package torch

  1. Overview
  2. Docs

Module Torch_core.Wrapper_generatedSource

Sourcemodule C : sig ... end
Sourceval to_tensor_list : unit Ctypes.ptr Ctypes.ptr -> unit Ctypes.ptr list
Sourceval abs_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval acos_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval adaptive_avg_pool1d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval adaptive_avg_pool2d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval adaptive_avg_pool2d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval adaptive_avg_pool3d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval adaptive_avg_pool3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval adaptive_avg_pool3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval adaptive_avg_pool3d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval adaptive_max_pool1d : C.TensorG.t -> output_size:int list -> C.TensorG.t * C.TensorG.t
Sourceval adaptive_max_pool2d : C.TensorG.t -> output_size:int list -> C.TensorG.t * C.TensorG.t
Sourceval adaptive_max_pool2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t
Sourceval adaptive_max_pool2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t
Sourceval adaptive_max_pool2d_out : out:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t * C.TensorG.t
Sourceval adaptive_max_pool3d : C.TensorG.t -> output_size:int list -> C.TensorG.t * C.TensorG.t
Sourceval adaptive_max_pool3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t
Sourceval adaptive_max_pool3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t
Sourceval adaptive_max_pool3d_out : out:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t * C.TensorG.t
Sourceval addbmm : C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval addbmm_ : C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval addbmm_out : out:C.TensorG.t -> C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval addcdiv : C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addcdiv_ : C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addcdiv_out : out:C.TensorG.t -> C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addcmul : C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addcmul_ : C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addcmul_out : out:C.TensorG.t -> C.TensorG.t -> tensor1:C.TensorG.t -> tensor2:C.TensorG.t -> C.TensorG.t
Sourceval addmm : C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval addmm_ : C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval addmm_out : out:C.TensorG.t -> C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval addmv_out : out:C.TensorG.t -> C.TensorG.t -> mat:C.TensorG.t -> vec:C.TensorG.t -> C.TensorG.t
Sourceval addr_ : C.TensorG.t -> vec1:C.TensorG.t -> vec2:C.TensorG.t -> C.TensorG.t
Sourceval addr_out : out:C.TensorG.t -> C.TensorG.t -> vec1:C.TensorG.t -> vec2:C.TensorG.t -> C.TensorG.t
Sourceval affine_grid_generator : theta:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval affine_grid_generator_backward : grad:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval all1 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval all_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval alpha_dropout : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval alpha_dropout_ : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval any1 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval any_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval arange : end_:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval arange1 : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval arange2 : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> step:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval arange_out : out:C.TensorG.t -> end_:C.TensorG.scalar -> C.TensorG.t
Sourceval arange_out1 : out:C.TensorG.t -> start:C.TensorG.scalar -> end_:C.TensorG.scalar -> C.TensorG.t
Sourceval argmax : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval argmin : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval argsort : C.TensorG.t -> dim:int -> descending:bool -> C.TensorG.t
Sourceval as_strided : C.TensorG.t -> size:int list -> stride:int list -> storage_offset:int -> C.TensorG.t
Sourceval as_strided_ : C.TensorG.t -> size:int list -> stride:int list -> storage_offset:int -> C.TensorG.t
Sourceval asin_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval atan_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval avg_pool1d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool2d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool2d_out : out:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool3d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval avg_pool3d_out : out:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> ceil_mode:bool -> count_include_pad:bool -> C.TensorG.t
Sourceval baddbmm : C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval baddbmm_ : C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval baddbmm_out : out:C.TensorG.t -> C.TensorG.t -> batch1:C.TensorG.t -> batch2:C.TensorG.t -> C.TensorG.t
Sourceval bartlett_window : window_length:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval bartlett_window1 : window_length:int -> periodic:bool -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval batch_norm : C.TensorG.t -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> training:bool -> momentum:float -> eps:float -> cudnn_enabled:bool -> C.TensorG.t
Sourceval batch_norm_backward_elemt : grad_out:C.TensorG.t -> C.TensorG.t -> mean:C.TensorG.t -> invstd:C.TensorG.t -> weight:C.TensorG.t option -> mean_dy:C.TensorG.t -> mean_dy_xmu:C.TensorG.t -> C.TensorG.t
Sourceval batch_norm_backward_reduce : grad_out:C.TensorG.t -> C.TensorG.t -> mean:C.TensorG.t -> invstd:C.TensorG.t -> input_g:bool -> weight_g:bool -> bias_g:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval batch_norm_elemt : C.TensorG.t -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> mean:C.TensorG.t -> invstd:C.TensorG.t -> eps:float -> C.TensorG.t
Sourceval batch_norm_gather_stats : C.TensorG.t -> mean:C.TensorG.t -> invstd:C.TensorG.t -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> momentum:float -> eps:float -> count:int -> C.TensorG.t * C.TensorG.t
Sourceval batch_norm_stats : C.TensorG.t -> eps:float -> C.TensorG.t * C.TensorG.t
Sourceval batch_norm_update_stats : C.TensorG.t -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> momentum:float -> C.TensorG.t * C.TensorG.t
Sourceval bernoulli : C.TensorG.t -> C.TensorG.t
Sourceval bernoulli1 : C.TensorG.t -> p:float -> C.TensorG.t
Sourceval bernoulli_ : C.TensorG.t -> p:C.TensorG.t -> C.TensorG.t
Sourceval bernoulli_1 : C.TensorG.t -> p:float -> C.TensorG.t
Sourceval bernoulli_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval bilinear : input1:C.TensorG.t -> input2:C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> C.TensorG.t
Sourceval binary_cross_entropy : C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> C.TensorG.t
Sourceval binary_cross_entropy_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval binary_cross_entropy_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval binary_cross_entropy_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> C.TensorG.t
Sourceval binary_cross_entropy_with_logits : C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> pos_weight:C.TensorG.t option -> reduction:int -> C.TensorG.t
Sourceval binary_cross_entropy_with_logits_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> pos_weight:C.TensorG.t option -> reduction:int -> C.TensorG.t
Sourceval bincount : C.TensorG.t -> weights:C.TensorG.t option -> minlength:int -> C.TensorG.t
Sourceval blackman_window : window_length:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval blackman_window1 : window_length:int -> periodic:bool -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval bmm_out : out:C.TensorG.t -> C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval broadcast_tensors : C.TensorG.t list -> unit Ctypes.ptr list
Sourceval cartesian_prod : C.TensorG.t list -> C.TensorG.t
Sourceval cat : C.TensorG.t list -> dim:int -> C.TensorG.t
Sourceval cat_out : out:C.TensorG.t -> C.TensorG.t list -> dim:int -> C.TensorG.t
Sourceval cauchy_ : C.TensorG.t -> median:float -> sigma:float -> C.TensorG.t
Sourceval cdist : x1:C.TensorG.t -> x2:C.TensorG.t -> p:float -> C.TensorG.t
Sourceval ceil_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval chain_matmul : matrices:C.TensorG.t list -> C.TensorG.t
Sourceval cholesky : C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval cholesky_inverse : C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval cholesky_inverse_out : out:C.TensorG.t -> C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval cholesky_out : out:C.TensorG.t -> C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval cholesky_solve : C.TensorG.t -> input2:C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval cholesky_solve_out : out:C.TensorG.t -> C.TensorG.t -> input2:C.TensorG.t -> upper:bool -> C.TensorG.t
Sourceval chunk : C.TensorG.t -> chunks:int -> dim:int -> unit Ctypes.ptr list
Sourceval clamp_max_out : out:C.TensorG.t -> C.TensorG.t -> max:C.TensorG.scalar -> C.TensorG.t
Sourceval clamp_min_out : out:C.TensorG.t -> C.TensorG.t -> min:C.TensorG.scalar -> C.TensorG.t
Sourceval coalesce : C.TensorG.t -> C.TensorG.t
Sourceval combinations : C.TensorG.t -> r:int -> with_replacement:bool -> C.TensorG.t
Sourceval constant_pad_nd : C.TensorG.t -> pad:int list -> C.TensorG.t
Sourceval contiguous : C.TensorG.t -> C.TensorG.t
Sourceval conv1d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> dilation:int list -> groups:int -> C.TensorG.t
Sourceval conv2d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> dilation:int list -> groups:int -> C.TensorG.t
Sourceval conv3d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> dilation:int list -> groups:int -> C.TensorG.t
Sourceval conv_tbc : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t -> pad:int -> C.TensorG.t
Sourceval conv_tbc_backward : C.TensorG.t -> C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t -> pad:int -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval conv_transpose1d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> output_padding:int list -> groups:int -> dilation:int list -> C.TensorG.t
Sourceval conv_transpose2d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> output_padding:int list -> groups:int -> dilation:int list -> C.TensorG.t
Sourceval conv_transpose3d : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> output_padding:int list -> groups:int -> dilation:int list -> C.TensorG.t
Sourceval convolution : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> stride:int list -> padding:int list -> dilation:int list -> transposed:bool -> output_padding:int list -> groups:int -> C.TensorG.t
Sourceval copy_sparse_to_sparse_ : C.TensorG.t -> src:C.TensorG.t -> non_blocking:bool -> C.TensorG.t
Sourceval cos_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval cosh_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval cosine_embedding_loss : input1:C.TensorG.t -> input2:C.TensorG.t -> target:C.TensorG.t -> margin:float -> reduction:int -> C.TensorG.t
Sourceval cosine_similarity : x1:C.TensorG.t -> x2:C.TensorG.t -> dim:int -> eps:float -> C.TensorG.t
Sourceval cross : C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval cross_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval ctc_loss : log_probs:C.TensorG.t -> targets:C.TensorG.t -> input_lengths:int list -> target_lengths:int list -> blank:int -> reduction:int -> zero_infinity:bool -> C.TensorG.t
Sourceval ctc_loss1 : log_probs:C.TensorG.t -> targets:C.TensorG.t -> input_lengths:C.TensorG.t -> target_lengths:C.TensorG.t -> blank:int -> reduction:int -> zero_infinity:bool -> C.TensorG.t
Sourceval cudnn_affine_grid_generator : theta:C.TensorG.t -> n:int -> c:int -> h:int -> w:int -> C.TensorG.t
Sourceval cudnn_affine_grid_generator_backward : grad:C.TensorG.t -> n:int -> c:int -> h:int -> w:int -> C.TensorG.t
Sourceval cudnn_batch_norm : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> training:bool -> exponential_average_factor:float -> epsilon:float -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval cudnn_batch_norm_backward : C.TensorG.t -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> save_mean:C.TensorG.t option -> save_var:C.TensorG.t option -> epsilon:float -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval cudnn_convolution : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_convolution_backward_bias : grad_output:C.TensorG.t -> C.TensorG.t
Sourceval cudnn_convolution_backward_input : self_size:int list -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_convolution_backward_weight : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_convolution_transpose : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> output_padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_convolution_transpose_backward_bias : grad_output:C.TensorG.t -> C.TensorG.t
Sourceval cudnn_convolution_transpose_backward_input : grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_convolution_transpose_backward_weight : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval cudnn_grid_sampler : C.TensorG.t -> grid:C.TensorG.t -> C.TensorG.t
Sourceval cudnn_grid_sampler_backward : C.TensorG.t -> grid:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval cumprod : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval cumprod1 : C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval cumprod_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval cumprod_out1 : out:C.TensorG.t -> C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval cumsum : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval cumsum1 : C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval cumsum_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval cumsum_out1 : out:C.TensorG.t -> C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval dequantize : C.TensorG.t -> C.TensorG.t
Sourceval diag : C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval diag_embed : C.TensorG.t -> offset:int -> dim1:int -> dim2:int -> C.TensorG.t
Sourceval diag_out : out:C.TensorG.t -> C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval diagflat : C.TensorG.t -> offset:int -> C.TensorG.t
Sourceval diagonal : C.TensorG.t -> offset:int -> dim1:int -> dim2:int -> C.TensorG.t
Sourceval digamma_ : C.TensorG.t -> C.TensorG.t
Sourceval digamma_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval dropout : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval dropout_ : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval eig : C.TensorG.t -> eigenvectors:bool -> C.TensorG.t * C.TensorG.t
Sourceval eig_out : e:C.TensorG.t -> v:C.TensorG.t -> C.TensorG.t -> eigenvectors:bool -> C.TensorG.t * C.TensorG.t
Sourceval elu_backward : grad_output:C.TensorG.t -> alpha:C.TensorG.scalar -> scale:C.TensorG.scalar -> input_scale:C.TensorG.scalar -> output:C.TensorG.t -> C.TensorG.t
Sourceval elu_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> alpha:C.TensorG.scalar -> scale:C.TensorG.scalar -> input_scale:C.TensorG.scalar -> output:C.TensorG.t -> C.TensorG.t
Sourceval elu_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval embedding : weight:C.TensorG.t -> indices:C.TensorG.t -> padding_idx:int -> scale_grad_by_freq:bool -> sparse:bool -> C.TensorG.t
Sourceval embedding_backward : grad:C.TensorG.t -> indices:C.TensorG.t -> num_weights:int -> padding_idx:int -> scale_grad_by_freq:bool -> sparse:bool -> C.TensorG.t
Sourceval embedding_bag : weight:C.TensorG.t -> indices:C.TensorG.t -> offsets:C.TensorG.t -> scale_grad_by_freq:bool -> mode:int -> sparse:bool -> per_sample_weights:C.TensorG.t option -> C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval embedding_dense_backward : grad_output:C.TensorG.t -> indices:C.TensorG.t -> num_weights:int -> padding_idx:int -> scale_grad_by_freq:bool -> C.TensorG.t
Sourceval embedding_renorm_ : C.TensorG.t -> indices:C.TensorG.t -> max_norm:float -> norm_type:float -> C.TensorG.t
Sourceval embedding_sparse_backward : grad:C.TensorG.t -> indices:C.TensorG.t -> num_weights:int -> padding_idx:int -> scale_grad_by_freq:bool -> C.TensorG.t
Sourceval empty : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval empty_like : C.TensorG.t -> C.TensorG.t
Sourceval empty_like1 : C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval empty_out : out:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval empty_strided : size:int list -> stride:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval erf_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval erfc_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval erfinv_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval exp_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval expand : C.TensorG.t -> size:int list -> implicit:bool -> C.TensorG.t
Sourceval expm1_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval exponential_ : C.TensorG.t -> lambd:float -> C.TensorG.t
Sourceval eye : n:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval eye1 : n:int -> m:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval eye_out : out:C.TensorG.t -> n:int -> C.TensorG.t
Sourceval eye_out1 : out:C.TensorG.t -> n:int -> m:int -> C.TensorG.t
Sourceval fbgemm_linear_int8_weight : C.TensorG.t -> weight:C.TensorG.t -> packed:C.TensorG.t -> col_offsets:C.TensorG.t -> weight_scale:C.TensorG.scalar -> weight_zero_point:C.TensorG.scalar -> bias:C.TensorG.t -> C.TensorG.t
Sourceval fbgemm_pack_quantized_matrix : C.TensorG.t -> k:int -> n:int -> C.TensorG.t
Sourceval feature_alpha_dropout : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval feature_alpha_dropout_ : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval feature_dropout : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval feature_dropout_ : C.TensorG.t -> p:float -> train:bool -> C.TensorG.t
Sourceval fft : C.TensorG.t -> signal_ndim:int -> normalized:bool -> C.TensorG.t
Sourceval fill_1 : C.TensorG.t -> value:C.TensorG.t -> C.TensorG.t
Sourceval flatten : C.TensorG.t -> start_dim:int -> end_dim:int -> C.TensorG.t
Sourceval flip : C.TensorG.t -> dims:int list -> C.TensorG.t
Sourceval floor_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval frac_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval fractional_max_pool2d : C.TensorG.t -> kernel_size:int list -> output_size:int list -> random_samples:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval fractional_max_pool2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> indices:C.TensorG.t -> C.TensorG.t
Sourceval fractional_max_pool2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> indices:C.TensorG.t -> C.TensorG.t
Sourceval fractional_max_pool2d_out : output:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> random_samples:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval fractional_max_pool3d : C.TensorG.t -> kernel_size:int list -> output_size:int list -> random_samples:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval fractional_max_pool3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> indices:C.TensorG.t -> C.TensorG.t
Sourceval fractional_max_pool3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> indices:C.TensorG.t -> C.TensorG.t
Sourceval fractional_max_pool3d_out : output:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> output_size:int list -> random_samples:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval frobenius_norm : C.TensorG.t -> C.TensorG.t
Sourceval frobenius_norm1 : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval frobenius_norm_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval full : size:int list -> fill_value:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval full_like : C.TensorG.t -> fill_value:C.TensorG.scalar -> C.TensorG.t
Sourceval full_like1 : C.TensorG.t -> fill_value:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval full_out : out:C.TensorG.t -> size:int list -> fill_value:C.TensorG.scalar -> C.TensorG.t
Sourceval gather : C.TensorG.t -> dim:int -> index:C.TensorG.t -> sparse_grad:bool -> C.TensorG.t
Sourceval gather_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> index:C.TensorG.t -> sparse_grad:bool -> C.TensorG.t
Sourceval geometric_ : C.TensorG.t -> p:float -> C.TensorG.t
Sourceval ger_out : out:C.TensorG.t -> C.TensorG.t -> vec2:C.TensorG.t -> C.TensorG.t
Sourceval glu : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval glu_backward : grad_output:C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval glu_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval glu_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval grid_sampler : C.TensorG.t -> grid:C.TensorG.t -> interpolation_mode:int -> padding_mode:int -> C.TensorG.t
Sourceval grid_sampler_2d : C.TensorG.t -> grid:C.TensorG.t -> interpolation_mode:int -> padding_mode:int -> C.TensorG.t
Sourceval grid_sampler_2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> grid:C.TensorG.t -> interpolation_mode:int -> padding_mode:int -> C.TensorG.t * C.TensorG.t
Sourceval grid_sampler_3d : C.TensorG.t -> grid:C.TensorG.t -> interpolation_mode:int -> padding_mode:int -> C.TensorG.t
Sourceval grid_sampler_3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> grid:C.TensorG.t -> interpolation_mode:int -> padding_mode:int -> C.TensorG.t * C.TensorG.t
Sourceval group_norm : C.TensorG.t -> num_groups:int -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> eps:float -> cudnn_enabled:bool -> C.TensorG.t
Sourceval gru : C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> batch_first:bool -> C.TensorG.t * C.TensorG.t
Sourceval gru1 : data:C.TensorG.t -> batch_sizes:C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> C.TensorG.t * C.TensorG.t
Sourceval gru_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t option -> b_hh:C.TensorG.t option -> C.TensorG.t
Sourceval hamming_window : window_length:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hamming_window1 : window_length:int -> periodic:bool -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hamming_window2 : window_length:int -> periodic:bool -> alpha:float -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hamming_window3 : window_length:int -> periodic:bool -> alpha:float -> beta:float -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hann_window : window_length:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hann_window1 : window_length:int -> periodic:bool -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval hardshrink : C.TensorG.t -> C.TensorG.t
Sourceval hardshrink_backward : grad_out:C.TensorG.t -> C.TensorG.t -> lambd:C.TensorG.scalar -> C.TensorG.t
Sourceval hardtanh : C.TensorG.t -> C.TensorG.t
Sourceval hardtanh_ : C.TensorG.t -> C.TensorG.t
Sourceval hardtanh_backward : grad_output:C.TensorG.t -> C.TensorG.t -> min_val:C.TensorG.scalar -> max_val:C.TensorG.scalar -> C.TensorG.t
Sourceval hardtanh_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> min_val:C.TensorG.scalar -> max_val:C.TensorG.scalar -> C.TensorG.t
Sourceval hardtanh_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval hinge_embedding_loss : C.TensorG.t -> target:C.TensorG.t -> margin:float -> reduction:int -> C.TensorG.t
Sourceval histc : C.TensorG.t -> bins:int -> C.TensorG.t
Sourceval histc_out : out:C.TensorG.t -> C.TensorG.t -> bins:int -> C.TensorG.t
Sourceval hspmm : mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval hspmm_out : out:C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval ifft : C.TensorG.t -> signal_ndim:int -> normalized:bool -> C.TensorG.t
Sourceval index : C.TensorG.t -> indices:C.TensorG.t list -> C.TensorG.t
Sourceval index_add : C.TensorG.t -> dim:int -> index:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval index_add_ : C.TensorG.t -> dim:int -> index:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval index_copy : C.TensorG.t -> dim:int -> index:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval index_copy_ : C.TensorG.t -> dim:int -> index:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval index_fill : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval index_fill1 : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.t -> C.TensorG.t
Sourceval index_fill_ : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval index_fill_1 : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.t -> C.TensorG.t
Sourceval index_put : C.TensorG.t -> indices:C.TensorG.t list -> values:C.TensorG.t -> accumulate:bool -> C.TensorG.t
Sourceval index_put_ : C.TensorG.t -> indices:C.TensorG.t list -> values:C.TensorG.t -> accumulate:bool -> C.TensorG.t
Sourceval index_select : C.TensorG.t -> dim:int -> index:C.TensorG.t -> C.TensorG.t
Sourceval index_select_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> index:C.TensorG.t -> C.TensorG.t
Sourceval instance_norm : C.TensorG.t -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> use_input_stats:bool -> momentum:float -> eps:float -> cudnn_enabled:bool -> C.TensorG.t
Sourceval int_repr : C.TensorG.t -> C.TensorG.t
Sourceval inverse_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval irfft : C.TensorG.t -> signal_ndim:int -> normalized:bool -> onesided:bool -> signal_sizes:int list -> C.TensorG.t
Sourceval isclose : C.TensorG.t -> C.TensorG.t -> rtol:float -> atol:float -> equal_nan:bool -> C.TensorG.t
Sourceval kl_div : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval kl_div_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval kthvalue : C.TensorG.t -> k:int -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval kthvalue_out : values:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> k:int -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval l1_loss : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval l1_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval l1_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval l1_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval layer_norm : C.TensorG.t -> normalized_shape:int list -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> eps:float -> cudnn_enable:bool -> C.TensorG.t
Sourceval leaky_relu : C.TensorG.t -> C.TensorG.t
Sourceval leaky_relu_ : C.TensorG.t -> C.TensorG.t
Sourceval leaky_relu_backward : grad_output:C.TensorG.t -> C.TensorG.t -> negative_slope:C.TensorG.scalar -> C.TensorG.t
Sourceval leaky_relu_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> negative_slope:C.TensorG.scalar -> C.TensorG.t
Sourceval leaky_relu_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval lerp1 : C.TensorG.t -> end_:C.TensorG.t -> weight:C.TensorG.t -> C.TensorG.t
Sourceval lerp_1 : C.TensorG.t -> end_:C.TensorG.t -> weight:C.TensorG.t -> C.TensorG.t
Sourceval lerp_out : out:C.TensorG.t -> C.TensorG.t -> end_:C.TensorG.t -> weight:C.TensorG.scalar -> C.TensorG.t
Sourceval lerp_out1 : out:C.TensorG.t -> C.TensorG.t -> end_:C.TensorG.t -> weight:C.TensorG.t -> C.TensorG.t
Sourceval lgamma_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval linear : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> C.TensorG.t
Sourceval linspace : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> steps:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval linspace_out : out:C.TensorG.t -> start:C.TensorG.scalar -> end_:C.TensorG.scalar -> steps:int -> C.TensorG.t
Sourceval log10_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval log1p_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval log2_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval log_normal_ : C.TensorG.t -> mean:float -> std:float -> C.TensorG.t
Sourceval log_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval log_sigmoid : C.TensorG.t -> C.TensorG.t
Sourceval log_sigmoid_backward : grad_output:C.TensorG.t -> C.TensorG.t -> buffer:C.TensorG.t -> C.TensorG.t
Sourceval log_sigmoid_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> buffer:C.TensorG.t -> C.TensorG.t
Sourceval log_sigmoid_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval log_softmax : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval log_softmax1 : C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval logspace : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> steps:int -> base:float -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval logspace_out : out:C.TensorG.t -> start:C.TensorG.scalar -> end_:C.TensorG.scalar -> steps:int -> base:float -> C.TensorG.t
Sourceval logsumexp : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval logsumexp_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval lstm : C.TensorG.t -> hx:C.TensorG.t list -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> batch_first:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval lstm1 : data:C.TensorG.t -> batch_sizes:C.TensorG.t -> hx:C.TensorG.t list -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval lstm_cell : C.TensorG.t -> hx:C.TensorG.t list -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t option -> b_hh:C.TensorG.t option -> C.TensorG.t * C.TensorG.t
Sourceval lu_solve : C.TensorG.t -> lu_data:C.TensorG.t -> lu_pivots:C.TensorG.t -> C.TensorG.t
Sourceval lu_solve_out : out:C.TensorG.t -> C.TensorG.t -> lu_data:C.TensorG.t -> lu_pivots:C.TensorG.t -> C.TensorG.t
Sourceval margin_ranking_loss : input1:C.TensorG.t -> input2:C.TensorG.t -> target:C.TensorG.t -> margin:float -> reduction:int -> C.TensorG.t
Sourceval masked_fill : C.TensorG.t -> mask:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval masked_fill1 : C.TensorG.t -> mask:C.TensorG.t -> value:C.TensorG.t -> C.TensorG.t
Sourceval masked_fill_ : C.TensorG.t -> mask:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval masked_fill_1 : C.TensorG.t -> mask:C.TensorG.t -> value:C.TensorG.t -> C.TensorG.t
Sourceval masked_scatter : C.TensorG.t -> mask:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval masked_scatter_ : C.TensorG.t -> mask:C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval masked_select : C.TensorG.t -> mask:C.TensorG.t -> C.TensorG.t
Sourceval masked_select_out : out:C.TensorG.t -> C.TensorG.t -> mask:C.TensorG.t -> C.TensorG.t
Sourceval matrix_power : C.TensorG.t -> n:int -> C.TensorG.t
Sourceval matrix_rank : C.TensorG.t -> symmetric:bool -> C.TensorG.t
Sourceval matrix_rank1 : C.TensorG.t -> tol:float -> symmetric:bool -> C.TensorG.t
Sourceval max2 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_out1 : max:C.TensorG.t -> max_values:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_pool1d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t
Sourceval max_pool1d_with_indices : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_pool2d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t
Sourceval max_pool2d_with_indices : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_pool2d_with_indices_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> indices:C.TensorG.t -> C.TensorG.t
Sourceval max_pool2d_with_indices_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> indices:C.TensorG.t -> C.TensorG.t
Sourceval max_pool2d_with_indices_out : output:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_pool3d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t
Sourceval max_pool3d_with_indices : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_pool3d_with_indices_backward : grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> indices:C.TensorG.t -> C.TensorG.t
Sourceval max_pool3d_with_indices_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> indices:C.TensorG.t -> C.TensorG.t
Sourceval max_pool3d_with_indices_out : output:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t * C.TensorG.t
Sourceval max_unpool2d : C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval max_unpool2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval max_unpool2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval max_unpool2d_out : out:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval max_unpool3d : C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> stride:int list -> padding:int list -> C.TensorG.t
Sourceval max_unpool3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> stride:int list -> padding:int list -> C.TensorG.t
Sourceval max_unpool3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> stride:int list -> padding:int list -> C.TensorG.t
Sourceval max_unpool3d_out : out:C.TensorG.t -> C.TensorG.t -> indices:C.TensorG.t -> output_size:int list -> stride:int list -> padding:int list -> C.TensorG.t
Sourceval max_values : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval mean1 : C.TensorG.t -> dtype:Kind.t -> C.TensorG.t
Sourceval mean2 : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval mean3 : C.TensorG.t -> dim:int list -> dtype:Kind.t -> C.TensorG.t
Sourceval mean4 : C.TensorG.t -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval mean_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval mean_out1 : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> dtype:Kind.t -> C.TensorG.t
Sourceval mean_out2 : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval median1 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval median_out : values:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval meshgrid : C.TensorG.t list -> unit Ctypes.ptr list
Sourceval min2 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval min_out1 : min:C.TensorG.t -> min_indices:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval min_values : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval miopen_batch_norm : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> training:bool -> exponential_average_factor:float -> epsilon:float -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval miopen_batch_norm_backward : C.TensorG.t -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> save_mean:C.TensorG.t option -> save_var:C.TensorG.t option -> epsilon:float -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval miopen_convolution : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_convolution_backward_bias : grad_output:C.TensorG.t -> C.TensorG.t
Sourceval miopen_convolution_backward_input : self_size:int list -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_convolution_backward_weight : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_convolution_transpose : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> output_padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_convolution_transpose_backward_input : grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_convolution_transpose_backward_weight : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_depthwise_convolution : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_depthwise_convolution_backward_input : self_size:int list -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval miopen_depthwise_convolution_backward_weight : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> benchmark:bool -> deterministic:bool -> C.TensorG.t
Sourceval mkldnn_convolution : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> C.TensorG.t
Sourceval mkldnn_convolution_backward_input : self_size:int list -> grad_output:C.TensorG.t -> weight:C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> bias_defined:bool -> C.TensorG.t
Sourceval mkldnn_convolution_backward_weights : weight_size:int list -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> bias_defined:bool -> C.TensorG.t * C.TensorG.t
Sourceval mkldnn_linear : C.TensorG.t -> weight:C.TensorG.t -> bias:C.TensorG.t option -> C.TensorG.t
Sourceval mkldnn_max_pool2d : C.TensorG.t -> kernel_size:int list -> stride:int list -> padding:int list -> dilation:int list -> ceil_mode:bool -> C.TensorG.t
Sourceval mkldnn_reorder_conv2d_weight : C.TensorG.t -> padding:int list -> stride:int list -> dilation:int list -> groups:int -> C.TensorG.t
Sourceval mkldnn_reshape : C.TensorG.t -> shape:int list -> C.TensorG.t
Sourceval mm_out : out:C.TensorG.t -> C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval mode : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval mode_out : values:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t * C.TensorG.t
Sourceval mse_loss : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval mse_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval mse_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval mse_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval multi_margin_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> p:C.TensorG.scalar -> margin:C.TensorG.scalar -> weight:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval multi_margin_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> p:C.TensorG.scalar -> margin:C.TensorG.scalar -> weight:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval multilabel_margin_loss : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval multilabel_margin_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> is_target:C.TensorG.t -> C.TensorG.t
Sourceval multilabel_margin_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> is_target:C.TensorG.t -> C.TensorG.t
Sourceval multilabel_margin_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval multinomial : C.TensorG.t -> num_samples:int -> replacement:bool -> C.TensorG.t
Sourceval multinomial_out : out:C.TensorG.t -> C.TensorG.t -> num_samples:int -> replacement:bool -> C.TensorG.t
Sourceval mvlgamma : C.TensorG.t -> p:int -> C.TensorG.t
Sourceval mvlgamma_ : C.TensorG.t -> p:int -> C.TensorG.t
Sourceval narrow : C.TensorG.t -> dim:int -> start:int -> length:int -> C.TensorG.t
Sourceval narrow_copy : C.TensorG.t -> dim:int -> start:int -> length:int -> C.TensorG.t
Sourceval native_batch_norm : C.TensorG.t -> weight:C.TensorG.t option -> bias:C.TensorG.t option -> running_mean:C.TensorG.t option -> running_var:C.TensorG.t option -> training:bool -> momentum:float -> eps:float -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval native_norm : C.TensorG.t -> C.TensorG.t
Sourceval neg_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval nll_loss : C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> C.TensorG.t
Sourceval nll_loss2d : C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> C.TensorG.t
Sourceval nll_loss2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> total_weight:C.TensorG.t -> C.TensorG.t
Sourceval nll_loss2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> total_weight:C.TensorG.t -> C.TensorG.t
Sourceval nll_loss2d_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> C.TensorG.t
Sourceval nll_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> total_weight:C.TensorG.t -> C.TensorG.t
Sourceval nll_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> total_weight:C.TensorG.t -> C.TensorG.t
Sourceval nll_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> weight:C.TensorG.t option -> reduction:int -> ignore_index:int -> C.TensorG.t
Sourceval nonzero_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval norm2 : C.TensorG.t -> p:C.TensorG.scalar -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval norm3 : C.TensorG.t -> p:C.TensorG.scalar -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval norm_except_dim : v:C.TensorG.t -> pow:int -> dim:int -> C.TensorG.t
Sourceval norm_out : out:C.TensorG.t -> C.TensorG.t -> p:C.TensorG.scalar -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval norm_out1 : out:C.TensorG.t -> C.TensorG.t -> p:C.TensorG.scalar -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval normal : mean:C.TensorG.t -> std:float -> C.TensorG.t
Sourceval normal1 : mean:float -> std:C.TensorG.t -> C.TensorG.t
Sourceval normal2 : mean:C.TensorG.t -> std:C.TensorG.t -> C.TensorG.t
Sourceval normal_ : C.TensorG.t -> mean:float -> std:float -> C.TensorG.t
Sourceval normal_out : out:C.TensorG.t -> mean:C.TensorG.t -> std:float -> C.TensorG.t
Sourceval normal_out1 : out:C.TensorG.t -> mean:float -> std:C.TensorG.t -> C.TensorG.t
Sourceval normal_out2 : out:C.TensorG.t -> mean:C.TensorG.t -> std:C.TensorG.t -> C.TensorG.t
Sourceval nuclear_norm : C.TensorG.t -> keepdim:bool -> C.TensorG.t
Sourceval nuclear_norm_out : out:C.TensorG.t -> C.TensorG.t -> keepdim:bool -> C.TensorG.t
Sourceval one_hot : C.TensorG.t -> num_classes:int -> C.TensorG.t
Sourceval ones : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval ones_like : C.TensorG.t -> C.TensorG.t
Sourceval ones_like1 : C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval ones_out : out:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval orgqr : C.TensorG.t -> input2:C.TensorG.t -> C.TensorG.t
Sourceval orgqr_out : out:C.TensorG.t -> C.TensorG.t -> input2:C.TensorG.t -> C.TensorG.t
Sourceval ormqr : C.TensorG.t -> input2:C.TensorG.t -> input3:C.TensorG.t -> left:bool -> transpose:bool -> C.TensorG.t
Sourceval ormqr_out : out:C.TensorG.t -> C.TensorG.t -> input2:C.TensorG.t -> input3:C.TensorG.t -> left:bool -> transpose:bool -> C.TensorG.t
Sourceval pairwise_distance : x1:C.TensorG.t -> x2:C.TensorG.t -> p:float -> eps:float -> keepdim:bool -> C.TensorG.t
Sourceval pdist : C.TensorG.t -> p:float -> C.TensorG.t
Sourceval permute : C.TensorG.t -> dims:int list -> C.TensorG.t
Sourceval pin_memory : C.TensorG.t -> C.TensorG.t
Sourceval pinverse : C.TensorG.t -> rcond:float -> C.TensorG.t
Sourceval pixel_shuffle : C.TensorG.t -> upscale_factor:int -> C.TensorG.t
Sourceval polygamma : n:int -> C.TensorG.t -> C.TensorG.t
Sourceval polygamma_ : C.TensorG.t -> n:int -> C.TensorG.t
Sourceval polygamma_out : out:C.TensorG.t -> n:int -> C.TensorG.t -> C.TensorG.t
Sourceval pow1 : C.TensorG.t -> exponent:C.TensorG.t -> C.TensorG.t
Sourceval pow_1 : C.TensorG.t -> exponent:C.TensorG.t -> C.TensorG.t
Sourceval pow_out : out:C.TensorG.t -> C.TensorG.t -> exponent:C.TensorG.scalar -> C.TensorG.t
Sourceval pow_out1 : out:C.TensorG.t -> C.TensorG.t -> exponent:C.TensorG.t -> C.TensorG.t
Sourceval pow_out2 : out:C.TensorG.t -> C.TensorG.scalar -> exponent:C.TensorG.t -> C.TensorG.t
Sourceval prelu : C.TensorG.t -> weight:C.TensorG.t -> C.TensorG.t
Sourceval prelu_backward : grad_output:C.TensorG.t -> C.TensorG.t -> weight:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval prod1 : C.TensorG.t -> dtype:Kind.t -> C.TensorG.t
Sourceval prod2 : C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval prod3 : C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval prod4 : C.TensorG.t -> dim:int -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval prod_out : out:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> C.TensorG.t
Sourceval prod_out1 : out:C.TensorG.t -> C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval prod_out2 : out:C.TensorG.t -> C.TensorG.t -> dim:int -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval pstrf : C.TensorG.t -> upper:bool -> C.TensorG.t * C.TensorG.t
Sourceval pstrf_out : u:C.TensorG.t -> pivot:C.TensorG.t -> C.TensorG.t -> upper:bool -> C.TensorG.t * C.TensorG.t
Sourceval put_ : C.TensorG.t -> index:C.TensorG.t -> source:C.TensorG.t -> accumulate:bool -> C.TensorG.t
Sourceval quantize_linear : C.TensorG.t -> scale:float -> zero_point:int -> C.TensorG.t
Sourceval quantized_gru_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t -> b_hh:C.TensorG.t -> packed_ih:C.TensorG.t -> packed_hh:C.TensorG.t -> col_offsets_ih:C.TensorG.t -> col_offsets_hh:C.TensorG.t -> scale_ih:C.TensorG.scalar -> scale_hh:C.TensorG.scalar -> zero_point_ih:C.TensorG.scalar -> zero_point_hh:C.TensorG.scalar -> C.TensorG.t
Sourceval quantized_lstm : C.TensorG.t -> hx:C.TensorG.t list -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> batch_first:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval quantized_lstm_cell : C.TensorG.t -> hx:C.TensorG.t list -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t -> b_hh:C.TensorG.t -> packed_ih:C.TensorG.t -> packed_hh:C.TensorG.t -> col_offsets_ih:C.TensorG.t -> col_offsets_hh:C.TensorG.t -> scale_ih:C.TensorG.scalar -> scale_hh:C.TensorG.scalar -> zero_point_ih:C.TensorG.scalar -> zero_point_hh:C.TensorG.scalar -> C.TensorG.t * C.TensorG.t
Sourceval quantized_rnn_relu_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t -> b_hh:C.TensorG.t -> packed_ih:C.TensorG.t -> packed_hh:C.TensorG.t -> col_offsets_ih:C.TensorG.t -> col_offsets_hh:C.TensorG.t -> scale_ih:C.TensorG.scalar -> scale_hh:C.TensorG.scalar -> zero_point_ih:C.TensorG.scalar -> zero_point_hh:C.TensorG.scalar -> C.TensorG.t
Sourceval quantized_rnn_tanh_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t -> b_hh:C.TensorG.t -> packed_ih:C.TensorG.t -> packed_hh:C.TensorG.t -> col_offsets_ih:C.TensorG.t -> col_offsets_hh:C.TensorG.t -> scale_ih:C.TensorG.scalar -> scale_hh:C.TensorG.scalar -> zero_point_ih:C.TensorG.scalar -> zero_point_hh:C.TensorG.scalar -> C.TensorG.t
Sourceval rand : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval rand_like : C.TensorG.t -> C.TensorG.t
Sourceval rand_like1 : C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval rand_out : out:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval randint : high:int -> size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randint1 : low:int -> high:int -> size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randint_like : C.TensorG.t -> high:int -> C.TensorG.t
Sourceval randint_like1 : C.TensorG.t -> low:int -> high:int -> C.TensorG.t
Sourceval randint_like2 : C.TensorG.t -> high:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randint_like3 : C.TensorG.t -> low:int -> high:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randint_out : out:C.TensorG.t -> high:int -> size:int list -> C.TensorG.t
Sourceval randint_out1 : out:C.TensorG.t -> low:int -> high:int -> size:int list -> C.TensorG.t
Sourceval randn : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randn_like : C.TensorG.t -> C.TensorG.t
Sourceval randn_like1 : C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randn_out : out:C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval random_1 : C.TensorG.t -> to_:int -> C.TensorG.t
Sourceval random_2 : C.TensorG.t -> from:int -> to_:int -> C.TensorG.t
Sourceval randperm : n:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval randperm_out : out:C.TensorG.t -> n:int -> C.TensorG.t
Sourceval range : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval range1 : start:C.TensorG.scalar -> end_:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval range_out : out:C.TensorG.t -> start:C.TensorG.scalar -> end_:C.TensorG.scalar -> C.TensorG.t
Sourceval reciprocal : C.TensorG.t -> C.TensorG.t
Sourceval reciprocal_ : C.TensorG.t -> C.TensorG.t
Sourceval reciprocal_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval reflection_pad1d : C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad1d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad1d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad1d_out : out:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad2d : C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reflection_pad2d_out : out:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval remainder_1 : C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval remainder_out1 : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval renorm : C.TensorG.t -> p:C.TensorG.scalar -> dim:int -> maxnorm:C.TensorG.scalar -> C.TensorG.t
Sourceval renorm_ : C.TensorG.t -> p:C.TensorG.scalar -> dim:int -> maxnorm:C.TensorG.scalar -> C.TensorG.t
Sourceval renorm_out : out:C.TensorG.t -> C.TensorG.t -> p:C.TensorG.scalar -> dim:int -> maxnorm:C.TensorG.scalar -> C.TensorG.t
Sourceval repeat : C.TensorG.t -> repeats:int list -> C.TensorG.t
Sourceval repeat_interleave : repeats:C.TensorG.t -> C.TensorG.t
Sourceval repeat_interleave1 : C.TensorG.t -> repeats:C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval repeat_interleave2 : C.TensorG.t -> repeats:int -> dim:int -> C.TensorG.t
Sourceval replication_pad1d : C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad1d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad1d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad1d_out : out:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad2d : C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad2d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad2d_out : out:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad3d : C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad3d_backward : grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval replication_pad3d_out : out:C.TensorG.t -> C.TensorG.t -> padding:int list -> C.TensorG.t
Sourceval reshape : C.TensorG.t -> shape:int list -> C.TensorG.t
Sourceval resize_ : C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval resize_as_ : C.TensorG.t -> the_template:C.TensorG.t -> C.TensorG.t
Sourceval rfft : C.TensorG.t -> signal_ndim:int -> normalized:bool -> onesided:bool -> C.TensorG.t
Sourceval rnn_relu : C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> batch_first:bool -> C.TensorG.t * C.TensorG.t
Sourceval rnn_relu1 : data:C.TensorG.t -> batch_sizes:C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> C.TensorG.t * C.TensorG.t
Sourceval rnn_relu_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t option -> b_hh:C.TensorG.t option -> C.TensorG.t
Sourceval rnn_tanh : C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> batch_first:bool -> C.TensorG.t * C.TensorG.t
Sourceval rnn_tanh1 : data:C.TensorG.t -> batch_sizes:C.TensorG.t -> hx:C.TensorG.t -> params:C.TensorG.t list -> has_biases:bool -> num_layers:int -> dropout:float -> train:bool -> bidirectional:bool -> C.TensorG.t * C.TensorG.t
Sourceval rnn_tanh_cell : C.TensorG.t -> hx:C.TensorG.t -> w_ih:C.TensorG.t -> w_hh:C.TensorG.t -> b_ih:C.TensorG.t option -> b_hh:C.TensorG.t option -> C.TensorG.t
Sourceval roll : C.TensorG.t -> shifts:int list -> dims:int list -> C.TensorG.t
Sourceval rot90 : C.TensorG.t -> k:int -> dims:int list -> C.TensorG.t
Sourceval round_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval rrelu : C.TensorG.t -> training:bool -> C.TensorG.t
Sourceval rrelu_ : C.TensorG.t -> training:bool -> C.TensorG.t
Sourceval rrelu_with_noise : C.TensorG.t -> noise:C.TensorG.t -> training:bool -> C.TensorG.t
Sourceval rrelu_with_noise_ : C.TensorG.t -> noise:C.TensorG.t -> training:bool -> C.TensorG.t
Sourceval rrelu_with_noise_backward : grad_output:C.TensorG.t -> C.TensorG.t -> noise:C.TensorG.t -> lower:C.TensorG.scalar -> upper:C.TensorG.scalar -> training:bool -> C.TensorG.t
Sourceval rrelu_with_noise_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> noise:C.TensorG.t -> lower:C.TensorG.scalar -> upper:C.TensorG.scalar -> training:bool -> C.TensorG.t
Sourceval rrelu_with_noise_out : out:C.TensorG.t -> C.TensorG.t -> noise:C.TensorG.t -> training:bool -> C.TensorG.t
Sourceval rsqrt_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval s_copy_ : C.TensorG.t -> src:C.TensorG.t -> non_blocking:bool -> C.TensorG.t
Sourceval s_native_addmm : C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval s_native_addmm_ : C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval s_native_addmm_out : out:C.TensorG.t -> C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval scalar_tensor : s:C.TensorG.scalar -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval scatter : C.TensorG.t -> dim:int -> index:C.TensorG.t -> src:C.TensorG.t -> C.TensorG.t
Sourceval scatter1 : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval scatter_ : C.TensorG.t -> dim:int -> index:C.TensorG.t -> src:C.TensorG.t -> C.TensorG.t
Sourceval scatter_1 : C.TensorG.t -> dim:int -> index:C.TensorG.t -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval scatter_add : C.TensorG.t -> dim:int -> index:C.TensorG.t -> src:C.TensorG.t -> C.TensorG.t
Sourceval scatter_add_ : C.TensorG.t -> dim:int -> index:C.TensorG.t -> src:C.TensorG.t -> C.TensorG.t
Sourceval select : C.TensorG.t -> dim:int -> index:int -> C.TensorG.t
Sourceval set_1 : C.TensorG.t -> source:C.TensorG.t -> C.TensorG.t
Sourceval set_requires_grad : C.TensorG.t -> r:bool -> C.TensorG.t
Sourceval sigmoid_ : C.TensorG.t -> C.TensorG.t
Sourceval sigmoid_backward : grad_output:C.TensorG.t -> output:C.TensorG.t -> C.TensorG.t
Sourceval sigmoid_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output:C.TensorG.t -> C.TensorG.t
Sourceval sigmoid_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval sign_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval sin_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval sinh_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval slice : C.TensorG.t -> dim:int -> start:int -> end_:int -> step:int -> C.TensorG.t
Sourceval smooth_l1_loss : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval smooth_l1_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval smooth_l1_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval smooth_l1_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval soft_margin_loss : C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval soft_margin_loss_backward : grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval soft_margin_loss_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval soft_margin_loss_out : out:C.TensorG.t -> C.TensorG.t -> target:C.TensorG.t -> reduction:int -> C.TensorG.t
Sourceval softmax : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval softmax1 : C.TensorG.t -> dim:int -> dtype:Kind.t -> C.TensorG.t
Sourceval softplus : C.TensorG.t -> C.TensorG.t
Sourceval softplus_backward : grad_output:C.TensorG.t -> C.TensorG.t -> beta:C.TensorG.scalar -> threshold:C.TensorG.scalar -> output:C.TensorG.t -> C.TensorG.t
Sourceval softplus_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> beta:C.TensorG.scalar -> threshold:C.TensorG.scalar -> output:C.TensorG.t -> C.TensorG.t
Sourceval softplus_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval softshrink : C.TensorG.t -> C.TensorG.t
Sourceval softshrink_backward : grad_output:C.TensorG.t -> C.TensorG.t -> lambd:C.TensorG.scalar -> C.TensorG.t
Sourceval softshrink_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> C.TensorG.t -> lambd:C.TensorG.scalar -> C.TensorG.t
Sourceval softshrink_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval solve_out : solution:C.TensorG.t -> lu:C.TensorG.t -> C.TensorG.t -> a:C.TensorG.t -> C.TensorG.t * C.TensorG.t
Sourceval sort : C.TensorG.t -> dim:int -> descending:bool -> C.TensorG.t * C.TensorG.t
Sourceval sort_out : values:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> dim:int -> descending:bool -> C.TensorG.t * C.TensorG.t
Sourceval sparse_coo_tensor : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval sparse_coo_tensor1 : indices:C.TensorG.t -> values:C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval sparse_coo_tensor2 : indices:C.TensorG.t -> values:C.TensorG.t -> size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval sparse_resize_ : C.TensorG.t -> size:int list -> sparse_dim:int -> dense_dim:int -> C.TensorG.t
Sourceval sparse_resize_and_clear_ : C.TensorG.t -> size:int list -> sparse_dim:int -> dense_dim:int -> C.TensorG.t
Sourceval split : C.TensorG.t -> split_size:int -> dim:int -> unit Ctypes.ptr list
Sourceval split_with_sizes : C.TensorG.t -> split_sizes:int list -> dim:int -> unit Ctypes.ptr list
Sourceval sqrt_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval squeeze1 : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval squeeze_ : C.TensorG.t -> C.TensorG.t
Sourceval squeeze_1 : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval sspaddmm : C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval sspaddmm_out : out:C.TensorG.t -> C.TensorG.t -> mat1:C.TensorG.t -> mat2:C.TensorG.t -> C.TensorG.t
Sourceval stack : C.TensorG.t list -> dim:int -> C.TensorG.t
Sourceval stack_out : out:C.TensorG.t -> C.TensorG.t list -> dim:int -> C.TensorG.t
Sourceval std : C.TensorG.t -> unbiased:bool -> C.TensorG.t
Sourceval std1 : C.TensorG.t -> dim:int list -> unbiased:bool -> keepdim:bool -> C.TensorG.t
Sourceval std_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> unbiased:bool -> keepdim:bool -> C.TensorG.t
Sourceval stft : C.TensorG.t -> n_fft:int -> hop_length:int -> win_length:int -> window:C.TensorG.t option -> normalized:bool -> onesided:bool -> C.TensorG.t
Sourceval sum1 : C.TensorG.t -> dtype:Kind.t -> C.TensorG.t
Sourceval sum2 : C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval sum3 : C.TensorG.t -> dim:int list -> dtype:Kind.t -> C.TensorG.t
Sourceval sum4 : C.TensorG.t -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval sum_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> C.TensorG.t
Sourceval sum_out1 : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> dtype:Kind.t -> C.TensorG.t
Sourceval sum_out2 : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> keepdim:bool -> dtype:Kind.t -> C.TensorG.t
Sourceval sum_to_size : C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval svd : C.TensorG.t -> some:bool -> compute_uv:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval svd_out : u:C.TensorG.t -> s:C.TensorG.t -> v:C.TensorG.t -> C.TensorG.t -> some:bool -> compute_uv:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval symeig : C.TensorG.t -> eigenvectors:bool -> upper:bool -> C.TensorG.t * C.TensorG.t
Sourceval symeig_out : e:C.TensorG.t -> v:C.TensorG.t -> C.TensorG.t -> eigenvectors:bool -> upper:bool -> C.TensorG.t * C.TensorG.t
Sourceval take_out : out:C.TensorG.t -> C.TensorG.t -> index:C.TensorG.t -> C.TensorG.t
Sourceval tan_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval tanh_backward : grad_output:C.TensorG.t -> output:C.TensorG.t -> C.TensorG.t
Sourceval tanh_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output:C.TensorG.t -> C.TensorG.t
Sourceval tanh_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval tensordot : C.TensorG.t -> C.TensorG.t -> dims_self:int list -> dims_other:int list -> C.TensorG.t
Sourceval threshold : C.TensorG.t -> threshold:C.TensorG.scalar -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval threshold_ : C.TensorG.t -> threshold:C.TensorG.scalar -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval threshold_backward : grad_output:C.TensorG.t -> C.TensorG.t -> threshold:C.TensorG.scalar -> C.TensorG.t
Sourceval threshold_out : out:C.TensorG.t -> C.TensorG.t -> threshold:C.TensorG.scalar -> value:C.TensorG.scalar -> C.TensorG.t
Sourceval to_ : C.TensorG.t -> device:Device.t -> C.TensorG.t
Sourceval to1 : C.TensorG.t -> options:(Kind.t * Device.t) -> non_blocking:bool -> copy:bool -> C.TensorG.t
Sourceval to2 : C.TensorG.t -> dtype:Kind.t -> non_blocking:bool -> copy:bool -> C.TensorG.t
Sourceval to3 : C.TensorG.t -> C.TensorG.t -> non_blocking:bool -> copy:bool -> C.TensorG.t
Sourceval to4 : C.TensorG.t -> device:Device.t -> dtype:Kind.t -> non_blocking:bool -> copy:bool -> C.TensorG.t
Sourceval to_dense : C.TensorG.t -> C.TensorG.t
Sourceval to_dense_backward : grad:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval to_mkldnn : C.TensorG.t -> C.TensorG.t
Sourceval to_mkldnn_backward : grad:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval to_sparse : C.TensorG.t -> C.TensorG.t
Sourceval to_sparse1 : C.TensorG.t -> sparse_dim:int -> C.TensorG.t
Sourceval topk : C.TensorG.t -> k:int -> dim:int -> largest:bool -> sorted:bool -> C.TensorG.t * C.TensorG.t
Sourceval topk_out : values:C.TensorG.t -> indices:C.TensorG.t -> C.TensorG.t -> k:int -> dim:int -> largest:bool -> sorted:bool -> C.TensorG.t * C.TensorG.t
Sourceval totype : C.TensorG.t -> scalar_type:Kind.t -> C.TensorG.t
Sourceval transpose : C.TensorG.t -> dim0:int -> dim1:int -> C.TensorG.t
Sourceval transpose_ : C.TensorG.t -> dim0:int -> dim1:int -> C.TensorG.t
Sourceval triangular_solve : C.TensorG.t -> a:C.TensorG.t -> upper:bool -> transpose:bool -> unitriangular:bool -> C.TensorG.t * C.TensorG.t
Sourceval triangular_solve_out : x:C.TensorG.t -> m:C.TensorG.t -> C.TensorG.t -> a:C.TensorG.t -> upper:bool -> transpose:bool -> unitriangular:bool -> C.TensorG.t * C.TensorG.t
Sourceval tril : C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval tril_ : C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval tril_indices : row:int -> col:int -> offset:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval tril_out : out:C.TensorG.t -> C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval triplet_margin_loss : anchor:C.TensorG.t -> positive:C.TensorG.t -> negative:C.TensorG.t -> margin:float -> p:float -> eps:float -> swap:bool -> reduction:int -> C.TensorG.t
Sourceval triu : C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval triu_ : C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval triu_indices : row:int -> col:int -> offset:int -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval triu_out : out:C.TensorG.t -> C.TensorG.t -> diagonal:int -> C.TensorG.t
Sourceval trunc_out : out:C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval unbind : C.TensorG.t -> dim:int -> unit Ctypes.ptr list
Sourceval unfold : C.TensorG.t -> dimension:int -> size:int -> step:int -> C.TensorG.t
Sourceval uniform_ : C.TensorG.t -> from:float -> to_:float -> C.TensorG.t
Sourceval unique_consecutive : C.TensorG.t -> return_inverse:bool -> return_counts:bool -> dim:int -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval unique_dim : C.TensorG.t -> dim:int -> sorted:bool -> return_inverse:bool -> return_counts:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval unique_dim_consecutive : C.TensorG.t -> dim:int -> return_inverse:bool -> return_counts:bool -> C.TensorG.t * C.TensorG.t * C.TensorG.t
Sourceval unsqueeze : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval unsqueeze_ : C.TensorG.t -> dim:int -> C.TensorG.t
Sourceval upsample_bicubic2d : C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bicubic2d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bicubic2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bicubic2d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bilinear2d : C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bilinear2d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bilinear2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_bilinear2d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_linear1d : C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_linear1d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_linear1d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_linear1d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_nearest1d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_nearest1d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest1d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest1d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_nearest2d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_nearest2d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest2d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest2d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_nearest3d : C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_nearest3d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> C.TensorG.t
Sourceval upsample_nearest3d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> C.TensorG.t
Sourceval upsample_trilinear3d : C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_trilinear3d_backward : grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_trilinear3d_backward_out : grad_input:C.TensorG.t -> grad_output:C.TensorG.t -> output_size:int list -> input_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval upsample_trilinear3d_out : out:C.TensorG.t -> C.TensorG.t -> output_size:int list -> align_corners:bool -> C.TensorG.t
Sourceval var : C.TensorG.t -> unbiased:bool -> C.TensorG.t
Sourceval var1 : C.TensorG.t -> dim:int list -> unbiased:bool -> keepdim:bool -> C.TensorG.t
Sourceval var_out : out:C.TensorG.t -> C.TensorG.t -> dim:int list -> unbiased:bool -> keepdim:bool -> C.TensorG.t
Sourceval view : C.TensorG.t -> size:int list -> C.TensorG.t
Sourceval where : condition:C.TensorG.t -> C.TensorG.t -> C.TensorG.t -> C.TensorG.t
Sourceval zeros : size:int list -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval zeros_like : C.TensorG.t -> C.TensorG.t
Sourceval zeros_like1 : C.TensorG.t -> options:(Kind.t * Device.t) -> C.TensorG.t
Sourceval zeros_out : out:C.TensorG.t -> size:int list -> C.TensorG.t
OCaml

Innovation. Community. Security.