package base
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Full standard library replacement for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.15.1.tar.gz
sha256=755e303171ea267e3ba5af7aa8ea27537f3394d97c77d340b10f806d6ef61a14
doc/src/base/avltree.ml.html
Source file avltree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539(* A few small things copied from other parts of Base because they depend on us, so we can't use them. *) open! Import let raise_s = Error.raise_s module Int = struct type t = int let max (x : t) y = if x > y then x else y end (* Its important that Empty have no args. It's tempting to make this type a record (e.g. to hold the compare function), but a lot of memory is saved by Empty being an immediate, since all unused buckets in the hashtbl don't use any memory (besides the array cell) *) type ('k, 'v) t = | Empty | Node of { mutable left : ('k, 'v) t ; key : 'k ; mutable value : 'v ; mutable height : int ; mutable right : ('k, 'v) t } | Leaf of { key : 'k ; mutable value : 'v } let empty = Empty let is_empty = function | Empty -> true | Leaf _ | Node _ -> false ;; let height = function | Empty -> 0 | Leaf _ -> 1 | Node { left = _; key = _; value = _; height; right = _ } -> height ;; let invariant compare = let legal_left_key key = function | Empty -> () | Leaf { key = left_key; value = _ } | Node { left = _; key = left_key; value = _; height = _; right = _ } -> assert (compare left_key key < 0) in let legal_right_key key = function | Empty -> () | Leaf { key = right_key; value = _ } | Node { left = _; key = right_key; value = _; height = _; right = _ } -> assert (compare right_key key > 0) in let rec inv = function | Empty | Leaf _ -> () | Node { left; key = k; value = _; height = h; right } -> let hl, hr = height left, height right in inv left; inv right; legal_left_key k left; legal_right_key k right; assert (h = Int.max hl hr + 1); assert (abs (hl - hr) <= 2) in inv ;; let invariant t ~compare = invariant compare t (* In the following comments, 't is balanced' means that 'invariant t' does not raise an exception. This implies of course that each node's height field is correct. 't is balanceable' means that height of the left and right subtrees of t differ by at most 3. *) (* @pre: left and right subtrees have correct heights @post: output has the correct height *) let update_height = function | Node ({ left; key = _; value = _; height = old_height; right } as x) -> let new_height = Int.max (height left) (height right) + 1 in if new_height <> old_height then x.height <- new_height | Empty | Leaf _ -> assert false ;; (* @pre: left and right subtrees are balanced @pre: tree is balanceable @post: output is balanced (in particular, height is correct) *) let balance tree = match tree with | Empty | Leaf _ -> tree | Node ({ left; key = _; value = _; height = _; right } as root_node) -> let hl = height left and hr = height right in (* + 2 is critically important, lowering it to 1 will break the Leaf assumptions in the code below, and will force us to promote leaf nodes in the balance routine. It's also faster, since it will balance less often. Note that the following code is delicate. The update_height calls must occur in the correct order, since update_height assumes its children have the correct heights. *) if hl > hr + 2 then ( match left with (* It cannot be a leaf, because even if right is empty, a leaf is only height 1 *) | Empty | Leaf _ -> assert false | Node ({ left = left_node_left ; key = _ ; value = _ ; height = _ ; right = left_node_right } as left_node) -> if height left_node_left >= height left_node_right then ( root_node.left <- left_node_right; left_node.right <- tree; update_height tree; update_height left; left) else ( (* if right is a leaf, then left must be empty. That means height is 2. Even if hr is empty we still can't get here. *) match left_node_right with | Empty | Leaf _ -> assert false | Node ({ left = lr_left; key = _; value = _; height = _; right = lr_right } as lr_node) -> left_node.right <- lr_left; root_node.left <- lr_right; lr_node.right <- tree; lr_node.left <- left; update_height left; update_height tree; update_height left_node_right; left_node_right)) else if hr > hl + 2 then ( (* see above for an explanation of why right cannot be a leaf *) match right with | Empty | Leaf _ -> assert false | Node ({ left = right_node_left ; key = _ ; value = _ ; height = _ ; right = right_node_right } as right_node) -> if height right_node_right >= height right_node_left then ( root_node.right <- right_node_left; right_node.left <- tree; update_height tree; update_height right; right) else ( (* see above for an explanation of why this cannot be a leaf *) match right_node_left with | Empty | Leaf _ -> assert false | Node ({ left = rl_left; key = _; value = _; height = _; right = rl_right } as rl_node) -> right_node.left <- rl_right; root_node.right <- rl_left; rl_node.left <- tree; rl_node.right <- right; update_height right; update_height tree; update_height right_node_left; right_node_left)) else ( update_height tree; tree) ;; (* @pre: tree is balanceable @pre: abs (height (right node) - height (balance tree)) <= 3 @post: result is balanceable *) (* @pre: tree is balanceable @pre: abs (height (right node) - height (balance tree)) <= 3 @post: result is balanceable *) let set_left node tree = let tree = balance tree in match node with | Node ({ left; key = _; value = _; height = _; right = _ } as r) -> if phys_equal left tree then () else r.left <- tree; update_height node | _ -> assert false ;; (* @pre: tree is balanceable @pre: abs (height (left node) - height (balance tree)) <= 3 @post: result is balanceable *) let set_right node tree = let tree = balance tree in match node with | Node ({ left = _; key = _; value = _; height = _; right } as r) -> if phys_equal right tree then () else r.right <- tree; update_height node | _ -> assert false ;; (* @pre: t is balanced. @post: result is balanced, with new node inserted @post: !added = true iff the shape of the input tree changed. *) let add = let rec add t replace added compare k v = match t with | Empty -> added := true; Leaf { key = k; value = v } | Leaf ({ key = k'; value = _ } as r) -> let c = compare k' k in (* This compare is reversed on purpose, we are pretending that the leaf was just inserted instead of the other way round, that way we only allocate one node. *) if c = 0 then ( added := false; if replace then r.value <- v; t) else ( added := true; if c < 0 then Node { left = t; key = k; value = v; height = 2; right = Empty } else Node { left = Empty; key = k; value = v; height = 2; right = t }) | Node ({ left; key = k'; value = _; height = _; right } as r) -> let c = compare k k' in if c = 0 then ( added := false; if replace then r.value <- v) else if c < 0 then set_left t (add left replace added compare k v) else set_right t (add right replace added compare k v); t in fun t ~replace ~compare ~added ~key ~data -> let t = add t replace added compare key data in if !added then balance t else t ;; let rec first t = match t with | Empty -> None | Leaf { key = k; value = v } | Node { left = Empty; key = k; value = v; height = _; right = _ } -> Some (k, v) | Node { left = l; key = _; value = _; height = _; right = _ } -> first l ;; let rec last t = match t with | Empty -> None | Leaf { key = k; value = v } | Node { left = _; key = k; value = v; height = _; right = Empty } -> Some (k, v) | Node { left = _; key = _; value = _; height = _; right = r } -> last r ;; let[@inline always] rec findi_and_call_impl t ~compare k arg1 arg2 ~call_if_found ~call_if_not_found ~if_found ~if_not_found = match t with | Empty -> call_if_not_found ~if_not_found k arg1 arg2 | Leaf { key = k'; value = v } -> if compare k k' = 0 then call_if_found ~if_found ~key:k' ~data:v arg1 arg2 else call_if_not_found ~if_not_found k arg1 arg2 | Node { left; key = k'; value = v; height = _; right } -> let c = compare k k' in if c = 0 then call_if_found ~if_found ~key:k' ~data:v arg1 arg2 else findi_and_call_impl (if c < 0 then left else right) ~compare k arg1 arg2 ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let find_and_call = let call_if_found ~if_found ~key:_ ~data () () = if_found data in let call_if_not_found ~if_not_found key () () = if_not_found key in fun t ~compare k ~if_found ~if_not_found -> findi_and_call_impl t ~compare k () () ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let findi_and_call = let call_if_found ~if_found ~key ~data () () = if_found ~key ~data in let call_if_not_found ~if_not_found key () () = if_not_found key in fun t ~compare k ~if_found ~if_not_found -> findi_and_call_impl t ~compare k () () ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let find_and_call1 = let call_if_found ~if_found ~key:_ ~data arg () = if_found data arg in let call_if_not_found ~if_not_found key arg () = if_not_found key arg in fun t ~compare k ~a ~if_found ~if_not_found -> findi_and_call_impl t ~compare k a () ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let findi_and_call1 = let call_if_found ~if_found ~key ~data arg () = if_found ~key ~data arg in let call_if_not_found ~if_not_found key arg () = if_not_found key arg in fun t ~compare k ~a ~if_found ~if_not_found -> findi_and_call_impl t ~compare k a () ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let find_and_call2 = let call_if_found ~if_found ~key:_ ~data arg1 arg2 = if_found data arg1 arg2 in let call_if_not_found ~if_not_found key arg1 arg2 = if_not_found key arg1 arg2 in fun t ~compare k ~a ~b ~if_found ~if_not_found -> findi_and_call_impl t ~compare k a b ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let findi_and_call2 = let call_if_found ~if_found ~key ~data arg1 arg2 = if_found ~key ~data arg1 arg2 in let call_if_not_found ~if_not_found key arg1 arg2 = if_not_found key arg1 arg2 in fun t ~compare k ~a ~b ~if_found ~if_not_found -> findi_and_call_impl t ~compare k a b ~call_if_found ~call_if_not_found ~if_found ~if_not_found ;; let find = let if_found v = Some v in let if_not_found _ = None in fun t ~compare k -> find_and_call t ~compare k ~if_found ~if_not_found ;; let mem = let if_found _ = true in let if_not_found _ = false in fun t ~compare k -> find_and_call t ~compare k ~if_found ~if_not_found ;; let remove = let rec min_elt tree = match tree with | Empty -> Empty | Leaf _ -> tree | Node { left = Empty; key = _; value = _; height = _; right = _ } -> tree | Node { left; key = _; value = _; height = _; right = _ } -> min_elt left in let rec remove_min_elt tree = match tree with | Empty -> assert false | Leaf _ -> Empty (* This must be the root *) | Node { left = Empty; key = _; value = _; height = _; right } -> right | Node { left = Leaf _; key = k; value = v; height = _; right = Empty } -> Leaf { key = k; value = v } | Node { left = Leaf _; key = _; value = _; height = _; right = _ } as node -> set_left node Empty; tree | Node { left; key = _; value = _; height = _; right = _ } as node -> set_left node (remove_min_elt left); tree in let merge t1 t2 = match t1, t2 with | Empty, t -> t | t, Empty -> t | _, _ -> let tree = min_elt t2 in (match tree with | Empty -> assert false | Leaf { key = k; value = v } -> let t2 = balance (remove_min_elt t2) in Node { left = t1 ; key = k ; value = v ; height = Int.max (height t1) (height t2) + 1 ; right = t2 } | Node _ as node -> set_right node (remove_min_elt t2); set_left node t1; node) in let rec remove t removed compare k = match t with | Empty -> removed := false; Empty | Leaf { key = k'; value = _ } -> if compare k k' = 0 then ( removed := true; Empty) else ( removed := false; t) | Node { left; key = k'; value = _; height = _; right } -> let c = compare k k' in if c = 0 then ( removed := true; merge left right) else if c < 0 then ( set_left t (remove left removed compare k); t) else ( set_right t (remove right removed compare k); t) in fun t ~removed ~compare k -> balance (remove t removed compare k) ;; let rec fold t ~init ~f = match t with | Empty -> init | Leaf { key; value = data } -> f ~key ~data init | Node { left = Leaf { key = lkey; value = ldata } ; key ; value = data ; height = _ ; right = Leaf { key = rkey; value = rdata } } -> f ~key:rkey ~data:rdata (f ~key ~data (f ~key:lkey ~data:ldata init)) | Node { left = Leaf { key = lkey; value = ldata } ; key ; value = data ; height = _ ; right = Empty } -> f ~key ~data (f ~key:lkey ~data:ldata init) | Node { left = Empty ; key ; value = data ; height = _ ; right = Leaf { key = rkey; value = rdata } } -> f ~key:rkey ~data:rdata (f ~key ~data init) | Node { left; key; value = data; height = _; right = Leaf { key = rkey; value = rdata } } -> f ~key:rkey ~data:rdata (f ~key ~data (fold left ~init ~f)) | Node { left = Leaf { key = lkey; value = ldata }; key; value = data; height = _; right } -> fold right ~init:(f ~key ~data (f ~key:lkey ~data:ldata init)) ~f | Node { left; key; value = data; height = _; right } -> fold right ~init:(f ~key ~data (fold left ~init ~f)) ~f ;; let rec iter t ~f = match t with | Empty -> () | Leaf { key; value = data } -> f ~key ~data | Node { left; key; value = data; height = _; right } -> iter left ~f; f ~key ~data; iter right ~f ;; let rec mapi_inplace t ~f = match t with | Empty -> () | Leaf ({ key; value } as t) -> t.value <- f ~key ~data:value | Node ({ left; key; value; height = _; right } as t) -> mapi_inplace ~f left; t.value <- f ~key ~data:value; mapi_inplace ~f right ;; let choose_exn = function | Empty -> raise_s (Sexp.message "[Avltree.choose_exn] of empty hashtbl" []) | Leaf { key; value; _ } | Node { key; value; _ } -> key, value ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>