) Bytes.blit_string ~src ~src_pos:0 ~dst ~dst_pos:0 ~len:last_idx | (idx, escaped_char) :: to_escape -> (*[idx] = the char to escape*) (* take first iteration for example *) (* calculate length of "333", minus 1 because we don't copy 'c' *) let len = last_idx - idx - 1 in (* set the dst_pos to copy to *) let dst_pos = last_dst_pos - len in (* copy "333", set [src_pos] to [idx + 1] to skip 'c' *) Bytes.blit_string ~src ~src_pos:(idx + 1) ~dst ~dst_pos ~len; (* backoff [dst_pos] by 2 to copy '_' and 'C' *) let dst_pos = dst_pos - 2 in Bytes.set dst dst_pos escape_char; Bytes.set dst (dst_pos + 1) escaped_char; loop idx dst_pos to_escape in (* set [last_dst_pos] and [last_idx] to length of [dst] and [src] first *) loop src_len dst_len to_escape; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:dst) ;; let escape_gen_exn ~escapeworthy_map ~escape_char = Or_error.ok_exn (escape_gen ~escapeworthy_map ~escape_char) |> stage ;; let escape ~escapeworthy ~escape_char = (* For [escape_gen_exn], we don't know how to fix invalid escapeworthy_map so we have to raise exception; but in this case, we know how to fix duplicated elements in escapeworthy list, so we just fix it instead of raising exception to make this function easier to use. *) let escapeworthy_map = escapeworthy |> List.dedup_and_sort ~compare:Char.compare |> List.map ~f:(fun c -> c, c) in escape_gen_exn ~escapeworthy_map ~escape_char ;; (* In an escaped string, any char is either `Escaping, `Escaped or `Literal. For example, the escape statuses of chars in string "a_a__" with escape_char = '_' are a : `Literal _ : `Escaping a : `Escaped _ : `Escaping _ : `Escaped [update_escape_status str ~escape_char i previous_status] gets escape status of str.[i] basing on escape status of str.[i - 1] *) let update_escape_status str ~escape_char i = function | `Escaping -> `Escaped | `Literal | `Escaped -> if Char.equal str.[i] escape_char then `Escaping else `Literal ;; let unescape_gen ~escapeworthy_map ~escape_char = match build_and_validate_escapeworthy_map escapeworthy_map escape_char `Unescape with | Error _ as x -> x | Ok escapeworthy -> Ok (fun src -> (* Continue the example in [escape_gen_exn], now we unescape "000_A111_B222_C333" back to "000a111b222c333" Then [to_unescape] is [14; 9; 4], which is indexes of '_'s. Then we create a string [dst] to store the result, copy "333" to it, then copy 'c', then move on to next iteration. After 3 iterations copy "000" and we are done. *) (* indexes of escape chars *) let to_unescape = let rec loop i status acc = if i >= length src then acc else ( let status = update_escape_status src ~escape_char i status in loop (i + 1) status (match status with | `Escaping -> i :: acc | `Escaped | `Literal -> acc)) in loop 0 `Literal [] in match to_unescape with | [] -> src | idx :: to_unescape' -> let dst = Bytes.create (length src - List.length to_unescape) in let rec loop last_idx last_dst_pos = function | [] -> (* copy "000" at last *) Bytes.blit_string ~src ~src_pos:0 ~dst ~dst_pos:0 ~len:last_idx | idx :: to_unescape -> (* [idx] = index of escaping char *) (* take 1st iteration as example, calculate the length of "333", minus 2 to skip '_C' *) let len = last_idx - idx - 2 in (* point [dst_pos] to the position to copy "333" to *) let dst_pos = last_dst_pos - len in (* copy "333" *) Bytes.blit_string ~src ~src_pos:(idx + 2) ~dst ~dst_pos ~len; (* backoff [dst_pos] by 1 to copy 'c' *) let dst_pos = dst_pos - 1 in Bytes.set dst dst_pos (match escapeworthy.(Char.to_int src.[idx + 1]) with | -1 -> src.[idx + 1] | n -> Char.unsafe_of_int n); (* update [last_dst_pos] and [last_idx] *) loop idx dst_pos to_unescape in if idx < length src - 1 then (* set [last_dst_pos] and [last_idx] to length of [dst] and [src] *) loop (length src) (Bytes.length dst) to_unescape else (* for escaped string ending with an escaping char like "000_", just ignore the last escaping char *) loop (length src - 1) (Bytes.length dst) to_unescape'; Bytes.unsafe_to_string ~no_mutation_while_string_reachable:dst) ;; let unescape_gen_exn ~escapeworthy_map ~escape_char = Or_error.ok_exn (unescape_gen ~escapeworthy_map ~escape_char) |> stage ;; let unescape ~escape_char = unescape_gen_exn ~escapeworthy_map:[] ~escape_char let preceding_escape_chars str ~escape_char pos = let rec loop p cnt = if p < 0 || Char.( <> ) str.[p] escape_char then cnt else loop (p - 1) (cnt + 1) in loop (pos - 1) 0 ;; (* In an escaped string, any char is either `Escaping, `Escaped or `Literal. For example, the escape statuses of chars in string "a_a__" with escape_char = '_' are a : `Literal _ : `Escaping a : `Escaped _ : `Escaping _ : `Escaped [update_escape_status str ~escape_char i previous_status] gets escape status of str.[i] basing on escape status of str.[i - 1] *) let update_escape_status str ~escape_char i = function | `Escaping -> `Escaped | `Literal | `Escaped -> if Char.equal str.[i] escape_char then `Escaping else `Literal ;; let escape_status str ~escape_char pos = let odd = preceding_escape_chars str ~escape_char pos mod 2 = 1 in match odd, Char.equal str.[pos] escape_char with | true, (true | false) -> `Escaped | false, true -> `Escaping | false, false -> `Literal ;; let check_bound str pos function_name = if pos >= length str || pos < 0 then invalid_argf "%s: out of bounds" function_name () ;; let is_char_escaping str ~escape_char pos = check_bound str pos "is_char_escaping"; match escape_status str ~escape_char pos with | `Escaping -> true | `Escaped | `Literal -> false ;; let is_char_escaped str ~escape_char pos = check_bound str pos "is_char_escaped"; match escape_status str ~escape_char pos with | `Escaped -> true | `Escaping | `Literal -> false ;; let is_char_literal str ~escape_char pos = check_bound str pos "is_char_literal"; match escape_status str ~escape_char pos with | `Literal -> true | `Escaped | `Escaping -> false ;; let index_from str ~escape_char pos char = check_bound str pos "index_from"; let rec loop i status = if i >= pos && (match status with | `Literal -> true | `Escaped | `Escaping -> false) && Char.equal str.[i] char then Some i else ( let i = i + 1 in if i >= length str then None else loop i (update_escape_status str ~escape_char i status)) in loop pos (escape_status str ~escape_char pos) ;; let index_from_exn str ~escape_char pos char = match index_from str ~escape_char pos char with | None -> raise_s (Sexp.message "index_from_exn: not found" [ "str", sexp_of_t str ; "escape_char", sexp_of_char escape_char ; "pos", sexp_of_int pos ; "char", sexp_of_char char ]) | Some pos -> pos ;; let index str ~escape_char char = index_from str ~escape_char 0 char let index_exn str ~escape_char char = index_from_exn str ~escape_char 0 char let rindex_from str ~escape_char pos char = check_bound str pos "rindex_from"; (* if the target char is the same as [escape_char], we have no way to determine which escape_char is literal, so just return None *) if Char.equal char escape_char then None else ( let rec loop pos = if pos < 0 then None else ( let escape_chars = preceding_escape_chars str ~escape_char pos in if escape_chars mod 2 = 0 && Char.equal str.[pos] char then Some pos else loop (pos - escape_chars - 1)) in loop pos) ;; let rindex_from_exn str ~escape_char pos char = match rindex_from str ~escape_char pos char with | None -> raise_s (Sexp.message "rindex_from_exn: not found" [ "str", sexp_of_t str ; "escape_char", sexp_of_char escape_char ; "pos", sexp_of_int pos ; "char", sexp_of_char char ]) | Some pos -> pos ;; let rindex str ~escape_char char = if is_empty str then None else rindex_from str ~escape_char (length str - 1) char ;; let rindex_exn str ~escape_char char = rindex_from_exn str ~escape_char (length str - 1) char ;; (* [split_gen str ~escape_char ~on] works similarly to [String.split_gen], with an additional requirement: only split on literal chars, not escaping or escaped *) let split_gen str ~escape_char ~on = let is_delim = match on with | `char c' -> fun c -> Char.equal c c' | `char_list l -> fun c -> char_list_mem l c in let len = length str in let rec loop acc status last_pos pos = if pos = len then List.rev (sub str ~pos:last_pos ~len:(len - last_pos) :: acc) else ( let status = update_escape_status str ~escape_char pos status in if (match status with | `Literal -> true | `Escaped | `Escaping -> false) && is_delim str.[pos] then ( let sub_str = sub str ~pos:last_pos ~len:(pos - last_pos) in loop (sub_str :: acc) status (pos + 1) (pos + 1)) else loop acc status last_pos (pos + 1)) in loop [] `Literal 0 0 ;; let split str ~on = split_gen str ~on:(`char on) let split_on_chars str ~on:chars = split_gen str ~on:(`char_list chars) let split_at str pos = sub str ~pos:0 ~len:pos, sub str ~pos:(pos + 1) ~len:(length str - pos - 1) ;; let lsplit2 str ~on ~escape_char = Option.map (index str ~escape_char on) ~f:(fun x -> split_at str x) ;; let rsplit2 str ~on ~escape_char = Option.map (rindex str ~escape_char on) ~f:(fun x -> split_at str x) ;; let lsplit2_exn str ~on ~escape_char = split_at str (index_exn str ~escape_char on) let rsplit2_exn str ~on ~escape_char = split_at str (rindex_exn str ~escape_char on) (* [last_non_drop_literal] and [first_non_drop_literal] are either both [None] or both [Some]. If [Some], then the former is >= the latter. *) let last_non_drop_literal ~drop ~escape_char t = rfindi t ~f:(fun i c -> (not (drop c)) || is_char_escaping t ~escape_char i || is_char_escaped t ~escape_char i) ;; let first_non_drop_literal ~drop ~escape_char t = lfindi t ~f:(fun i c -> (not (drop c)) || is_char_escaping t ~escape_char i || is_char_escaped t ~escape_char i) ;; let rstrip_literal ?(drop = Char.is_whitespace) t ~escape_char = match last_non_drop_literal t ~drop ~escape_char with | None -> "" | Some i -> if i = length t - 1 then t else prefix t (i + 1) ;; let lstrip_literal ?(drop = Char.is_whitespace) t ~escape_char = match first_non_drop_literal t ~drop ~escape_char with | None -> "" | Some 0 -> t | Some n -> drop_prefix t n ;; (* [strip t] could be implemented as [lstrip (rstrip t)]. The implementation below saves (at least) a factor of two allocation, by only allocating the final result. This also saves some amount of time. *) let strip_literal ?(drop = Char.is_whitespace) t ~escape_char = let length = length t in (* performance hack: avoid copying [t] in common cases *) if length = 0 || not (drop t.[0] || drop t.[length - 1]) then t else ( match first_non_drop_literal t ~drop ~escape_char with | None -> "" | Some first -> (match last_non_drop_literal t ~drop ~escape_char with | None -> assert false | Some last -> sub t ~pos:first ~len:(last - first + 1))) ;; end (* Open replace_polymorphic_compare after including functor instantiations so they do not shadow its definitions. This is here so that efficient versions of the comparison functions are available within this module. *) open! String_replace_polymorphic_compare let between t ~low ~high = low <= t && t <= high let clamp_unchecked t ~min ~max = if t < min then min else if t <= max then t else max let clamp_exn t ~min ~max = assert (min <= max); clamp_unchecked t ~min ~max ;; let clamp t ~min ~max = if min > max then Or_error.error_s (Sexp.message "clamp requires [min <= max]" [ "min", T.sexp_of_t min; "max", T.sexp_of_t max ]) else Ok (clamp_unchecked t ~min ~max) ;; (* Override [Search_pattern] with default case-sensitivity argument at the end of the file, so that call sites above are forced to supply case-sensitivity explicitly. *) module Search_pattern = struct include Search_pattern0 let create ?(case_sensitive = true) pattern = create pattern ~case_sensitive end (* Include type-specific [Replace_polymorphic_compare] at the end, after including functor application that could shadow its definitions. This is here so that efficient versions of the comparison functions are exported by this module. *) include String_replace_polymorphic_compare
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>