package vg

  1. Overview
  2. Docs
Declarative 2D vector graphics for OCaml

Install

dune-project
 Dependency

Authors

Maintainers

Sources

vg-0.9.4.tbz
sha256=5359d15d9b2055b538939057b0112c5a5cfea5c65e54f2f89645e65ea8f93aa0
md5=87e3624672af90b9b7960d2102f9bd71

doc/src/vg/vg.ml.html

Source file vg.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
(*---------------------------------------------------------------------------
   Copyright (c) 2013 The vg programmers. All rights reserved.
   Distributed under the ISC license, see terms at the end of the file.
   vg v0.9.4
  ---------------------------------------------------------------------------*)

open Gg

let stdlib_compare = compare

(* Invalid_arg strings *)

let err_empty = "empty path"
let err_bounds j l = Printf.sprintf "invalid bounds (index %d, length %d)" j l
let err_exp_await = "`Await expected"
let err_end = "`End rendered, render can't be used on renderer"
let err_once = "a single `Image can be rendered"

(* Unsafe string byte manipulations. If you don't believe the authors's
   invariants, replacing with safe versions makes everything safe in the
   module. He won't be upset. *)

let unsafe_blit = Bytes.unsafe_blit
let unsafe_set_byte s j byte = Bytes.unsafe_set s j (Char.unsafe_chr byte)

(* A few useful definitions *)

external ( >> ) : 'a -> ('a -> 'b) -> 'b = "%revapply"
let eps = 1e-9
let io_buffer_size = 65536                          (* IO_BUFFER_SIZE 4.0.0 *)

(* Pretty printing *)

let pp ppf fmt = Format.fprintf ppf fmt
let pp_space = Format.pp_print_space
let pp_float ppf v = pp ppf "%g" v
let rec pp_list ?(pp_sep = Format.pp_print_cut) pp_v ppf = function
| [] -> ()
| v :: vs ->
    pp_v ppf v; if vs <> [] then (pp_sep ppf (); pp_list ~pp_sep pp_v ppf vs)

let to_string_of_formatter pp v =                       (* NOT thread safe. *)
  Format.fprintf Format.str_formatter "%a" pp v;
  Format.flush_str_formatter ()

(* Fonts *)

module Font = struct
  type slant = [ `Normal | `Italic | `Oblique ]
  type weight =
    [ `W100 | `W200 | `W300 | `W400 | `W500 | `W600 | `W700 | `W800 | `W900 ]

  type t = { name : string; slant : slant; weight : weight; size : float; }

  (* Predicates and comparisons *)

  let equal = ( = )
  let equal_f eq font font' =
    font.name = font'.name && eq font.size font'.size &&
    font.weight = font'.weight && font.slant = font'.slant

  let compare = stdlib_compare
  let compare_f cmp font font' =
    let c = stdlib_compare font.name font'.name in
    if c <> 0 then c else
    let c = stdlib_compare font.slant font'.slant in
    if c <> 0 then c else
    let c = stdlib_compare font.weight font'.weight in
    if c <> 0 then c else
    let c = cmp font.size font'.size in
    c

  (* Printers *)

  let weight_to_str = function
  | `W100 -> "100" | `W200 -> "200" | `W300 -> "300" | `W400 -> "400"
  | `W500 -> "500" | `W600 -> "600" | `W700 -> "700" | `W800 -> "800"
  | `W900 -> "900"

  let slant_to_str = function
  | `Normal -> "normal" | `Italic -> "italic" | `Oblique -> "oblique"

  let pp ppf font =
    pp ppf "@[<1>(font@ (name %s)@ (weight %s)@ (slant %s)@ (size %g))@]"
      font.name (weight_to_str font.weight) (slant_to_str font.slant) font.size

  let to_string p = to_string_of_formatter pp p
end

type glyph = int
type font = Font.t

(* Paths *)

module P = struct

  (* Path outline caps *)

  type cap = [ `Butt | `Round | `Square ]

  let pp_cap ppf = function
  | `Butt -> pp ppf "Butt" | `Round -> pp ppf "Round"
  | `Square -> pp ppf "Square"

  (* Path outline joins *)

  type join = [ `Miter | `Round | `Bevel ]

  let pp_join ppf = function
  | `Bevel -> pp ppf "Bevel" | `Miter -> pp ppf "Miter"
  | `Round -> pp ppf "Round"

  (* Path outline dashes *)

  type dashes = float * float list

  let eq_dashes eq d d' = match d, d' with
  | Some (f, ds), Some (f', ds') ->
      eq f f' && (try List.for_all2 eq ds ds' with Invalid_argument _ -> false)
  | d, d' -> d = d'

  let cmp_dashes cmp d d' = match d, d' with
  | Some (f, ds), Some (f', ds') ->
      let rec dashes ds ds' = match ds, ds' with
      | d :: ds, d' :: ds' ->
          let c = cmp d d' in
          if c <> 0 then c else dashes ds ds'
      | ds, ds' -> stdlib_compare ds ds'
      in
      let c = cmp f f' in
      if c <> 0 then c else dashes ds ds'
  | d, d' -> stdlib_compare d d'

  let pp_dashes pp_f ppf = function
  | None -> () | Some (f, ds) ->
      let pp_dashes ppf ds = pp_list ~pp_sep:pp_space pp_f ppf ds in
      pp ppf "@ (dashes %a @[<1>(%a)@])" pp_f f pp_dashes ds

  (* Path outlines *)

  type outline =
    { width : float; cap : cap; join : join; miter_angle : float;
      dashes : dashes option }

  let o = { width = 1.; cap = `Butt; join = `Miter;
            miter_angle = Float.rad_of_deg 11.5;
            dashes = None }

  let eq_outline eq o o' =
    eq o.width o'.width && o.cap = o'.cap && o.join = o'.join &&
    eq o.miter_angle o'.miter_angle && eq_dashes eq o.dashes o'.dashes

  let cmp_outline cmp o o' =
    let c = cmp o.width o'.width in
    if c <> 0 then c else
    let c = stdlib_compare o.cap o'.cap in
    if c <> 0 then c else
    let c = stdlib_compare o.join o'.join in
    if c <> 0 then c else
    let c = cmp o.miter_angle o'.miter_angle in
    if c <> 0 then c else cmp_dashes cmp o.dashes o'.dashes

  let pp_outline_f pp_f ppf o =
    pp ppf "@[<1>(outline@ (width %a)@ (cap %a)@ (join %a)\
            @ (miter-angle %a)%a)@]"
      pp_f o.width pp_cap o.cap pp_join o.join pp_f o.miter_angle
      (pp_dashes pp_f) o.dashes

  let pp_outline ppf o = pp_outline_f pp_float ppf o

  (* Path areas *)

  type area = [ `Aeo | `Anz | `O of outline ]

  let eq_area eq a a' = match a, a' with
  | `O o, `O o' -> eq_outline eq o o'
  | a, a' -> a = a'

  let cmp_area cmp a a' = match a, a' with
  | `O o, `O o' -> cmp_outline cmp o o'
  | a, a' -> stdlib_compare a a'

  let pp_area_f pp_f ppf = function
  | `Anz -> pp ppf "@[<1>anz@]"
  | `Aeo -> pp ppf "@[<1>aeo@]"
  | `O o -> pp ppf "%a" (pp_outline_f pp_f) o

  let pp_area ppf a = pp_area_f pp_float ppf a

  (* Paths *)

  type segment =
    [ `Sub of p2                          (* subpath start, "empty" segment *)
    | `Line of p2
    | `Qcurve of p2 * p2
    | `Ccurve of p2 * p2 * p2
    | `Earc of bool * bool * float * size2 * p2
    | `Close ]

  type t = segment list
  (* The list is reversed. The following invariants hold. The last
     element of the list is always `Sub. Between any two `Sub there is
     always at least one element different from `Sub. If there's an
     element preceding a `Close it's a `Sub. *)

  let empty = []
  let last_pt = function
  | [] -> None
  | s :: ss ->
      match s with
      | `Sub pt | `Line pt | `Qcurve (_, pt) | `Ccurve (_, _, pt)
      | `Earc (_, _, _, _, pt) -> Some pt
      | `Close ->
          let rec find_sub = function
          | `Sub pt :: _ -> pt
          | _ :: ss -> find_sub ss
          | [] -> assert false
          in
          Some (find_sub ss)

  (* Subpath and segments *)

  let abs_origin p = match last_pt p with None -> P2.o | Some o -> o
  let abs p pt = match last_pt p with None -> pt | Some o -> V2.(o + pt)
  let close_empty_sub = function
  | (`Sub _ as s) :: p -> `Close :: s :: p
  | p -> p

  let push seg = function
  | [] | `Close :: _  as p -> seg :: `Sub P2.o :: p
  | p  -> seg :: p

  let sub ?(rel = false) pt p =
    let pt = if rel then abs p pt else pt in
    `Sub pt :: (close_empty_sub p)

  let line ?(rel = false) pt p =
    let pt = if rel then abs p pt else pt in
    push (`Line pt) p

  let qcurve ?(rel = false) c pt p =
    if not rel then push (`Qcurve (c, pt)) p else
    let o = abs_origin p in
    push (`Qcurve (V2.(o + c), V2.(o + pt))) p

  let ccurve ?(rel = false) c c' pt p =
    if not rel then push (`Ccurve (c, c', pt)) p else
    let o = abs_origin p in
    push (`Ccurve (V2.(o + c), V2.(o + c'), V2.(o + pt))) p

  let earc ?(rel = false) ?(large = false) ?(cw = false) ?(angle = 0.) r pt p =
    let pt = if rel then abs p pt else pt in
    push (`Earc (large, cw, angle, r, pt)) p

  let close p = push `Close p

  (* Derived subpaths *)

  let circle ?(rel = false) c r p =
    let c = if rel then abs p c else c in
    let cx = P2.x c in
    let cy = P2.y c in
    let a0 = P2.v (cx +. r) cy in
    let api = P2.v (cx -. r) cy in
    let r = V2.v r r in
    p |> sub a0 |> earc r api |> earc r a0 |> close

  let ellipse ?(rel = false) ?(angle = 0.) c r p =
    let c = if rel then abs p c else c in
    let cx = P2.x c in
    let cy = P2.y c in
    let xx = (if angle = 0. then 1.0 else cos angle) *. V2.x r in
    let xy = (if angle = 0. then 0.0 else sin angle) *. V2.x r in
    let a0 = P2.v (cx +. xx) (cy +. xy) in
    let api = P2.v (cx -. xx) (cy -. xy) in
    p |> sub a0 |> earc r ~angle api |> earc r ~angle a0 |> close

  let rect ?(rel = false) r p =
    if Box2.is_empty r then p else
    let lb = if rel then abs p (Box2.o r) else (Box2.o r) in
    let size = Box2.size r in
    let l = P2.x lb in
    let r = l +. Size2.w size in
    let b = P2.y lb in
    let t = b +. Size2.h size in
    p |> sub lb |> line (P2.v r b) |> line (P2.v r t) |> line (P2.v l t) |>
    close

  let rrect ?(rel = false) r cr p =
    if Box2.is_empty r then p else
    let lb = if rel then abs p (Box2.o r) else (Box2.o r) in
    let size = Box2.size r in
    let rx = V2.x cr in
    let ry = V2.y cr in
    let l = P2.x lb in
    let l_inset = l +. rx in
    let r = l +. Size2.w size in
    let r_inset = r -. rx in
    let b = P2.y lb in
    let b_inset = b +. ry in
    let t = b +. Size2.h size in
    let t_inset = t -. ry in
    p |> sub (P2.v l b_inset) |>
    earc cr (P2.v l_inset b) |> line (P2.v r_inset b) |>
    earc cr (P2.v r b_inset) |> line (P2.v r t_inset) |>
    earc cr (P2.v r_inset t) |> line (P2.v l_inset t) |>
    earc cr (P2.v l t_inset) |> close

  (* Geometry *)

  (* See Vgr.Private.P.earc_params in mli file for the doc. The center is
     found by first transforming the points on the ellipse to points on
     a unit circle (i.e. we rotate by -a and scale by 1/rx 1/ry). *)

  let earc_params p0 ~large ~cw a r p1 =
    let rx = V2.x r in let ry = V2.y r in
    let x0 = V2.x p0 in let y0 = V2.y p0 in
    let x1 = V2.x p1 in let y1 = V2.y p1 in
    if Float.is_zero ~eps rx || Float.is_zero ~eps ry then None else
    let sina = Float.round_zero ~eps (sin a) in
    let cosa = Float.round_zero ~eps (cos a) in
    let x0' = (cosa *. x0 +. sina *. y0) /. rx in(* transform to unit circle *)
    let y0' = (-. sina *. x0 +. cosa *. y0) /. ry in
    let x1' = (cosa *. x1 +. sina *. y1) /. rx in
    let y1' = (-. sina *. x1 +. cosa *. y1) /. ry in
    let vx = x1' -. x0' in
    let vy = y1' -. y0' in
    let nx = vy in                                       (* normal to p0'p1' *)
    let ny = -. vx in
    let nn = (nx *. nx) +. (ny *. ny) in
    if Float.is_zero ~eps nn then None (* points coincide *) else
    let d2 = Float.round_zero ~eps (1. /. nn -. 0.25) in
    if d2 < 0. then None (* points are too far apart *) else
    let d = sqrt d2 in
    let d = if (large && cw) || (not large && not cw) then -. d else d in
    let cx' = 0.5 *. (x0' +. x1') +. d *. nx  in            (* circle center *)
    let cy' = 0.5 *. (y0' +. y1') +. d *. ny in
    let t0 = atan2 (y0' -. cy') (x0' -. cx') in              (* angle of p0' *)
    let t1 = atan2 (y1' -. cy') (x1' -. cx') in
    let dt = (t1 -. t0) in
    let adjust =
      if dt > 0. && cw then -. 2. *. Float.pi else
      if dt < 0. && not cw then 2. *. Float.pi else
      0.
    in
    let t1 = t0 +. (dt +. adjust) in                         (* angle of p1' *)
    let e1x = rx *. cosa in
    let e1y = rx *. sina in
    let e2x = -. ry *. sina in
    let e2y = ry *. cosa in
    let cx = e1x *. cx' +. e2x *. cy' in            (* transform center back *)
    let cy = e1y *. cx' +. e2y *. cy' in
    let m = M2.v e1x e2x
                 e1y e2y
    in
    Some ((P2.v cx cy), m, t0, t1)

  let casteljau pt c c' pt' t =
    let b00 = V2.mix pt c t in
    let b01 = V2.mix c c' t in
    let b02 = V2.mix c' pt' t in
    let b10 = V2.mix b00 b01 t in
    let b11 = V2.mix b01 b02 t in
    let b = V2.mix b10 b11 t in
    b

  (* Functions *)

  let last_pt p = match last_pt p with
  | None -> invalid_arg err_empty | Some pt -> pt

  let append p' p =
    let p = close_empty_sub p in
    List.rev_append (List.rev p') p

  let tr m p =
    let det = lazy (M3.det m) in
    let tr_seg m = function
    | `Sub pt -> `Sub (P2.tr m pt)
    | `Line pt -> `Line (P2.tr m pt)
    | `Qcurve (c, pt) -> `Qcurve (P2.tr m c, P2.tr m pt)
    | `Ccurve (c, c', pt) -> `Ccurve (P2.tr m c, P2.tr m c', P2.tr m pt)
    | `Earc (l, cw, a, r, pt) ->
        let sina = sin a in
        let cosa = cos a in
        let rx = V2.x r in
        let ry = V2.y r in
        let ax = V2.v (cosa *. rx) (sina *. rx) in
        let ay = V2.v (-. sina *. ry) (cosa *. ry) in
        (* FIXME this won't work, ax' and ay' may no longer be orthnormal
           with m shears or doesn't scale uniformly. Need to go through
           center parameterization transform there and then back to end point
           parameterization. *)
        let ax' = V2.tr m ax in
        let ay' = V2.tr m ay in
        let a' = atan2 (V2.y ax') (V2.x ax') in
        let rx' = V2.norm ax' in
        let ry' = V2.norm ay' in
        let cw = if Lazy.force det < 0. then not cw else cw in
        `Earc (l, cw, a', (V2.v rx' ry'), (P2.tr m pt))
    | `Close -> `Close
    in
    List.rev (List.rev_map (tr_seg m) p)

  (* Traversal *)

  type fold = segment
  let fold ?(rev = false) f acc p =
    List.fold_left f acc (if rev then p else List.rev p)

  (* Predicates and comparisons *)

  let is_empty = function [] -> true | _ -> false
  let equal p p' = p = p'
  let rec equal_f eq p p' =
    let equal_seg eq s s' = match s, s' with
    | `Sub pt, `Sub pt'
    | `Line pt, `Line pt' ->
        V2.equal_f eq pt pt'
    | `Qcurve (c0, pt), `Qcurve (c0', pt') ->
        V2.equal_f eq c0 c0' && V2.equal_f eq pt pt'
    | `Ccurve (c0, c1, pt), `Ccurve (c0', c1', pt') ->
        V2.equal_f eq c0 c0' && V2.equal_f eq c1 c1' && V2.equal_f eq pt pt'
    | `Earc (l, cw, a, r, pt), `Earc (l', cw', a', r', pt') ->
        l = l' && cw = cw' && eq a a' && V2.equal_f eq r r' &&
        V2.equal_f eq pt pt'
    | `Close, `Close -> true
    | _, _ -> false
    in
    match p, p' with
    | s :: p, s' :: p' -> if equal_seg eq s s' then equal_f eq p p' else false
    | [], [] -> true
    | _ -> false

  let compare p p' = stdlib_compare p p'
  let rec compare_f cmp p p' =
    let compare_seg cmp s s' = match s, s' with
    | `Sub pt, `Sub pt'
    | `Line pt, `Line pt' ->
        V2.compare_f cmp pt pt'
    | `Qcurve (c0, pt), `Qcurve (c0', pt') ->
        let c = V2.compare_f cmp c0 c0' in
        if c <> 0 then c else V2.compare_f cmp pt pt'
    | `Ccurve (c0, c1, pt), `Ccurve (c0', c1', pt') ->
        let c = V2.compare_f cmp c0 c0' in
        if c <> 0 then c else
        let c = V2.compare_f cmp c1 c1' in
        if c <> 0 then c else V2.compare_f cmp pt pt'
    | `Earc (l, cw, a, r, pt), `Earc (l', cw', a', r', pt') ->
        let c = stdlib_compare l l' in
        if c <> 0 then c else
        let c = stdlib_compare cw cw' in
        if c <> 0 then c else
        let c = cmp a a' in
        if c <> 0 then c else
        let c = V2.compare_f cmp r r' in
        if c <> 0 then c else V2.compare_f cmp pt pt'
    | s, s' -> stdlib_compare s s'
    in
    match p, p' with
    | s :: p, s' :: p' ->
        let c = compare_seg cmp s s' in
        if c <> 0 then c else compare_f cmp p p'
    | p, p' -> stdlib_compare p p'

  (* Printers *)

  let pp_seg pp_f pp_v2 ppf = function
  | `Sub pt ->
      pp ppf "@ S@ %a" pp_v2 pt
  | `Line pt ->
      pp ppf "@ L@ %a" pp_v2 pt
  | `Qcurve (c, pt) ->
      pp ppf "@ Qc@ %a@ %a" pp_v2 c pp_v2 pt
  | `Ccurve (c, c', pt) ->
      pp ppf "@ Cc@ %a@ %a@ %a" pp_v2 c pp_v2 c' pp_v2 pt
  | `Earc (l, cw, a, r, pt) ->
      let l = if l then "large" else "small" in
      let cw = if cw then "cw" else "ccw" in
      pp ppf "@ E@ %s@ %s@ %a@ %a@ %a" l cw pp_f a pp_v2 r pp_v2 pt
  | `Close ->
      pp ppf "@ Z"

  let pp_path pp_f ppf p =
    let pp_v2 = V2.pp_f pp_f in
    let pp_segs ppf ss = List.iter (pp_seg pp_f pp_v2 ppf) ss in
    pp ppf "@[<1>(path%a)@]" pp_segs (List.rev p)

  let pp_f pp_f ppf p = pp_path pp_f ppf p
  let pp ppf p = pp_path pp_float ppf p
  let to_string p = to_string_of_formatter pp p
end

type path = P.t

(* Images *)

module I = struct

  (* Blenders *)

  type blender = [ `Atop | `In | `Out | `Over | `Plus | `Copy | `Xor ]

  let pp_blender ppf = function
  | `Atop -> pp ppf "Atop" | `Copy -> pp ppf "Copy" | `In -> pp ppf "In"
  | `Out -> pp ppf "Out" | `Over -> pp ppf "Over" | `Plus -> pp ppf "Plus"
  | `Xor -> pp ppf "Xor"

  (* Transforms *)

  type tr = Move of v2 | Rot of float | Scale of v2 | Matrix of m3

  let eq_tr eq tr tr' = match tr, tr' with
  | Move v, Move v' -> V2.equal_f eq v v'
  | Rot r, Rot r' -> eq r r'
  | Scale s, Scale s' -> V2.equal_f eq s s'
  | Matrix m, Matrix m' -> M3.equal_f eq m m'
  | _, _ -> false

  let cmp_tr cmp tr tr' = match tr, tr' with
  | Move v, Move v' -> V2.compare_f cmp v v'
  | Rot r, Rot r' -> cmp r r'
  | Scale s, Scale s' -> V2.compare_f cmp s s'
  | Matrix m, Matrix m' -> M3.compare_f cmp m m'
  | tr, tr' -> compare tr tr'

  let pp_tr pp_f ppf = function
  | Move v -> pp ppf "(move %a)" (V2.pp_f pp_f) v
  | Rot a -> pp ppf "(rot %a)" pp_f a
  | Scale s -> pp ppf "(scale %a)" (V2.pp_f pp_f) s
  | Matrix m -> pp ppf "%a" (M3.pp_f pp_f) m

  (* Color stops *)

  let pp_stops pp_f ppf ss =
    let pp_stop ppf (s, c) = pp ppf "@ %a@ %a" pp_f s (V4.pp_f pp_f) c in
    pp ppf "@[<1>(stops%a)@]" (fun ppf ss -> List.iter (pp_stop ppf) ss) ss

  let rec eq_stops eq ss ss' = match ss, ss' with
  | (s, c) :: ss, (s', c') :: ss' ->
      eq s s' && V4.equal_f eq c c' && eq_stops eq ss ss'
  | [], [] -> true
  | _, _ -> false

  let rec cmp_stops cmp ss ss' = match ss, ss' with
  | (s, sc) :: ss, (s', sc') :: ss' ->
      let c = cmp s s' in
      if c <> 0 then c else
      let c = V4.compare_f cmp sc sc' in
      if c <> 0 then c else cmp_stops cmp ss ss'
  | ss, ss' -> stdlib_compare ss ss'

  (* Primitives *)

  type primitive =
    | Const of color
    | Axial of Color.stops * p2 * p2
    | Radial of Color.stops * p2 * p2 * float
    | Raster of box2 * raster

  let eq_primitive eq i i' = match i, i' with
  | Const c, Const c' ->
      V4.equal_f eq c c'
  | Axial (stops, p1, p2), Axial (stops', p1', p2') ->
      V2.equal_f eq p1 p1' && V2.equal_f eq p2 p2' && eq_stops eq stops stops'
  | Radial (stops, p1, p2, r), Radial (stops', p1', p2', r') ->
      V2.equal_f eq p1 p1' && V2.equal_f eq p2 p2' && eq r r' &&
      eq_stops eq stops stops'
  | Raster (r, ri), Raster (r', ri') ->
      Box2.equal_f eq r r' && Raster.equal ri ri'
  | _, _ -> false

  let cmp_primitive cmp i i' = match i, i' with
  | Const c, Const c' ->
      V4.compare_f cmp c c'
  | Axial (stops, p1, p2), Axial (stops', p1', p2') ->
      let c = cmp_stops cmp stops stops' in
      if c <> 0 then c else
      let c = V2.compare_f cmp p1 p1' in
      if c <> 0 then c else V2.compare_f cmp p2 p2'
  | Radial (stops, p1, p2, r), Radial (stops', p1', p2', r') ->
      let c = cmp_stops cmp stops stops' in
      if c <> 0 then c else
      let c = V2.compare_f cmp p1 p1' in
      if c <> 0 then c else
      let c = V2.compare_f cmp p2 p2' in
      if c <> 0 then c else cmp r r'
  | Raster (r, ri), Raster (r', ri') ->
      let c = Box2.compare_f cmp r r' in
      if c <> 0 then c else Raster.compare ri ri'
  | i, i' -> stdlib_compare i i'

  let pp_primitive pp_f ppf = function
  | Const c ->
      pp ppf "@[<1>(i-const@ %a)@]" (V4.pp_f pp_f) c
  | Axial (stops, p, p') ->
      pp ppf "@[<1>(i-axial@ %a@ %a@ %a)@]"
        (pp_stops pp_f) stops (V2.pp_f pp_f) p (V2.pp_f pp_f) p'
  | Radial (stops, p, p', r) ->
      pp ppf "@[<1>(i-radial@ %a@ %a@ %a@ %a)@]"
        (pp_stops pp_f) stops (V2.pp_f pp_f) p (V2.pp_f pp_f) p' pp_f r
  | Raster (r, ri) ->
      pp ppf "@[<1>(i-raster %a@ %a)@]" (Box2.pp_f pp_f) r Raster.pp ri

  (* Glyph runs *)

  type glyph_run =
    { font : font;
      text : string option;
      o : p2;
      blocks : bool * (int * int) list;
      advances : v2 list;
      glyphs : glyph list; }

  let eq_blocks (rev0, bs0) (rev1, bs1) = rev0 = rev1 && bs0 = bs1
  let cmp_blocks b0 b1 = stdlib_compare b0 b1

  let eq_advances eq r1 r2 =
    try List.for_all2 (V2.equal_f eq) r1.advances r2.advances with
    | Invalid_argument _ -> false

  let cmp_advances cmp a1s a2s =
    let rec adv a1s a2s = match a1s, a2s with
    | a1 :: a1s, a2 :: a2s ->
        let c = V2.compare_f cmp a1 a2 in
        if c <> 0 then c else adv a1s a2s
    | a1s, a2s -> stdlib_compare a1s a2s
    in
    adv a1s a2s

  let eq_glyph_run eq r1 r2 =
    Font.equal_f eq r1.font r2.font && r1.text = r2.text &&
    V2.equal_f eq r1.o r2.o && eq_blocks r1.blocks r2.blocks &&
    eq_advances eq r1 r2 && r1.glyphs = r2.glyphs

  let cmp_glyph_run cmp r1 r2 =
    let c = Font.compare_f cmp r1.font r2.font in
    if c <> 0 then c else
    let c = stdlib_compare r1.text r2.text in
    if c <> 0 then c else
    let c = V2.compare_f cmp r1.o r2.o in
    if c <> 0 then c else
    let c = cmp_blocks r1.blocks r2.blocks in
    if c <> 0 then c else
    let c = cmp_advances cmp r1.advances r2.advances in
    if c <> 0 then c else
    stdlib_compare r1.glyphs r2.glyphs

  let pp_glyph_run ppf r =
    let pp_text ppf = function
    | None -> ()
    | Some t -> pp ppf "@ @[<1>(text \"%s\")@]" t
    in
    let pp_blocks ppf (rev, blocks) =
      pp ppf "@ @[<1>(blocks@ (rev %b)" rev;
      List.iter (fun (ul, gl) -> pp ppf "@ (%d,%d)" ul gl) blocks;
      pp ppf ")@]"
    in
    let pp_advances ppf advs =
      pp ppf "@ @[<1>(advances";
      List.iter (fun a -> pp ppf "@ %a" V2.pp a) advs;
      pp ppf ")@]"
    in
    let pp_glyphs ppf glyphs =
      pp ppf "@ @[<1>(glyphs";
      List.iter (fun g -> pp ppf "@ %d" g) r.glyphs;
      pp ppf ")@]"
    in
    pp ppf "@[<1>(glyph_run %a%a@ @[<1>(o %a)@]%a%a%a)@]"
      Font.pp r.font pp_text r.text V2.pp r.o pp_blocks r.blocks
      pp_advances r.advances pp_glyphs r.glyphs

  (* Images *)

  type t =
    | Primitive of primitive
    | Cut of P.area * P.t * t
    | Cut_glyphs of P.area * glyph_run * t
    | Blend of blender * float option * t * t
    | Tr of tr * t

  (* Primitive images *)

  let const c = Primitive (Const c)
  let void = const Color.void
  let axial stops pt pt' = Primitive (Axial (stops, pt, pt'))
  let raster b r = Primitive (Raster (b, r))
  let radial stops ?f c r =
    let f = match f with None -> c | Some f -> f in
    Primitive (Radial (stops, f, c, r))

  (* Cutting images *)

  let cut ?(area = `Anz) p i = Cut (area, p, i)
  let cut_glyphs ?area ?text ?(blocks = (false, [])) ?(advances = [])
      font glyphs i =
    let area = match area with None -> `Anz | Some o -> (o :> P.area) in
    let run = { font; text; o = P2.o; blocks; advances; glyphs; } in
    Cut_glyphs (area, run , i)

  (* Blending images *)

  let blend src dst = Blend (`Over, None, src, dst)

  (* Transforming images *)

  let move v i = Tr (Move v, i)
  let rot a i = Tr (Rot a, i)
  let scale s i = Tr (Scale s, i)
  let tr m i = Tr (Matrix m, i)

  (* Predicates and comparisons *)

  let is_void i = i == void
  let equal i i' = i = i'
  let equal_f eq i i' =
    let eq_alpha eq a a' = match a, a' with
    | Some a, Some a' -> eq a a'
    | a, a' -> a = a'
    in
    let rec loop = function
    | [] -> false
    | (i, i') :: acc ->
        match i, i' with
        | Primitive i, Primitive i' ->
            eq_primitive eq i i'
        | Cut (a, p, i), Cut (a', p', i') ->
            P.eq_area eq a a' && P.equal_f eq p p' && loop ((i, i') :: acc)
        | Cut_glyphs (a, r, i), Cut_glyphs (a', r', i') ->
            P.eq_area eq a a' && eq_glyph_run eq r r' && loop ((i, i') :: acc)
        | Blend (b, a, i1, i2), Blend (b', a', i1', i2') ->
            b = b' && eq_alpha eq a a' && loop ((i1, i1') :: (i2, i2') :: acc)
        | Tr (tr, i), Tr (tr', i') ->
            eq_tr eq tr tr' && loop ((i, i') :: acc)
        | _, _ -> false
    in
    loop [(i, i')]

  let compare i i' = stdlib_compare i i'
  let compare_f cmp i i' =
    let cmp_alpha cmp a a' = match a, a' with
    | Some a, Some a' -> cmp a a'
    | a, a' -> stdlib_compare a a'
    in
    let rec loop = function
    | [] -> assert false
    | (i, i') :: acc ->
        match i, i' with
        | Primitive i, Primitive i' ->
            cmp_primitive cmp i i'
        | Cut (a, p, i), Cut (a', p', i') ->
            let c = P.cmp_area cmp a a' in
            if c <> 0 then c else
            let c = P.compare_f cmp p p' in
            if c <> 0 then c else loop ((i, i') :: acc)
        | Cut_glyphs (a, r, i), Cut_glyphs (a', r', i') ->
            let c = P.cmp_area cmp a a' in
            if c <> 0 then c else
            let c = cmp_glyph_run cmp r r' in
            if c <> 0 then c else loop ((i, i') :: acc)
        | Blend (b, a, i1, i2), Blend (b', a', i1', i2') ->
            let c = stdlib_compare b b' in
            if c <> 0 then c else
            let c = cmp_alpha cmp a a' in
            if c <> 0 then c else
            loop ((i1, i1') :: (i2, i2') :: acc)
        | Tr (tr, i), Tr (tr', i') ->
            let c = cmp_tr cmp tr tr' in
            if c <> 0 then c else
            loop ((i, i') :: acc)
        | i, i' -> stdlib_compare i i'
    in
    loop [(i, i')]

  (* Printers *)

  let pp_image pp_f ppf i =
    let pp_alpha pp_f ppf = function
    | None -> () | Some a -> pp ppf "@ (alpha@ %a)" pp_f a
    in
    let rec loop = function
    | [] -> ()
    | `Pop :: todo -> pp ppf ")@]"; loop todo
    | `Sep :: todo -> pp ppf "@ "; loop todo
    | `I i :: todo ->
        match i with
        | Primitive prim ->
            pp ppf "%a" (pp_primitive pp_f) prim;
            loop todo
        | Cut (a, p, i) ->
            pp ppf "@[<1>(i-cut@ %a@ %a@ "(P.pp_area_f pp_f) a (P.pp_f pp_f) p;
            loop (`I i :: `Pop :: todo)
        | Cut_glyphs (a, r, i) ->
            pp ppf "@[<1>(i-cut-glyphs %a@ %a@ "
              (P.pp_area_f pp_f) a pp_glyph_run r;
            loop (`I i :: `Pop :: todo)
        | Blend (b, a, i, i') ->
            pp ppf "@[<1>(i-blend@ %a%a@ " pp_blender b (pp_alpha pp_f) a;
            loop (`I i :: `Sep :: `I i' :: `Pop :: todo)
        | Tr (tr, i) ->
            pp ppf "@[<1>(i-tr@ %a@ " (pp_tr pp_f) tr;
            loop (`I i :: `Pop :: todo)
    in
    loop [`I i]

  let pp_f pp_f ppf i = pp_image pp_f ppf i
  let pp ppf i = pp_image pp_float ppf i
  let to_string p = to_string_of_formatter pp p
end

type image = I.t

(* Image renderers *)

module Vgr = struct

  (* Render warnings *)

  type warning =
    [ `Unsupported_cut of P.area * I.t
    | `Unsupported_glyph_cut of P.area * I.t
    | `Textless_glyph_cut of I.t
    | `Other of string ]

  type warn = warning -> unit

  let pp_warning ppf w =
    let pp_area ppf = function
    | `Aeo -> pp ppf "even-odd"
    | `Anz -> pp ppf "non-zero"
    | `O _ -> pp ppf "outline"
    in
    match w with
    | `Other o ->
        pp ppf "%s" o
    | `Unsupported_cut (a, _) ->
        pp ppf "Unsupported cut: %a" pp_area a
    | `Unsupported_glyph_cut (a, _) ->
        pp ppf "Unsupported glyph cut: %a" pp_area a
    | `Textless_glyph_cut _ ->
        pp ppf "Missing text in glyph cut"

  (* Render metadata *)

  let decompose_posix_time pt =              (* (YYYY, MM, DD), (hh, mm, ss) *)
    let mjd_origin_jd = 2_400_001 in         (* origin of mjd in julian day. *)
    let posix_epoch = 40587 in              (* origin of posix epoch in mjd. *)
    let day = 86_400_000. in
    let hour = 3600_000 in
    let minute = 60_000 in
    let sec = 1_000 in
    let to_gregorian mjd =                             (* cf. calendar FAQ. *)
      let jd = mjd + mjd_origin_jd in                      (* to julian day *)
      let a = jd + 32044 in
      let b = (4 * a + 3) / 146097 in
      let c = a - ((146097 * b) / 4) in
      let d = (4 * c + 3) / 1461 in
      let e = c - ((1461 * d) / 4) in
      let m = (5 * e + 2) / 153 in
      let gd = e - ((153 * m + 2) / 5) + 1 in
      let gm = m + 3 - (12 * (m / 10)) in
      let gy = 100 * b + d - 4800 + (m / 10) in
      (gy, gm, gd)
    in
    let to_hhmmss dt =
      let hh = dt / hour in
      let rem = dt mod hour in
      let mm = rem / minute in
      let ss = (rem mod minute) / sec in
      (hh, mm, ss)
    in
    let ms = floor (pt *. 1000.) in              (* work with milliseconds. *)
    if ms >= 0. then
      let days = truncate (ms /. day) in
      let dt = truncate (mod_float ms day) in
      (to_gregorian (posix_epoch + days), (to_hhmmss dt))
    else
      let ms = ms +. 1. in
      let days = truncate (ms /. day) - 1 in
      let dt = truncate (day +. (mod_float ms day)) - 1 in
      (to_gregorian (posix_epoch + days), (to_hhmmss dt))

  let add_xml_data b str =
    let len = String.length str in
    let start = ref 0 in
    let last = ref 0 in
    let escape e =
      Buffer.add_substring b str !start (!last - !start);
      Buffer.add_string b e;
      incr last;
      start := !last
    in
    while (!last < len) do match String.get str !last with
    | '<' -> escape "&lt;"         (* Escape markup delimiters. *)
    | '>' -> escape "&gt;"
    | '&' -> escape "&amp;"
    (* | '\'' -> escape "&apos;" *) (* Not needed we use \x22 for attributes. *)
    | '\x22' -> escape "&quot;"
    | '\n' | '\t' | '\r' -> incr last
    | c when c < ' ' -> escape "\xEF\xBF\xBD" (* illegal, subst. by U+FFFD *)
    | _ -> incr last
    done;
    Buffer.add_substring b str !start (!last - !start)

  let xmp ?title ?(authors = []) ?(subjects = []) ?description ?rights
      ?creator_tool ?create_date () =
    let fmt = Printf.bprintf in
    let esc = add_xml_data in
    let rec b_list b = function
    | [] -> () | v :: vs -> fmt b "<r:li>%a</r:li>" esc v; b_list b vs in
    let b_title b = function
    | None -> ()
    | Some t -> fmt b "<d:title><r:Alt><r:li xml:lang=\"x-default\">%a\
                       </r:li></r:Alt></d:title>" esc t
    in
    let b_authors b = function
    | [] -> () | l -> fmt b "<d:creator><r:Seq>%a</r:Seq></d:creator>" b_list l
    in
    let b_subjects b = function
    | [] -> () | l -> fmt b "<d:subject><r:Bag>%a</r:Bag></d:subject>" b_list l
    in
    let b_description b = function
    | None -> ()
    | Some d -> fmt b "<d:description><r:Alt><r:li xml:lang=\"x-default\">%a\
                       </r:li></r:Alt></d:description>" esc d
    in
    let b_rights b = function
    | None -> ()
    | Some r -> fmt b "<d:rights><r:Alt><r:li xml:lang=\"x-default\">%a\
                       </r:li></r:Alt></d:rights>" esc r
    in
    let b_creator_tool b = function
    | None -> () | Some c -> fmt b "<x:CreatorTool>%a</x:CreatorTool>" esc c
    in
    let b_create_date b = function
    | None -> ()
    | Some t ->
        let (y, m, d), (hh, mm, ss) = decompose_posix_time t in
        fmt b "<x:CreateDate>%04d-%02d-%02dT%02d:%02d:%02dZ\
               </x:CreateDate>" y m d hh mm ss
    in
    let b = Buffer.create 1024 in
    fmt b "<r:RDF xmlns:r=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" \
                  xmlns:d=\"http://purl.org/dc/elements/1.1/\" \
                  xmlns:x=\"http://ns.adobe.com/xap/1.0/\">\
            <r:Description r:about=\"\">%a%a%a%a%a%a%a</r:Description>\
           </r:RDF>"
      b_title title b_authors authors b_subjects subjects
      b_description description b_rights rights
      b_creator_tool creator_tool b_create_date create_date;
    Buffer.contents b

  (* Renderable *)

  type renderable = size2 * box2 * image

  (* Rendering *)

  type dst_stored =
    [ `Buffer of Buffer.t | `Channel of out_channel | `Manual ]

  type dst = [ dst_stored | `Other ]

  type t =
    { dst : dst;                                     (* output destination. *)
      mutable o : bytes;             (* current output chunk (stored dsts). *)
      mutable o_pos : int;                (* next output position to write. *)
      mutable o_max : int;             (* maximal output position to write. *)
      limit : int;                                         (* render limit. *)
      warn : warn;                                     (* warning callback. *)
      mutable k :                                   (* render continuation. *)
        [`Await | `End | `Image of size2 * box2 * image ] -> t ->
        [ `Ok | `Partial ] }

  type k = t -> [ `Ok | `Partial ]
  type render_fun = [`End | `Image of size2 * box2 * image ] -> k -> k
  type 'a target = t -> 'a -> bool * render_fun constraint 'a = [< dst]

  let expect_await k v r = match v with
  | `Await -> k r | _ -> invalid_arg err_exp_await

  let expect_none v r = match v with
  | `Await | `End | `Image _ -> invalid_arg err_end

  let ok k r = r.k <- k; `Ok
  let partial k r = r.k <- expect_await k; `Partial

  let rec r_once (rfun : render_fun) v r = match v with
  | `End -> rfun `End (ok expect_none) r
  | (`Image _) as i ->
      let rec render_end v r = match v with
      | `End -> rfun `End (ok expect_none) r
      | `Image _ -> invalid_arg err_once
      | `Await -> ok render_end r
      in
      rfun i (ok render_end) r
  | `Await -> ok (r_once rfun) r

  let rec r_loop (rfun : render_fun) v r = match v with
  | `End -> rfun `End (ok expect_none) r
  | `Image _ as i -> rfun i (ok (r_loop rfun)) r
  | `Await -> ok (r_loop rfun) r

  let create ?(limit = max_int) ?(warn = fun _ -> ()) target dst =
    let o, o_pos, o_max = match dst with
    | `Manual | `Other -> Bytes.empty, 1, 0        (* implies [o_rem e = 0]. *)
    | `Buffer _
    | `Channel _ -> Bytes.create io_buffer_size, 0, io_buffer_size - 1
    in
    let k _ _ = assert false in
    let r = { dst = (dst :> dst); o; o_pos; o_max; limit; warn; k} in
    let multi, rfun = target r dst in
    r.k <- if multi then r_loop rfun else r_once rfun;
    r

  let render r v = r.k (v :> [ `Await | `End | `Image of renderable ]) r
  let renderer_dst r = r.dst
  let renderer_limit r = r.limit

  (* Manual rendering destinations *)

  module Manual = struct
    let dst r s j l =                                (* set [r.o] with [s]. *)
      if (j < 0 || l < 0 || j + l > Bytes.length s)
      then invalid_arg (err_bounds j l);
      r.o <- s; r.o_pos <- j; r.o_max <- j + l - 1

    let dst_rem r = r.o_max - r.o_pos + 1   (* rem bytes to write in [r.o]. *)
  end

  (* Implementing renderers. *)

  module Private = struct

    (* Internal data *)

    module Data = struct

      (* Path representation *)

      type segment = P.segment
      type path = P.t
      external of_path : P.t -> path = "%identity"

      (* Image representation *)

      type tr = I.tr = Move of v2 | Rot of float | Scale of v2 | Matrix of m3

      let tr_to_m3 = function
      | Move v -> M3.move2 v
      | Rot a -> M3.rot2 a
      | Scale s -> M3.scale2 s
      | Matrix m -> m

      let inv_tr_to_m3 = function
      | Move v -> M3.move2 (V2.neg v)
      | Rot a -> M3.rot2 (-. a)
      | Scale s -> M3.scale2 (V2.v (1. /. V2.x s) (1. /. V2.y s))
      | Matrix m -> M3.inv m

      type blender = I.blender

      type primitive = I.primitive =
        | Const of color
        | Axial of Color.stops * p2 * p2
        | Radial of Color.stops * p2 * p2 * float
        | Raster of box2 * raster

      type glyph_run = I.glyph_run =
        { font : font;
          text : string option;
          o : p2;
          blocks : (bool * (int * int) list);
          advances : v2 list;
          glyphs : glyph list; }

      type image = I.t =
        | Primitive of primitive
        | Cut of P.area * P.t * image
        | Cut_glyphs of P.area * glyph_run * image
        | Blend of I.blender * float option * image * image
        | Tr of tr * image

      external of_image : I.t -> image = "%identity"
    end

    (* Font helpers *)

    module Font = struct
      let css_slant font = Font.slant_to_str font.Font.slant
      let css_weight font = Font.weight_to_str font.Font.weight
      let css_font ~unit font =
        let slant = css_slant font in
        let weight = css_weight font in
        Printf.sprintf "%s %s %g%s \"%s\"" slant weight font.Font.size unit
          font.Font.name

    end

    (* Path helpers *)

    module P = struct
      external of_data : Data.path -> P.t = "%identity"
      let earc_params = P.earc_params
      let miter_limit o =
        let angle = Float.clamp ~min:0. ~max:Float.pi o.P.miter_angle in
        let angle = if angle = 0. then Float.rad_of_deg 0.05 else angle in
        1. /. sin (angle /. 2.)
    end

    (* Image helpers *)

    module I = struct
      external of_data : Data.image -> I.t = "%identity"
    end

    (* Renderers *)

    type renderer = t

    type k = renderer -> [ `Ok | `Partial ]
    type render_fun = [`End | `Image of size2 * box2 * Data.image ] -> k -> k
    type 'a render_target = renderer -> 'a -> bool * render_fun
    constraint 'a = [< dst]

    let renderer r = r
    let create_target t = t
    let limit r = r.limit
    let warn r w = r.warn w
    let partial = partial
    let o_rem = Manual.dst_rem
    let flush k r =               (* get free space in [r.o] and [k]ontinue. *)
      match r.dst with
      | `Manual -> partial k r
      | `Buffer b -> Buffer.add_subbytes b r.o 0 r.o_pos; r.o_pos <- 0; k r
      | `Channel oc -> output oc r.o 0 r.o_pos; r.o_pos <- 0; k r
      | `Other -> assert false

    let rec writeb b k r =                 (* write byte [b] and [k]ontinue. *)
      if r.o_pos > r.o_max then flush (writeb b k) r else
      (unsafe_set_byte r.o r.o_pos b; r.o_pos <- r.o_pos + 1; k r)

    let rec writes s j l k r =  (* write [l] bytes from [s] starting at [j]. *)
      let b = Bytes.unsafe_of_string s in
      let rem = o_rem r in
      if rem >= l
      then (unsafe_blit b j r.o r.o_pos l; r.o_pos <- r.o_pos + l; k r)
      else begin
        unsafe_blit b j r.o r.o_pos rem; r.o_pos <- r.o_pos + rem;
        flush (writes s (j + rem) (l - rem) k) r
      end

    let rec writebuf buf j l k r = (* write [l] bytes from [buf] start at [j].*)
      let rem = o_rem r in
      if rem >= l
      then (Buffer.blit buf j r.o r.o_pos l; r.o_pos <- r.o_pos + l; k r)
      else begin
        Buffer.blit buf j r.o r.o_pos rem; r.o_pos <- r.o_pos + rem;
        flush (writebuf buf (j + rem) (l - rem) k) r
      end

    let add_xml_data = add_xml_data
  end
end

type renderer = Vgr.t

(*---------------------------------------------------------------------------
   Copyright (c) 2013 The vg programmers

   Permission to use, copy, modify, and/or distribute this software for any
   purpose with or without fee is hereby granted, provided that the above
   copyright notice and this permission notice appear in all copies.

   THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  ---------------------------------------------------------------------------*)