package smtml
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
An SMT solver frontend for OCaml
Install
dune-project
Dependency
Authors
-
JJoão Pereira <joaomhmpereira@tecnico.ulisboa.pt>
-
FFilipe Marques <filipe.s.marques@tecnico.ulisboa.pt>
-
HHichem Rami Ait El Hara <hra@ocamlpro.com>
-
Rredianthus <redopam@pm.me>
-
AArthur Carcano <arthur.carcano@ocamlpro.com>
-
PPierre Chambart <pierre.chambart@ocamlpro.com>
-
JJosé Fragoso Santos <jose.fragoso@tecnico.ulisboa.pt>
Maintainers
Sources
v0.20.0.tar.gz
md5=25a38c1470173f0214ea3c33e665998c
sha512=bc7c921dd307d5673154c47e00aa3b124621f8651f22ad86ff80cf02eb2aca201ae93a4172e9bb591d1891d5e6a5b9b5649466cf65b456464d98b8544a8b7932
doc/src/smtml/eval.ml.html
Source file eval.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031(* SPDX-License-Identifier: MIT *) (* Copyright (C) 2023-2024 formalsec *) (* Written by the Smtml programmers *) (* Adapted from: *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/ixx.ml, *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/fxx.ml, and *) (* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec *) type op_type = [ `Unop of Ty.Unop.t | `Binop of Ty.Binop.t | `Relop of Ty.Relop.t | `Triop of Ty.Triop.t | `Cvtop of Ty.Cvtop.t | `Naryop of Ty.Naryop.t ] [@@deriving show] type type_error_info = { index : int ; value : Value.t ; ty : Ty.t ; op : op_type ; msg : string } [@@deriving show] type error_kind = [ `Divide_by_zero | `Conversion_to_integer | `Integer_overflow | `Index_out_of_bounds | `Invalid_format_conversion | `Unsupported_operator of op_type * Ty.t | `Unsupported_theory of Ty.t | `Type_error of type_error_info ] let pp_error_kind fmt err = match err with | `Divide_by_zero -> Fmt.string fmt "Division by zero" | `Conversion_to_integer -> Fmt.string fmt "Failed to convert value to integer" | `Integer_overflow -> Fmt.string fmt "Integer overflow: result is outside the representable range" | `Index_out_of_bounds -> Fmt.string fmt "Index out of bounds" | `Invalid_format_conversion -> Fmt.string fmt "Invalid format conversion string" | `Unsupported_operator (op, ty) -> Fmt.pf fmt "The operator '%a' is not supported for type '%a'" pp_op_type op Ty.pp ty | `Unsupported_theory ty -> Fmt.pf fmt "The theory for type '%a' is not currently supported" Ty.pp ty | `Type_error { index; value; ty; op; _ } -> Fmt.pf fmt "@[<h>Type error: Argument %d of operation '%a' expected type '%a', but \ received value '%a' instead.@]" index pp_op_type op Ty.pp ty Value.pp value exception Eval_error of error_kind exception Value of Ty.t (* Exception helpers *) let eval_error kind = raise (Eval_error kind) let type_error n v ty op msg = eval_error (`Type_error { index = n; value = v; ty; op; msg }) let err_str n op ty_expected ty_actual = Fmt.str "Argument %d of %a expected type %a but got %a instead." n pp_op_type op Ty.pp ty_expected Ty.pp ty_actual let raise_type_mismatch n op v expected_ty = let actual_ty = Value.type_of v in let msg = err_str n op expected_ty actual_ty in type_error n v expected_ty op msg (* Coercion helpers *) let[@inline] of_int n op v = match v with Value.Int x -> x | _ -> raise_type_mismatch n op v Ty_int let[@inline] to_int x = Value.Int x let[@inline] of_real n op v = match v with Value.Real x -> x | _ -> raise_type_mismatch n op v Ty_real let[@inline] to_real x = Value.Real x let[@inline] of_bool n op v = match v with | Value.True -> true | False -> false | _ -> raise_type_mismatch n op v Ty_bool let[@inline] to_bool x = if x then Value.True else False let[@inline] of_str n op v = match v with Value.Str x -> x | _ -> raise_type_mismatch n op v Ty_str let[@inline] to_str x = Value.Str x let[@inline] of_list n op v = match v with Value.List x -> x | _ -> raise_type_mismatch n op v Ty_list let[@inline] of_bitv n op v = match v with Value.Bitv x -> x | _ -> raise_type_mismatch n op v (Ty_bitv 0) let[@inline] int32_of_bitv n op v = of_bitv n op v |> Bitvector.to_int32 let[@inline] int64_of_bitv n op v = of_bitv n op v |> Bitvector.to_int64 let[@inline] to_bitv x = Value.Bitv x let[@inline] bitv_of_int32 x = to_bitv (Bitvector.of_int32 x) let[@inline] bitv_of_int64 x = to_bitv (Bitvector.of_int64 x) let[@inline] of_fp32 n op v : int32 = match v with | Value.Num (F32 f) -> f | _ -> raise_type_mismatch n op v (Ty_fp 32) let[@inline] to_fp32 (x : int32) = Value.Num (F32 x) let[@inline] fp32_of_float (x : float) = to_fp32 (Int32.bits_of_float x) let[@inline] of_fp64 n op v : int64 = match v with | Value.Num (F64 f) -> f | _ -> raise_type_mismatch n op v (Ty_fp 64) let[@inline] to_fp64 (x : int64) = Value.Num (F64 x) let[@inline] fp64_of_float (x : float) = to_fp64 (Int64.bits_of_float x) (* Operator evaluation *) module Int = struct let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let v = of_int 1 (`Unop op) v in match op with | Neg -> to_int (Int.neg v) | Not -> to_int (Int.lognot v) | Abs -> to_int (Int.abs v) | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_int)) let exp_by_squaring x n = let rec exp_by_squaring2 y x n = if n < 0 then exp_by_squaring2 y (1 / x) ~-n else if n = 0 then y else if n mod 2 = 0 then exp_by_squaring2 y (x * x) (n / 2) else begin assert (n mod 2 = 1); exp_by_squaring2 (x * y) (x * x) ((n - 1) / 2) end in exp_by_squaring2 1 x n let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let v1 = of_int 1 (`Binop op) v1 in let v2 = of_int 2 (`Binop op) v2 in match op with | Add -> to_int (Int.add v1 v2) | Sub -> to_int (Int.sub v1 v2) | Mul -> to_int (Int.mul v1 v2) | Div -> to_int (Int.div v1 v2) | Rem -> to_int (Int.rem v1 v2) | Pow -> to_int (exp_by_squaring v1 v2) | Min -> to_int (Int.min v1 v2) | Max -> to_int (Int.max v1 v2) | And -> to_int (Int.logand v1 v2) | Or -> to_int (Int.logor v1 v2) | Xor -> to_int (Int.logxor v1 v2) | Shl -> to_int (Int.shift_left v1 v2) | ShrL -> to_int (Int.shift_right_logical v1 v2) | ShrA -> to_int (Int.shift_right v1 v2) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_int)) let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let a = of_int 1 (`Relop op) v1 in let b = of_int 2 (`Relop op) v2 in match op with | Lt -> a < b | Le -> a <= b | Gt -> a > b | Ge -> a >= b | Eq -> Int.equal a b | Ne -> not (Int.equal a b) | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_int)) let[@inline] int_of_bool v = match v with Value.True -> 1 | False -> 0 | _ -> assert false let[@inline] cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = match op with | OfBool -> to_int (int_of_bool v) | Reinterpret_float -> Int (Int.of_float (of_real 1 (`Cvtop op) v)) | _ -> eval_error (`Unsupported_operator (`Cvtop op, Ty_int)) end module Real = struct let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let v = of_real 1 (`Unop op) v in match op with | Neg -> to_real @@ Float.neg v | Abs -> to_real @@ Float.abs v | Sqrt -> to_real @@ Float.sqrt v | Nearest -> to_real @@ Float.round v | Ceil -> to_real @@ Float.ceil v | Floor -> to_real @@ Float.floor v | Trunc -> to_real @@ Float.trunc v | Is_nan -> if Float.is_nan v then Value.True else Value.False | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_real)) let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let a = of_real 1 (`Binop op) v1 in let b = of_real 2 (`Binop op) v2 in match op with | Add -> to_real (Float.add a b) | Sub -> to_real (Float.sub a b) | Mul -> to_real (Float.mul a b) | Div -> to_real (Float.div a b) | Rem -> to_real (Float.rem a b) | Min -> to_real (Float.min a b) | Max -> to_real (Float.max a b) | Pow -> to_real (Float.pow a b) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_real)) let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let a = of_real 1 (`Relop op) v1 in let b = of_real 2 (`Relop op) v2 in match op with | Lt -> Float.Infix.(a < b) | Le -> Float.Infix.(a <= b) | Gt -> Float.Infix.(a > b) | Ge -> Float.Infix.(a >= b) | Eq -> Float.Infix.(a = b) | Ne -> Float.Infix.(a <> b) | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_real)) let[@inline] cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | ToString -> Str (Float.to_string (of_real 1 op' v)) | OfString -> begin match float_of_string_opt (of_str 1 op' v) with | None -> eval_error `Invalid_format_conversion | Some v -> to_real v end | Reinterpret_int -> to_real (float_of_int (of_int 1 op' v)) | Reinterpret_float -> to_int (Float.to_int (of_real 1 op' v)) | _ -> eval_error (`Unsupported_operator (op', Ty_real)) end module Bool = struct let[@inline] unop (op : Ty.Unop.t) v = let b = of_bool 1 (`Unop op) v in match op with | Not -> to_bool (not b) | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_bool)) let xor b1 b2 = match (b1, b2) with | true, true -> false | true, false -> true | false, true -> true | false, false -> false let[@inline] binop (op : Ty.Binop.t) v1 v2 = let a = of_bool 1 (`Binop op) v1 in let b = of_bool 2 (`Binop op) v2 in match op with | And -> to_bool (a && b) | Or -> to_bool (a || b) | Xor -> to_bool (xor a b) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_bool)) let[@inline] triop (op : Ty.Triop.t) c v1 v2 = match op with | Ite -> ( match of_bool 1 (`Triop op) c with true -> v1 | false -> v2 ) | _ -> eval_error (`Unsupported_operator (`Triop op, Ty_bool)) let[@inline] relop (op : Ty.Relop.t) v1 v2 = match op with | Eq -> Value.equal v1 v2 | Ne -> not (Value.equal v1 v2) | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_bool)) let[@inline] naryop (op : Ty.Naryop.t) vs = match op with | Logand -> let exists_false = let i = ref 0 in List.find_map (fun e -> incr i; let b = of_bool !i (`Naryop op) e in if not b then Some () else None ) vs in if Option.is_some exists_false then Value.False else Value.True | Logor -> let exists_true = let i = ref 0 in List.find_map (fun e -> incr i; let b = of_bool !i (`Naryop op) e in if b then Some () else None ) vs in if Option.is_some exists_true then Value.True else Value.False | _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_bool)) end module Str = struct let replace s t t' = let len_s = String.length s in let len_t = String.length t in let rec loop i = if i >= len_s then s else if i + len_t > len_s then s else if String.equal (String.sub s i len_t) t then let s' = Fmt.str "%s%s" (String.sub s 0 i) t' in let s'' = String.sub s (i + len_t) (len_s - i - len_t) in Fmt.str "%s%s" s' s'' else loop (i + 1) in loop 0 let indexof s sub start = let len_s = String.length s in let len_sub = String.length sub in let max_i = len_s - 1 in let rec loop i = if i > max_i then ~-1 else if i + len_sub > len_s then ~-1 else if String.equal sub (String.sub s i len_sub) then i else loop (i + 1) in if start <= 0 then loop 0 else loop start let contains s sub = if indexof s sub 0 < 0 then false else true let[@inline] unop (op : Ty.Unop.t) v = let str = of_str 1 (`Unop op) v in match op with | Length -> to_int (String.length str) | Trim -> to_str (String.trim str) | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_str)) let[@inline] binop (op : Ty.Binop.t) v1 v2 = let op' = `Binop op in let str = of_str 1 op' v1 in match op with | At -> begin let i = of_int 2 op' v2 in try to_str (Fmt.str "%c" (String.get str i)) with Invalid_argument _ -> eval_error `Index_out_of_bounds end | String_prefix -> to_bool (String.starts_with ~prefix:str (of_str 2 op' v2)) | String_suffix -> to_bool (String.ends_with ~suffix:str (of_str 2 op' v2)) | String_contains -> to_bool (contains str (of_str 2 op' v2)) | _ -> eval_error (`Unsupported_operator (op', Ty_str)) let[@inline] triop (op : Ty.Triop.t) v1 v2 v3 = let op' = `Triop op in let str = of_str 1 op' v1 in match op with | String_extract -> begin let i = of_int 2 op' v2 in let len = of_int 3 op' v3 in try to_str (String.sub str i len) with Invalid_argument _ -> eval_error `Index_out_of_bounds end | String_replace -> let t = of_str 2 op' v2 in let t' = of_str 2 op' v3 in to_str (replace str t t') | String_index -> let t = of_str 2 op' v2 in let i = of_int 3 op' v3 in to_int (indexof str t i) | _ -> eval_error (`Unsupported_operator (`Triop op, Ty_str)) let[@inline] relop (op : Ty.Relop.t) v1 v2 = let a = of_str 1 (`Relop op) v1 in let b = of_str 2 (`Relop op) v2 in let cmp = String.compare a b in match op with | Lt -> cmp < 0 | Le -> cmp <= 0 | Gt -> cmp > 0 | Ge -> cmp >= 0 | Eq -> cmp = 0 | Ne -> cmp <> 0 | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_str)) let[@inline] cvtop (op : Ty.Cvtop.t) v = let op' = `Cvtop op in match op with | String_to_code -> let str = of_str 1 op' v in to_int (Char.code str.[0]) | String_from_code -> let code = of_int 1 op' v in to_str (String.make 1 (Char.chr code)) | String_to_int -> begin let s = of_str 1 op' v in match int_of_string_opt s with | None -> eval_error `Invalid_format_conversion | Some x -> to_int x end | String_from_int -> to_str (string_of_int (of_int 1 op' v)) | String_to_float -> begin let s = of_str 1 op' v in match float_of_string_opt s with | None -> eval_error `Invalid_format_conversion | Some f -> to_real f end | _ -> eval_error (`Unsupported_operator (`Cvtop op, Ty_str)) let[@inline] naryop (op : Ty.Naryop.t) vs = let op' = `Naryop op in match op with | Concat -> let _, s = List.fold_left (fun (i, acc) v -> let s = of_str i op' v in (i + 1, String.cat acc s) ) (0, "") vs in to_str s | _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_str)) end module Lst = struct let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let lst = of_list 1 (`Unop op) v in match op with | Head -> begin (* FIXME: Exception handling *) match lst with | hd :: _tl -> hd | [] -> assert false end | Tail -> begin (* FIXME: Exception handling *) match lst with | _hd :: tl -> List tl | [] -> assert false end | Length -> to_int (List.length lst) | Reverse -> List (List.rev lst) | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_list)) let[@inline] binop (op : Ty.Binop.t) v1 v2 = let op' = `Binop op in match op with | At -> let lst = of_list 1 op' v1 in let i = of_int 2 op' v2 in (* TODO: change datastructure? *) begin match List.nth_opt lst i with | None -> eval_error `Index_out_of_bounds | Some v -> v end | List_cons -> List (v1 :: of_list 1 op' v2) | List_append -> List (of_list 1 op' v1 @ of_list 2 op' v2) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_list)) let[@inline] triop (op : Ty.Triop.t) (v1 : Value.t) (v2 : Value.t) (v3 : Value.t) : Value.t = let op' = `Triop op in match op with | List_set -> let lst = of_list 1 op' v1 in let i = of_int 2 op' v2 in let rec set i lst v acc = match (i, lst) with | 0, _ :: tl -> List.rev_append acc (v :: tl) | i, hd :: tl -> set (i - 1) tl v (hd :: acc) | _, [] -> eval_error `Index_out_of_bounds in List (set i lst v3 []) | _ -> eval_error (`Unsupported_operator (`Triop op, Ty_list)) let[@inline] naryop (op : Ty.Naryop.t) (vs : Value.t list) : Value.t = let op' = `Naryop op in match op with | Concat -> List (List.concat_map (of_list 0 op') vs) | _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_list)) end module I64 = struct let cmp_u x op y = op Int64.(add x min_int) Int64.(add y min_int) [@@inline] let lt_u x y = cmp_u x Int64.Infix.( < ) y [@@inline] end module Bitv = struct let[@inline] unop op bv = let bv = of_bitv 1 (`Unop op) bv in match op with | Ty.Unop.Neg -> to_bitv (Bitvector.neg bv) | Not -> to_bitv (Bitvector.lognot bv) | Clz -> to_bitv (Bitvector.clz bv) | Ctz -> to_bitv (Bitvector.ctz bv) | Popcnt -> to_bitv (Bitvector.popcnt bv) | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_bitv (Bitvector.numbits bv))) let[@inline] binop op bv1 bv2 = let bv1 = of_bitv 1 (`Binop op) bv1 in let bv2 = of_bitv 2 (`Binop op) bv2 in match op with | Ty.Binop.Add -> to_bitv (Bitvector.add bv1 bv2) | Sub -> to_bitv (Bitvector.sub bv1 bv2) | Mul -> to_bitv (Bitvector.mul bv1 bv2) | Div -> to_bitv (Bitvector.div bv1 bv2) | DivU -> to_bitv (Bitvector.div_u bv1 bv2) | Rem -> to_bitv (Bitvector.rem bv1 bv2) | RemU -> to_bitv (Bitvector.rem_u bv1 bv2) | And -> to_bitv (Bitvector.logand bv1 bv2) | Or -> to_bitv (Bitvector.logor bv1 bv2) | Xor -> to_bitv (Bitvector.logxor bv1 bv2) | Shl -> to_bitv (Bitvector.shl bv1 bv2) | ShrL -> to_bitv (Bitvector.lshr bv1 bv2) | ShrA -> to_bitv (Bitvector.ashr bv1 bv2) | Rotl -> to_bitv (Bitvector.rotate_left bv1 bv2) | Rotr -> to_bitv (Bitvector.rotate_right bv1 bv2) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_bitv 0)) let[@inline] relop op bv1 bv2 = let bv1 = of_bitv 1 (`Relop op) bv1 in let bv2 = of_bitv 2 (`Relop op) bv2 in match op with | Ty.Relop.Lt -> Bitvector.lt bv1 bv2 | LtU -> Bitvector.lt_u bv1 bv2 | Le -> Bitvector.le bv1 bv2 | LeU -> Bitvector.le_u bv1 bv2 | Gt -> Bitvector.gt bv1 bv2 | GtU -> Bitvector.gt_u bv1 bv2 | Ge -> Bitvector.ge bv1 bv2 | GeU -> Bitvector.ge_u bv1 bv2 | Eq -> Bitvector.equal bv1 bv2 | Ne -> not @@ Bitvector.equal bv1 bv2 let[@inline] cvtop op bv = let bv = of_bitv 1 (`Cvtop op) bv in match op with | Ty.Cvtop.Sign_extend m -> to_bitv (Bitvector.sign_extend m bv) | Ty.Cvtop.Zero_extend m -> to_bitv (Bitvector.zero_extend m bv) | _ -> eval_error (`Unsupported_operator (`Cvtop op, Ty_bitv (Bitvector.numbits bv))) end module F32 = struct (* Stolen from Owi *) let[@inline] abs x = Int32.logand x Int32.max_int let[@inline] neg x = Int32.logxor x Int32.min_int let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let f = Int32.float_of_bits (of_fp32 1 (`Unop op) v) in match op with | Neg -> to_fp32 @@ neg @@ of_fp32 1 (`Unop op) v | Abs -> to_fp32 @@ abs @@ of_fp32 1 (`Unop op) v | Sqrt -> fp32_of_float @@ Float.sqrt f | Nearest -> fp32_of_float @@ Float.round f | Ceil -> fp32_of_float @@ Float.ceil f | Floor -> fp32_of_float @@ Float.floor f | Trunc -> fp32_of_float @@ Float.trunc f | Is_nan -> if Float.is_nan f then Value.True else Value.False | _ -> eval_error (`Unsupported_operator (`Unop op, Ty_fp 32)) (* Stolen from Owi *) let[@inline] copy_sign x y = Int32.logor (abs x) (Int32.logand y Int32.min_int) let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let a = Int32.float_of_bits @@ of_fp32 1 (`Binop op) v1 in let b = Int32.float_of_bits @@ of_fp32 1 (`Binop op) v2 in match op with | Add -> fp32_of_float @@ Float.add a b | Sub -> fp32_of_float @@ Float.sub a b | Mul -> fp32_of_float @@ Float.mul a b | Div -> fp32_of_float @@ Float.div a b | Rem -> fp32_of_float @@ Float.rem a b | Min -> fp32_of_float @@ Float.min a b | Max -> fp32_of_float @@ Float.max a b | Copysign -> let a = of_fp32 1 (`Binop op) v1 in let b = of_fp32 1 (`Binop op) v2 in to_fp32 (copy_sign a b) | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_fp 32)) let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let a = Int32.float_of_bits @@ of_fp32 1 (`Relop op) v1 in let b = Int32.float_of_bits @@ of_fp32 2 (`Relop op) v2 in match op with | Eq -> Float.Infix.(a = b) | Ne -> Float.Infix.(a <> b) | Lt -> Float.Infix.(a < b) | Le -> Float.Infix.(a <= b) | Gt -> Float.Infix.(a > b) | Ge -> Float.Infix.(a >= b) | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_fp 32)) end module F64 = struct (* Stolen from owi *) let[@inline] abs x = Int64.logand x Int64.max_int let[@inline] neg x = Int64.logxor x Int64.min_int let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t = let f = Int64.float_of_bits @@ of_fp64 1 (`Unop op) v in match op with | Neg -> to_fp64 @@ neg @@ of_fp64 1 (`Unop op) v | Abs -> to_fp64 @@ abs @@ of_fp64 1 (`Unop op) v | Sqrt -> fp64_of_float @@ Float.sqrt f | Nearest -> fp64_of_float @@ Float.round f | Ceil -> fp64_of_float @@ Float.ceil f | Floor -> fp64_of_float @@ Float.floor f | Trunc -> fp64_of_float @@ Float.trunc f | Is_nan -> if Float.is_nan f then Value.True else Value.False | _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op let copy_sign x y = Int64.logor (abs x) (Int64.logand y Int64.min_int) let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t = let a = Int64.float_of_bits @@ of_fp64 1 (`Binop op) v1 in let b = Int64.float_of_bits @@ of_fp64 2 (`Binop op) v2 in match op with | Add -> fp64_of_float @@ Float.add a b | Sub -> fp64_of_float @@ Float.sub a b | Mul -> fp64_of_float @@ Float.mul a b | Div -> fp64_of_float @@ Float.div a b | Rem -> fp64_of_float @@ Float.rem a b | Min -> fp64_of_float @@ Float.min a b | Max -> fp64_of_float @@ Float.max a b | Copysign -> let a = of_fp64 1 (`Binop op) v1 in let b = of_fp64 2 (`Binop op) v2 in to_fp64 @@ copy_sign a b | _ -> eval_error (`Unsupported_operator (`Binop op, Ty_fp 64)) let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool = let a = Int64.float_of_bits @@ of_fp64 1 (`Relop op) v1 in let b = Int64.float_of_bits @@ of_fp64 2 (`Relop op) v2 in match op with | Eq -> Float.Infix.(a = b) | Ne -> Float.Infix.(a <> b) | Lt -> Float.Infix.(a < b) | Le -> Float.Infix.(a <= b) | Gt -> Float.Infix.(a > b) | Ge -> Float.Infix.(a >= b) | _ -> eval_error (`Unsupported_operator (`Relop op, Ty_fp 64)) end module I32CvtOp = struct let trunc_f32_s (x : int32) = if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int32.float_of_bits x in if Float.Infix.( xf >= -.Int32.(to_float min_int) || xf < Int32.(to_float min_int) ) then eval_error `Integer_overflow else Int32.of_float xf let trunc_f32_u (x : int32) = if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int32.float_of_bits x in if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0 || xf <= -1.0) then eval_error `Integer_overflow else Int32.of_float xf let trunc_f64_s (x : int64) = if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int64.float_of_bits x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then eval_error `Integer_overflow else Int32.of_float xf let trunc_f64_u (x : int64) = if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int64.float_of_bits x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then eval_error `Integer_overflow else Int32.of_float xf let trunc_sat_f32_s x = if Int32.Infix.(x <> x) then 0l else let xf = Int32.float_of_bits x in if Float.Infix.(xf < Int32.(to_float min_int)) then Int32.min_int else if Float.Infix.(xf >= -.Int32.(to_float min_int)) then Int32.max_int else Int32.of_float xf let trunc_sat_f32_u x = if Int32.Infix.(x <> x) then 0l else let xf = Int32.float_of_bits x in if Float.Infix.(xf <= -1.0) then 0l else if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0) then -1l else Int32.of_float xf let trunc_sat_f64_s x = if Int64.Infix.(x <> x) then 0l else let xf = Int64.float_of_bits x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int32.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int32.max_int else Int32.of_float xf let trunc_sat_f64_u x = if Int64.Infix.(x <> x) then 0l else let xf = Int64.float_of_bits x in if Float.Infix.(xf <= -1.0) then 0l else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1l else Int32.of_float xf let cvtop op v = let op' = `Cvtop op in match op with | Ty.Cvtop.WrapI64 -> bitv_of_int32 (Int64.to_int32 (int64_of_bitv 1 op' v)) | TruncSF32 -> bitv_of_int32 (trunc_f32_s (of_fp32 1 op' v)) | TruncUF32 -> bitv_of_int32 (trunc_f32_u (of_fp32 1 op' v)) | TruncSF64 -> bitv_of_int32 (trunc_f64_s (of_fp64 1 op' v)) | TruncUF64 -> bitv_of_int32 (trunc_f64_u (of_fp64 1 op' v)) | Trunc_sat_f32_s -> bitv_of_int32 (trunc_sat_f32_s (of_fp32 1 op' v)) | Trunc_sat_f32_u -> bitv_of_int32 (trunc_sat_f32_u (of_fp32 1 op' v)) | Trunc_sat_f64_s -> bitv_of_int32 (trunc_sat_f64_s (of_fp64 1 op' v)) | Trunc_sat_f64_u -> bitv_of_int32 (trunc_sat_f64_u (of_fp64 1 op' v)) | Reinterpret_float -> bitv_of_int32 (of_fp32 1 op' v) | Sign_extend n -> to_bitv (Bitvector.sign_extend n (of_bitv 1 op' v)) | Zero_extend n -> to_bitv (Bitvector.zero_extend n (of_bitv 1 op' v)) | OfBool -> v (* v is already a number here *) | ToBool | _ -> eval_error (`Unsupported_operator (op', Ty_bitv 32)) end module I64CvtOp = struct let extend_i32_u (x : int32) = Int64.(logand (of_int32 x) 0x0000_0000_ffff_ffffL) let trunc_f32_s (x : int32) = if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int32.float_of_bits x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then eval_error `Integer_overflow else Int64.of_float xf let trunc_f32_u (x : int32) = if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int32.float_of_bits x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then eval_error `Integer_overflow else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_f64_s (x : int64) = if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int64.float_of_bits x in if Float.Infix.( xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) ) then eval_error `Integer_overflow else Int64.of_float xf let trunc_f64_u (x : int64) = if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer else let xf = Int64.float_of_bits x in if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0) then eval_error `Integer_overflow else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_sat_f32_s (x : int32) = if Int32.Infix.(x <> x) then 0L else let xf = Int32.float_of_bits x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int else Int64.of_float xf let trunc_sat_f32_u (x : int32) = if Int32.Infix.(x <> x) then 0L else let xf = Int32.float_of_bits x in if Float.Infix.(xf <= -1.0) then 0L else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let trunc_sat_f64_s (x : int64) = if Int64.Infix.(x <> x) then 0L else let xf = Int64.float_of_bits x in if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int else Int64.of_float xf let trunc_sat_f64_u (x : int64) = if Int64.Infix.(x <> x) then 0L else let xf = Int64.float_of_bits x in if Float.Infix.(xf <= -1.0) then 0L else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.(logxor (of_float (xf -. 0x1p63)) min_int) else Int64.of_float xf let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | Sign_extend n -> to_bitv (Bitvector.sign_extend n (of_bitv 1 op' v)) | Zero_extend n -> to_bitv (Bitvector.zero_extend n (of_bitv 1 op' v)) | TruncSF32 -> bitv_of_int64 (trunc_f32_s (of_fp32 1 op' v)) | TruncUF32 -> bitv_of_int64 (trunc_f32_u (of_fp32 1 op' v)) | TruncSF64 -> bitv_of_int64 (trunc_f64_s (of_fp64 1 op' v)) | TruncUF64 -> bitv_of_int64 (trunc_f64_u (of_fp64 1 op' v)) | Trunc_sat_f32_s -> bitv_of_int64 (trunc_sat_f32_s (of_fp32 1 op' v)) | Trunc_sat_f32_u -> bitv_of_int64 (trunc_sat_f32_u (of_fp32 1 op' v)) | Trunc_sat_f64_s -> bitv_of_int64 (trunc_sat_f64_s (of_fp64 1 op' v)) | Trunc_sat_f64_u -> bitv_of_int64 (trunc_sat_f64_u (of_fp64 1 op' v)) | Reinterpret_float -> bitv_of_int64 (of_fp64 1 op' v) | WrapI64 -> type_error 1 v (Ty_bitv 64) op' "Cannot wrapI64 on an I64" | ToBool | OfBool | _ -> eval_error (`Unsupported_operator (op', Ty_bitv 64)) end module F32CvtOp = struct let demote_f64 x = let xf = Int64.float_of_bits x in if Float.Infix.(xf = xf) then Int32.bits_of_float xf else let nan64bits = x in let sign_field = Int64.(shift_left (shift_right_logical nan64bits 63) 31) in let significand_field = Int64.(shift_right_logical (shift_left nan64bits 12) 41) in let fields = Int64.logor sign_field significand_field in Int32.logor 0x7fc0_0000l (Int64.to_int32 fields) let convert_i32_s x = Int32.bits_of_float (Int32.to_float x) let convert_i32_u x = Int32.bits_of_float Int32.( Int32.Infix.( if x >= 0l then to_float x else to_float (logor (shift_right_logical x 1) (logand x 1l)) *. 2.0 ) ) let convert_i64_s x = Int32.bits_of_float Int64.( Int64.Infix.( if abs x < 0x10_0000_0000_0000L then to_float x else let r = if logand x 0xfffL = 0L then 0L else 1L in to_float (logor (shift_right x 12) r) *. 0x1p12 ) ) let convert_i64_u x = Int32.bits_of_float Int64.( Int64.Infix.( if I64.lt_u x 0x10_0000_0000_0000L then to_float x else let r = if logand x 0xfffL = 0L then 0L else 1L in to_float (logor (shift_right_logical x 12) r) *. 0x1p12 ) ) let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t = let op' = `Cvtop op in match op with | DemoteF64 -> to_fp32 (demote_f64 (of_fp64 1 op' v)) | ConvertSI32 -> to_fp32 (convert_i32_s (int32_of_bitv 1 op' v)) | ConvertUI32 -> to_fp32 (convert_i32_u (int32_of_bitv 1 op' v)) | ConvertSI64 -> to_fp32 (convert_i64_s (int64_of_bitv 1 op' v)) | ConvertUI64 -> to_fp32 (convert_i64_u (int64_of_bitv 1 op' v)) | Reinterpret_int -> to_fp32 (int32_of_bitv 1 op' v) | PromoteF32 -> type_error 1 v (Ty_fp 32) op' "F64 must promote F32" | ToString | OfString | _ -> eval_error (`Unsupported_operator (op', Ty_fp 32)) end module F64CvtOp = struct let promote_f32 x = let xf = Int32.float_of_bits x in if Float.Infix.(xf = xf) then Int64.bits_of_float xf else let nan32bits = I64CvtOp.extend_i32_u x in let sign_field = Int64.(shift_left (shift_right_logical nan32bits 31) 63) in let significand_field = Int64.(shift_right_logical (shift_left nan32bits 41) 12) in let fields = Int64.logor sign_field significand_field in Int64.logor 0x7ff8_0000_0000_0000L fields let convert_i32_s x = Int64.bits_of_float (Int32.to_float x) (* * Unlike the other convert_u functions, the high half of the i32 range is * within the range where f32 can represent odd numbers, so we can't do the * shift. Instead, we can use int64 signed arithmetic. *) let convert_i32_u x = Int64.bits_of_float Int64.(to_float (logand (of_int32 x) 0x0000_0000_ffff_ffffL)) let convert_i64_s x = Int64.bits_of_float (Int64.to_float x) (* * Values in the low half of the int64 range can be converted with a signed * conversion. The high half is beyond the range where f64 can represent odd * numbers, so we can shift the value right, adjust the least significant * bit to round correctly, do a conversion, and then scale it back up. *) let convert_i64_u (x : int64) = Int64.bits_of_float Int64.( Int64.Infix.( if x >= 0L then to_float x else to_float (logor (shift_right_logical x 1) (logand x 1L)) *. 2.0 ) ) let cvtop (op : Ty.Cvtop.t) v : Value.t = let op' = `Cvtop op in match op with | PromoteF32 -> to_fp64 (promote_f32 (of_fp32 1 op' v)) | ConvertSI32 -> to_fp64 (convert_i32_s (int32_of_bitv 1 op' v)) | ConvertUI32 -> to_fp64 (convert_i32_u (int32_of_bitv 1 op' v)) | ConvertSI64 -> to_fp64 (convert_i64_s (int64_of_bitv 1 op' v)) | ConvertUI64 -> to_fp64 (convert_i64_u (int64_of_bitv 1 op' v)) | Reinterpret_int -> to_fp64 (int64_of_bitv 1 op' v) | DemoteF64 -> type_error 1 v (Ty_fp 64) op' "F32 must demote a F64" | ToString | OfString | _ -> eval_error (`Unsupported_operator (op', Ty_fp 64)) end (* Dispatch *) let unop ty op v = match ty with | Ty.Ty_int -> Int.unop op v | Ty_real -> Real.unop op v | Ty_bool -> Bool.unop op v | Ty_str -> Str.unop op v | Ty_list -> Lst.unop op v | Ty_bitv _ -> Bitv.unop op v | Ty_fp 32 -> F32.unop op v | Ty_fp 64 -> F64.unop op v | Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp | Ty_roundingMode -> eval_error (`Unsupported_theory ty) let binop ty op v1 v2 = match ty with | Ty.Ty_int -> Int.binop op v1 v2 | Ty_real -> Real.binop op v1 v2 | Ty_bool -> Bool.binop op v1 v2 | Ty_str -> Str.binop op v1 v2 | Ty_list -> Lst.binop op v1 v2 | Ty_bitv _ -> Bitv.binop op v1 v2 | Ty_fp 32 -> F32.binop op v1 v2 | Ty_fp 64 -> F64.binop op v1 v2 | Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp | Ty_roundingMode -> eval_error (`Unsupported_theory ty) let triop ty op v1 v2 v3 = match ty with | Ty.Ty_bool -> Bool.triop op v1 v2 v3 | Ty_str -> Str.triop op v1 v2 v3 | Ty_list -> Lst.triop op v1 v2 v3 | ty -> eval_error (`Unsupported_theory ty) let relop ty op v1 v2 = match ty with | Ty.Ty_int -> Int.relop op v1 v2 | Ty_real -> Real.relop op v1 v2 | Ty_bool -> Bool.relop op v1 v2 | Ty_str -> Str.relop op v1 v2 | Ty_bitv _ -> Bitv.relop op v1 v2 | Ty_fp 32 -> F32.relop op v1 v2 | Ty_fp 64 -> F64.relop op v1 v2 | ty -> eval_error (`Unsupported_theory ty) let cvtop ty op v = match ty with | Ty.Ty_int -> Int.cvtop op v | Ty_real -> Real.cvtop op v | Ty_str -> Str.cvtop op v | Ty_bitv 32 -> I32CvtOp.cvtop op v | Ty_bitv 64 -> I64CvtOp.cvtop op v (* Remaining fall into arbitrary-width bv cvtop operations *) | Ty_bitv _m -> Bitv.cvtop op v | Ty_fp 32 -> F32CvtOp.cvtop op v | Ty_fp 64 -> F64CvtOp.cvtop op v | ty -> eval_error (`Unsupported_theory ty) let naryop ty op vs = match ty with | Ty.Ty_bool -> Bool.naryop op vs | Ty_str -> Str.naryop op vs | Ty_list -> Lst.naryop op vs | ty -> eval_error (`Unsupported_theory ty)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>