package tezos-benchmark
module LinearModel : sig ... end
val predict_output :
input:Scikit_matrix.t ->
weights:Scikit_matrix.t ->
Pytypes.pyobject
val r2_score :
output:Scikit_matrix.t ->
prediction:Pytypes.pyobject ->
float option
val rmse_score : output:Scikit_matrix.t -> prediction:Pytypes.pyobject -> float
val benchmark_score :
input:Scikit_matrix.t ->
output:(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Array1.t ->
Scikit_matrix.t * Scikit_matrix.t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>