Module Tablecloth.Int
Fixed precision integers
The platform-dependant signed integer type.
An int
is a whole number.
int
s are subject to overflow , meaning that Int.maximumValue + 1 = Int.minimumValue
.
If you need to work with integers larger than maximumValue
(or smaller than minimumValue
you can use the Integer
module.
Valid syntax for int
s includes:
0
42
9000
1_000_000
1_000_000
0xFF (* 255 in hexadecimal *)
0x000A (* 10 in hexadecimal *)
Note: The number of bits used for an int
is platform dependent.
When targeting Bucklescript https://bucklescript.github.io/docs/en/common-data-types.html#int .
When targeting native OCaml uses 31-bits on 32-bit platforms and 63-bits on 64-bit platforms which means that int
math is well-defined in the range -2 ** 30
to 2 ** 30 - 1
for 32bit platforms -2 ** 62
to 2 ** 62 - 1
for 64bit platforms.
Outside of that range, the behavior is determined by the compilation target.
You can read about the reasons for OCaml's unusual integer sizes here .
Historical Note: The name int
comes from the term integer ). It appears that the int
abbreviation was introduced in the programming language ALGOL 68.
Today, almost all programming languages use this abbreviation.
ConstantsThe literal 0
as a named value
The literal 1
as a named value
The maximum representable int
on the current platform
The minimum representable int
on the current platform
Createval fromString : string -> t option
Attempt to parse a string
into a int
.
Examples
Int.fromString "0" = Some 0.
Int.fromString "42" = Some 42.
Int.fromString "-3" = Some (-3)
Int.fromString "123_456" = Some 123_456
Int.fromString "0xFF" = Some 255
Int.fromString "0x00A" = Some 10
Int.fromString "Infinity" = None
Int.fromString "NaN" = None
val from_string : string -> t option
OperatorsNote You do not need to open the Int
module to use the (+)
, (-)
, (*)
, (**)
, (mod)
or (/)
operators, these are available as soon as you open Tablecloth
Add two Int
numbers.
Int.add 3002 4004 = 7006
Or using the globally available operator:
3002 + 4004 = 7006
You cannot add an int
and a float
directly though.
See Float.add
for why, and how to overcome this limitation.
val subtract : t -> t -> t
Subtract numbers
Int.subtract 4 3 = 1
Alternatively the operator can be used:
4 - 3 = 1
val multiply : t -> t -> t
Multiply int
s like
Int.multiply 2 7 = 14
Alternatively the operator can be used:
(2 * 7) = 14
val divide : t -> by :t -> t
Integer division
Notice that the remainder is discarded.
Exceptions
Throws Division_by_zero
when the divisor is 0
.
Examples
Int.divide 3 ~by:2 = 1
27 / 5 = 5
val (/.) : t -> t -> float
Floating point division
Examples
Int.(3 /. 2) = 1.5
Int.(27 /. 5) = 5.25
Int.(8 /. 4) = 2.0
val power : base :t -> exponent :t -> t
Exponentiation, takes the base first, then the exponent.
Examples
Int.power ~base:7 ~exponent:3 = 343
Alternatively the **
operator can be used:
7 ** 3 = 343
Flips the 'sign' of an integer so that positive integers become negative and negative integers become positive. Zero stays as it is.
Examples
Int.negate 8 = (-8)
Int.negate (-7) = 7
Int.negate 0 = 0
Alternatively the ~-
operator can be used:
~-(7) = (-7)
Get the absolute value of a number.
Examples
Int.absolute 8 = 8
Int.absolute (-7) = 7
Int.absolute 0 = 0
val modulo : t -> by :t -> t
Perform modular arithmetic .
If you intend to use modulo
to detect even and odd numbers consider using Int.isEven
or Int.isOdd
.
The modulo
function works in the typical mathematical way when you run into negative numbers
Use Int.remainder
for a different treatment of negative numbers.
Examples
Int.modulo ~by:3 (-4) = 1
Int.modulo ~by:3 (-3 )= 0
Int.modulo ~by:3 (-2) = 2
Int.modulo ~by:3 (-1) = 1
Int.modulo ~by:3 0 = 0
Int.modulo ~by:3 1 = 1
Int.modulo ~by:3 2 = 2
Int.modulo ~by:3 3 = 0
Int.modulo ~by:3 4 = 1
val remainder : t -> by :t -> t
Get the remainder after division. Here are bunch of examples of dividing by four:
Use Int.modulo
for a different treatment of negative numbers.
Examples
List.map
~f:(Int.remainder ~by:4)
[(-5); (-4); (-3); (-2); (-1); 0; 1; 2; 3; 4; 5] =
[(-1); 0; (-3); (-2); (-1); 0; 1; 2; 3; 0; 1]
val maximum : t -> t -> t
Returns the larger of two int
s
Examples
Int.maximum 7 9 = 9
Int.maximum (-4) (-1) = (-1)
val minimum : t -> t -> t
Returns the smaller of two int
s
Examples
Int.minimum 7 9 = 7
Int.minimum (-4) (-1) = (-4)
QueryCheck if an int
is even
Examples
Int.isEven 8 = true
Int.isEven 7 = false
Int.isEven 0 = true
Check if an int
is odd
Examples
Int.isOdd 7 = true
Int.isOdd 8 = false
Int.isOdd 0 = false
val clamp : t -> lower :t -> upper :t -> t
Clamps n
within the inclusive lower
and upper
bounds.
Exceptions
Throws an Invalid_argument
exception if lower > upper
Examples
Int.clamp ~lower:0 ~upper:8 5 = 5
Int.clamp ~lower:0 ~upper:8 9 = 8
Int.clamp ~lower:(-10) ~upper:(-5) 5 = (-5)
val inRange : t -> lower :t -> upper :t -> bool
Checks if n
is between lower
and up to, but not including, upper
.
Exceptions
Throws an Invalid_argument
exception if lower > upper
Examples
Int.inRange ~lower:2 ~upper:4 3 = true
Int.inRange ~lower:5 ~upper:8 4 = false
Int.inRange ~lower:(-6) ~upper:(-2) (-3) = true
val in_range : t -> lower :t -> upper :t -> bool
ConvertConvert an integer into a float. Useful when mixing Int
and Float
values like this:
Examples
let halfOf (number : int) : float =
Float.((Int.toFloat number) / 2)
(* Note that locally opening the {!Float} module here allows us to use the floating point division operator *)
in
halfOf 7 = 3.5
val to_float : t -> float
val toString : t -> string
Convert an int
into a string
representation.
Guarantees that
Int.(fromString (toString n)) = Some n
Examples
Int.toString 3 = "3"
Int.toString (-3) = "-3"
Int.to_sString 0 = "0"
val to_string : t -> string
Compareval equal : t -> t -> bool
Test two int
s for equality
val compare : t -> t -> int
val comparator : (t , identity ) Tablecloth__.TableclothComparator.t