Source file eval.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
type op_type =
[ `Unop of Ty.Unop.t
| `Binop of Ty.Binop.t
| `Relop of Ty.Relop.t
| `Triop of Ty.Triop.t
| `Cvtop of Ty.Cvtop.t
| `Naryop of Ty.Naryop.t
]
[@@deriving show]
type type_error_info =
{ index : int
; value : Value.t
; ty : Ty.t
; op : op_type
; msg : string
}
[@@deriving show]
type error_kind =
[ `Divide_by_zero
| `Conversion_to_integer
| `Integer_overflow
| `Index_out_of_bounds
| `Invalid_format_conversion
| `Unsupported_operator of op_type * Ty.t
| `Unsupported_theory of Ty.t
| `Type_error of type_error_info
]
let pp_error_kind fmt err =
match err with
| `Divide_by_zero -> Fmt.string fmt "Division by zero"
| `Conversion_to_integer ->
Fmt.string fmt "Failed to convert value to integer"
| `Integer_overflow ->
Fmt.string fmt "Integer overflow: result is outside the representable range"
| `Index_out_of_bounds -> Fmt.string fmt "Index out of bounds"
| `Invalid_format_conversion ->
Fmt.string fmt "Invalid format conversion string"
| `Unsupported_operator (op, ty) ->
Fmt.pf fmt "The operator '%a' is not supported for type '%a'" pp_op_type op
Ty.pp ty
| `Unsupported_theory ty ->
Fmt.pf fmt "The theory for type '%a' is not currently supported" Ty.pp ty
| `Type_error { index; value; ty; op; _ } ->
Fmt.pf fmt
"@[<h>Type error: Argument %d of operation '%a' expected type '%a', but \
received value '%a' instead.@]"
index pp_op_type op Ty.pp ty Value.pp value
exception Eval_error of error_kind
exception Value of Ty.t
let eval_error kind = raise (Eval_error kind)
let type_error n v ty op msg =
eval_error (`Type_error { index = n; value = v; ty; op; msg })
let err_str n op ty_expected ty_actual =
Fmt.str "Argument %d of %a expected type %a but got %a instead." n pp_op_type
op Ty.pp ty_expected Ty.pp ty_actual
let raise_type_mismatch n op v expected_ty =
let actual_ty = Value.type_of v in
let msg = err_str n op expected_ty actual_ty in
type_error n v expected_ty op msg
let[@inline] of_int n op v =
match v with Value.Int x -> x | _ -> raise_type_mismatch n op v Ty_int
let[@inline] to_int x = Value.Int x
let[@inline] of_real n op v =
match v with Value.Real x -> x | _ -> raise_type_mismatch n op v Ty_real
let[@inline] to_real x = Value.Real x
let[@inline] of_bool n op v =
match v with
| Value.True -> true
| False -> false
| _ -> raise_type_mismatch n op v Ty_bool
let[@inline] to_bool x = if x then Value.True else False
let[@inline] of_str n op v =
match v with Value.Str x -> x | _ -> raise_type_mismatch n op v Ty_str
let[@inline] to_str x = Value.Str x
let[@inline] of_list n op v =
match v with Value.List x -> x | _ -> raise_type_mismatch n op v Ty_list
let[@inline] of_bitv n op v =
match v with Value.Bitv x -> x | _ -> raise_type_mismatch n op v (Ty_bitv 0)
let[@inline] int32_of_bitv n op v = of_bitv n op v |> Bitvector.to_int32
let[@inline] int64_of_bitv n op v = of_bitv n op v |> Bitvector.to_int64
let[@inline] to_bitv x = Value.Bitv x
let[@inline] bitv_of_int32 x = to_bitv (Bitvector.of_int32 x)
let[@inline] bitv_of_int64 x = to_bitv (Bitvector.of_int64 x)
let[@inline] of_fp32 n op v : int32 =
match v with
| Value.Num (F32 f) -> f
| _ -> raise_type_mismatch n op v (Ty_fp 32)
let[@inline] to_fp32 (x : int32) = Value.Num (F32 x)
let[@inline] fp32_of_float (x : float) = to_fp32 (Int32.bits_of_float x)
let[@inline] of_fp64 n op v : int64 =
match v with
| Value.Num (F64 f) -> f
| _ -> raise_type_mismatch n op v (Ty_fp 64)
let[@inline] to_fp64 (x : int64) = Value.Num (F64 x)
let[@inline] fp64_of_float (x : float) = to_fp64 (Int64.bits_of_float x)
module Int = struct
let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let v = of_int 1 (`Unop op) v in
match op with
| Neg -> to_int (Int.neg v)
| Not -> to_int (Int.lognot v)
| Abs -> to_int (Int.abs v)
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_int))
let exp_by_squaring x n =
let rec exp_by_squaring2 y x n =
if n < 0 then exp_by_squaring2 y (1 / x) ~-n
else if n = 0 then y
else if n mod 2 = 0 then exp_by_squaring2 y (x * x) (n / 2)
else begin
assert (n mod 2 = 1);
exp_by_squaring2 (x * y) (x * x) ((n - 1) / 2)
end
in
exp_by_squaring2 1 x n
let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let v1 = of_int 1 (`Binop op) v1 in
let v2 = of_int 2 (`Binop op) v2 in
match op with
| Add -> to_int (Int.add v1 v2)
| Sub -> to_int (Int.sub v1 v2)
| Mul -> to_int (Int.mul v1 v2)
| Div -> to_int (Int.div v1 v2)
| Rem -> to_int (Int.rem v1 v2)
| Pow -> to_int (exp_by_squaring v1 v2)
| Min -> to_int (Int.min v1 v2)
| Max -> to_int (Int.max v1 v2)
| And -> to_int (Int.logand v1 v2)
| Or -> to_int (Int.logor v1 v2)
| Xor -> to_int (Int.logxor v1 v2)
| Shl -> to_int (Int.shift_left v1 v2)
| ShrL -> to_int (Int.shift_right_logical v1 v2)
| ShrA -> to_int (Int.shift_right v1 v2)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_int))
let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let a = of_int 1 (`Relop op) v1 in
let b = of_int 2 (`Relop op) v2 in
match op with
| Lt -> a < b
| Le -> a <= b
| Gt -> a > b
| Ge -> a >= b
| Eq -> Int.equal a b
| Ne -> not (Int.equal a b)
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_int))
let[@inline] int_of_bool v =
match v with Value.True -> 1 | False -> 0 | _ -> assert false
let[@inline] cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
match op with
| OfBool -> to_int (int_of_bool v)
| Reinterpret_float -> Int (Int.of_float (of_real 1 (`Cvtop op) v))
| _ -> eval_error (`Unsupported_operator (`Cvtop op, Ty_int))
end
module Real = struct
let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let v = of_real 1 (`Unop op) v in
match op with
| Neg -> to_real @@ Float.neg v
| Abs -> to_real @@ Float.abs v
| Sqrt -> to_real @@ Float.sqrt v
| Nearest -> to_real @@ Float.round v
| Ceil -> to_real @@ Float.ceil v
| Floor -> to_real @@ Float.floor v
| Trunc -> to_real @@ Float.trunc v
| Is_nan -> if Float.is_nan v then Value.True else Value.False
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_real))
let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let a = of_real 1 (`Binop op) v1 in
let b = of_real 2 (`Binop op) v2 in
match op with
| Add -> to_real (Float.add a b)
| Sub -> to_real (Float.sub a b)
| Mul -> to_real (Float.mul a b)
| Div -> to_real (Float.div a b)
| Rem -> to_real (Float.rem a b)
| Min -> to_real (Float.min a b)
| Max -> to_real (Float.max a b)
| Pow -> to_real (Float.pow a b)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_real))
let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let a = of_real 1 (`Relop op) v1 in
let b = of_real 2 (`Relop op) v2 in
match op with
| Lt -> Float.Infix.(a < b)
| Le -> Float.Infix.(a <= b)
| Gt -> Float.Infix.(a > b)
| Ge -> Float.Infix.(a >= b)
| Eq -> Float.Infix.(a = b)
| Ne -> Float.Infix.(a <> b)
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_real))
let[@inline] cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| ToString -> Str (Float.to_string (of_real 1 op' v))
| OfString -> begin
match float_of_string_opt (of_str 1 op' v) with
| None -> eval_error `Invalid_format_conversion
| Some v -> to_real v
end
| Reinterpret_int -> to_real (float_of_int (of_int 1 op' v))
| Reinterpret_float -> to_int (Float.to_int (of_real 1 op' v))
| _ -> eval_error (`Unsupported_operator (op', Ty_real))
end
module Bool = struct
let[@inline] unop (op : Ty.Unop.t) v =
let b = of_bool 1 (`Unop op) v in
match op with
| Not -> to_bool (not b)
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_bool))
let xor b1 b2 =
match (b1, b2) with
| true, true -> false
| true, false -> true
| false, true -> true
| false, false -> false
let[@inline] binop (op : Ty.Binop.t) v1 v2 =
let a = of_bool 1 (`Binop op) v1 in
let b = of_bool 2 (`Binop op) v2 in
match op with
| And -> to_bool (a && b)
| Or -> to_bool (a || b)
| Xor -> to_bool (xor a b)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_bool))
let[@inline] triop (op : Ty.Triop.t) c v1 v2 =
match op with
| Ite -> ( match of_bool 1 (`Triop op) c with true -> v1 | false -> v2 )
| _ -> eval_error (`Unsupported_operator (`Triop op, Ty_bool))
let[@inline] relop (op : Ty.Relop.t) v1 v2 =
match op with
| Eq -> Value.equal v1 v2
| Ne -> not (Value.equal v1 v2)
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_bool))
let[@inline] naryop (op : Ty.Naryop.t) vs =
match op with
| Logand ->
let exists_false =
let i = ref 0 in
List.find_map
(fun e ->
incr i;
let b = of_bool !i (`Naryop op) e in
if not b then Some () else None )
vs
in
if Option.is_some exists_false then Value.False else Value.True
| Logor ->
let exists_true =
let i = ref 0 in
List.find_map
(fun e ->
incr i;
let b = of_bool !i (`Naryop op) e in
if b then Some () else None )
vs
in
if Option.is_some exists_true then Value.True else Value.False
| _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_bool))
end
module Str = struct
let replace s t t' =
let len_s = String.length s in
let len_t = String.length t in
let rec loop i =
if i >= len_s then s
else if i + len_t > len_s then s
else if String.equal (String.sub s i len_t) t then
let s' = Fmt.str "%s%s" (String.sub s 0 i) t' in
let s'' = String.sub s (i + len_t) (len_s - i - len_t) in
Fmt.str "%s%s" s' s''
else loop (i + 1)
in
loop 0
let indexof s sub start =
let len_s = String.length s in
let len_sub = String.length sub in
let max_i = len_s - 1 in
let rec loop i =
if i > max_i then ~-1
else if i + len_sub > len_s then ~-1
else if String.equal sub (String.sub s i len_sub) then i
else loop (i + 1)
in
if start <= 0 then loop 0 else loop start
let contains s sub = if indexof s sub 0 < 0 then false else true
let[@inline] unop (op : Ty.Unop.t) v =
let str = of_str 1 (`Unop op) v in
match op with
| Length -> to_int (String.length str)
| Trim -> to_str (String.trim str)
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_str))
let[@inline] binop (op : Ty.Binop.t) v1 v2 =
let op' = `Binop op in
let str = of_str 1 op' v1 in
match op with
| At -> begin
let i = of_int 2 op' v2 in
try to_str (Fmt.str "%c" (String.get str i))
with Invalid_argument _ -> eval_error `Index_out_of_bounds
end
| String_prefix ->
to_bool (String.starts_with ~prefix:str (of_str 2 op' v2))
| String_suffix -> to_bool (String.ends_with ~suffix:str (of_str 2 op' v2))
| String_contains -> to_bool (contains str (of_str 2 op' v2))
| _ -> eval_error (`Unsupported_operator (op', Ty_str))
let[@inline] triop (op : Ty.Triop.t) v1 v2 v3 =
let op' = `Triop op in
let str = of_str 1 op' v1 in
match op with
| String_extract -> begin
let i = of_int 2 op' v2 in
let len = of_int 3 op' v3 in
try to_str (String.sub str i len)
with Invalid_argument _ -> eval_error `Index_out_of_bounds
end
| String_replace ->
let t = of_str 2 op' v2 in
let t' = of_str 2 op' v3 in
to_str (replace str t t')
| String_index ->
let t = of_str 2 op' v2 in
let i = of_int 3 op' v3 in
to_int (indexof str t i)
| _ -> eval_error (`Unsupported_operator (`Triop op, Ty_str))
let[@inline] relop (op : Ty.Relop.t) v1 v2 =
let a = of_str 1 (`Relop op) v1 in
let b = of_str 2 (`Relop op) v2 in
let cmp = String.compare a b in
match op with
| Lt -> cmp < 0
| Le -> cmp <= 0
| Gt -> cmp > 0
| Ge -> cmp >= 0
| Eq -> cmp = 0
| Ne -> cmp <> 0
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_str))
let[@inline] cvtop (op : Ty.Cvtop.t) v =
let op' = `Cvtop op in
match op with
| String_to_code ->
let str = of_str 1 op' v in
to_int (Char.code str.[0])
| String_from_code ->
let code = of_int 1 op' v in
to_str (String.make 1 (Char.chr code))
| String_to_int -> begin
let s = of_str 1 op' v in
match int_of_string_opt s with
| None -> eval_error `Invalid_format_conversion
| Some x -> to_int x
end
| String_from_int -> to_str (string_of_int (of_int 1 op' v))
| String_to_float -> begin
let s = of_str 1 op' v in
match float_of_string_opt s with
| None -> eval_error `Invalid_format_conversion
| Some f -> to_real f
end
| _ -> eval_error (`Unsupported_operator (`Cvtop op, Ty_str))
let[@inline] naryop (op : Ty.Naryop.t) vs =
let op' = `Naryop op in
match op with
| Concat ->
let _, s =
List.fold_left
(fun (i, acc) v ->
let s = of_str i op' v in
(i + 1, String.cat acc s) )
(0, "") vs
in
to_str s
| _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_str))
end
module Lst = struct
let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let lst = of_list 1 (`Unop op) v in
match op with
| Head -> begin
match lst with
| hd :: _tl -> hd
| [] -> assert false
end
| Tail -> begin
match lst with
| _hd :: tl -> List tl
| [] -> assert false
end
| Length -> to_int (List.length lst)
| Reverse -> List (List.rev lst)
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_list))
let[@inline] binop (op : Ty.Binop.t) v1 v2 =
let op' = `Binop op in
match op with
| At ->
let lst = of_list 1 op' v1 in
let i = of_int 2 op' v2 in
begin match List.nth_opt lst i with
| None -> eval_error `Index_out_of_bounds
| Some v -> v
end
| List_cons -> List (v1 :: of_list 1 op' v2)
| List_append -> List (of_list 1 op' v1 @ of_list 2 op' v2)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_list))
let[@inline] triop (op : Ty.Triop.t) (v1 : Value.t) (v2 : Value.t)
(v3 : Value.t) : Value.t =
let op' = `Triop op in
match op with
| List_set ->
let lst = of_list 1 op' v1 in
let i = of_int 2 op' v2 in
let rec set i lst v acc =
match (i, lst) with
| 0, _ :: tl -> List.rev_append acc (v :: tl)
| i, hd :: tl -> set (i - 1) tl v (hd :: acc)
| _, [] -> eval_error `Index_out_of_bounds
in
List (set i lst v3 [])
| _ -> eval_error (`Unsupported_operator (`Triop op, Ty_list))
let[@inline] naryop (op : Ty.Naryop.t) (vs : Value.t list) : Value.t =
let op' = `Naryop op in
match op with
| Concat -> List (List.concat_map (of_list 0 op') vs)
| _ -> eval_error (`Unsupported_operator (`Naryop op, Ty_list))
end
module I64 = struct
let cmp_u x op y = op Int64.(add x min_int) Int64.(add y min_int) [@@inline]
let lt_u x y = cmp_u x Int64.Infix.( < ) y [@@inline]
end
module Bitv = struct
let[@inline] unop op bv =
let bv = of_bitv 1 (`Unop op) bv in
match op with
| Ty.Unop.Neg -> to_bitv (Bitvector.neg bv)
| Not -> to_bitv (Bitvector.lognot bv)
| Clz -> to_bitv (Bitvector.clz bv)
| Ctz -> to_bitv (Bitvector.ctz bv)
| Popcnt -> to_bitv (Bitvector.popcnt bv)
| _ ->
eval_error
(`Unsupported_operator (`Unop op, Ty_bitv (Bitvector.numbits bv)))
let[@inline] binop op bv1 bv2 =
let bv1 = of_bitv 1 (`Binop op) bv1 in
let bv2 = of_bitv 2 (`Binop op) bv2 in
match op with
| Ty.Binop.Add -> to_bitv (Bitvector.add bv1 bv2)
| Sub -> to_bitv (Bitvector.sub bv1 bv2)
| Mul -> to_bitv (Bitvector.mul bv1 bv2)
| Div -> to_bitv (Bitvector.div bv1 bv2)
| DivU -> to_bitv (Bitvector.div_u bv1 bv2)
| Rem -> to_bitv (Bitvector.rem bv1 bv2)
| RemU -> to_bitv (Bitvector.rem_u bv1 bv2)
| And -> to_bitv (Bitvector.logand bv1 bv2)
| Or -> to_bitv (Bitvector.logor bv1 bv2)
| Xor -> to_bitv (Bitvector.logxor bv1 bv2)
| Shl -> to_bitv (Bitvector.shl bv1 bv2)
| ShrL -> to_bitv (Bitvector.lshr bv1 bv2)
| ShrA -> to_bitv (Bitvector.ashr bv1 bv2)
| Rotl -> to_bitv (Bitvector.rotate_left bv1 bv2)
| Rotr -> to_bitv (Bitvector.rotate_right bv1 bv2)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_bitv 0))
let[@inline] relop op bv1 bv2 =
let bv1 = of_bitv 1 (`Relop op) bv1 in
let bv2 = of_bitv 2 (`Relop op) bv2 in
match op with
| Ty.Relop.Lt -> Bitvector.lt bv1 bv2
| LtU -> Bitvector.lt_u bv1 bv2
| Le -> Bitvector.le bv1 bv2
| LeU -> Bitvector.le_u bv1 bv2
| Gt -> Bitvector.gt bv1 bv2
| GtU -> Bitvector.gt_u bv1 bv2
| Ge -> Bitvector.ge bv1 bv2
| GeU -> Bitvector.ge_u bv1 bv2
| Eq -> Bitvector.equal bv1 bv2
| Ne -> not @@ Bitvector.equal bv1 bv2
let[@inline] cvtop op bv =
let bv = of_bitv 1 (`Cvtop op) bv in
match op with
| Ty.Cvtop.Sign_extend m -> to_bitv (Bitvector.sign_extend m bv)
| Ty.Cvtop.Zero_extend m -> to_bitv (Bitvector.zero_extend m bv)
| _ ->
eval_error
(`Unsupported_operator (`Cvtop op, Ty_bitv (Bitvector.numbits bv)))
end
module F32 = struct
let[@inline] abs x = Int32.logand x Int32.max_int
let[@inline] neg x = Int32.logxor x Int32.min_int
let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let f = Int32.float_of_bits (of_fp32 1 (`Unop op) v) in
match op with
| Neg -> to_fp32 @@ neg @@ of_fp32 1 (`Unop op) v
| Abs -> to_fp32 @@ abs @@ of_fp32 1 (`Unop op) v
| Sqrt -> fp32_of_float @@ Float.sqrt f
| Nearest -> fp32_of_float @@ Float.round f
| Ceil -> fp32_of_float @@ Float.ceil f
| Floor -> fp32_of_float @@ Float.floor f
| Trunc -> fp32_of_float @@ Float.trunc f
| Is_nan -> if Float.is_nan f then Value.True else Value.False
| _ -> eval_error (`Unsupported_operator (`Unop op, Ty_fp 32))
let[@inline] copy_sign x y =
Int32.logor (abs x) (Int32.logand y Int32.min_int)
let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let a = Int32.float_of_bits @@ of_fp32 1 (`Binop op) v1 in
let b = Int32.float_of_bits @@ of_fp32 1 (`Binop op) v2 in
match op with
| Add -> fp32_of_float @@ Float.add a b
| Sub -> fp32_of_float @@ Float.sub a b
| Mul -> fp32_of_float @@ Float.mul a b
| Div -> fp32_of_float @@ Float.div a b
| Rem -> fp32_of_float @@ Float.rem a b
| Min -> fp32_of_float @@ Float.min a b
| Max -> fp32_of_float @@ Float.max a b
| Copysign ->
let a = of_fp32 1 (`Binop op) v1 in
let b = of_fp32 1 (`Binop op) v2 in
to_fp32 (copy_sign a b)
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_fp 32))
let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let a = Int32.float_of_bits @@ of_fp32 1 (`Relop op) v1 in
let b = Int32.float_of_bits @@ of_fp32 2 (`Relop op) v2 in
match op with
| Eq -> Float.Infix.(a = b)
| Ne -> Float.Infix.(a <> b)
| Lt -> Float.Infix.(a < b)
| Le -> Float.Infix.(a <= b)
| Gt -> Float.Infix.(a > b)
| Ge -> Float.Infix.(a >= b)
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_fp 32))
end
module F64 = struct
let[@inline] abs x = Int64.logand x Int64.max_int
let[@inline] neg x = Int64.logxor x Int64.min_int
let[@inline] unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let f = Int64.float_of_bits @@ of_fp64 1 (`Unop op) v in
match op with
| Neg -> to_fp64 @@ neg @@ of_fp64 1 (`Unop op) v
| Abs -> to_fp64 @@ abs @@ of_fp64 1 (`Unop op) v
| Sqrt -> fp64_of_float @@ Float.sqrt f
| Nearest -> fp64_of_float @@ Float.round f
| Ceil -> fp64_of_float @@ Float.ceil f
| Floor -> fp64_of_float @@ Float.floor f
| Trunc -> fp64_of_float @@ Float.trunc f
| Is_nan -> if Float.is_nan f then Value.True else Value.False
| _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op
let copy_sign x y = Int64.logor (abs x) (Int64.logand y Int64.min_int)
let[@inline] binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let a = Int64.float_of_bits @@ of_fp64 1 (`Binop op) v1 in
let b = Int64.float_of_bits @@ of_fp64 2 (`Binop op) v2 in
match op with
| Add -> fp64_of_float @@ Float.add a b
| Sub -> fp64_of_float @@ Float.sub a b
| Mul -> fp64_of_float @@ Float.mul a b
| Div -> fp64_of_float @@ Float.div a b
| Rem -> fp64_of_float @@ Float.rem a b
| Min -> fp64_of_float @@ Float.min a b
| Max -> fp64_of_float @@ Float.max a b
| Copysign ->
let a = of_fp64 1 (`Binop op) v1 in
let b = of_fp64 2 (`Binop op) v2 in
to_fp64 @@ copy_sign a b
| _ -> eval_error (`Unsupported_operator (`Binop op, Ty_fp 64))
let[@inline] relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let a = Int64.float_of_bits @@ of_fp64 1 (`Relop op) v1 in
let b = Int64.float_of_bits @@ of_fp64 2 (`Relop op) v2 in
match op with
| Eq -> Float.Infix.(a = b)
| Ne -> Float.Infix.(a <> b)
| Lt -> Float.Infix.(a < b)
| Le -> Float.Infix.(a <= b)
| Gt -> Float.Infix.(a > b)
| Ge -> Float.Infix.(a >= b)
| _ -> eval_error (`Unsupported_operator (`Relop op, Ty_fp 64))
end
module I32CvtOp = struct
let trunc_f32_s (x : int32) =
if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int32.float_of_bits x in
if
Float.Infix.(
xf >= -.Int32.(to_float min_int) || xf < Int32.(to_float min_int) )
then eval_error `Integer_overflow
else Int32.of_float xf
let trunc_f32_u (x : int32) =
if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0 || xf <= -1.0)
then eval_error `Integer_overflow
else Int32.of_float xf
let trunc_f64_s (x : int64) =
if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int64.float_of_bits x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then eval_error `Integer_overflow
else Int32.of_float xf
let trunc_f64_u (x : int64) =
if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then eval_error `Integer_overflow
else Int32.of_float xf
let trunc_sat_f32_s x =
if Int32.Infix.(x <> x) then 0l
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf < Int32.(to_float min_int)) then Int32.min_int
else if Float.Infix.(xf >= -.Int32.(to_float min_int)) then Int32.max_int
else Int32.of_float xf
let trunc_sat_f32_u x =
if Int32.Infix.(x <> x) then 0l
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf <= -1.0) then 0l
else if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0) then -1l
else Int32.of_float xf
let trunc_sat_f64_s x =
if Int64.Infix.(x <> x) then 0l
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf < Int64.(to_float min_int)) then Int32.min_int
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int32.max_int
else Int32.of_float xf
let trunc_sat_f64_u x =
if Int64.Infix.(x <> x) then 0l
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf <= -1.0) then 0l
else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1l
else Int32.of_float xf
let cvtop op v =
let op' = `Cvtop op in
match op with
| Ty.Cvtop.WrapI64 -> bitv_of_int32 (Int64.to_int32 (int64_of_bitv 1 op' v))
| TruncSF32 -> bitv_of_int32 (trunc_f32_s (of_fp32 1 op' v))
| TruncUF32 -> bitv_of_int32 (trunc_f32_u (of_fp32 1 op' v))
| TruncSF64 -> bitv_of_int32 (trunc_f64_s (of_fp64 1 op' v))
| TruncUF64 -> bitv_of_int32 (trunc_f64_u (of_fp64 1 op' v))
| Trunc_sat_f32_s -> bitv_of_int32 (trunc_sat_f32_s (of_fp32 1 op' v))
| Trunc_sat_f32_u -> bitv_of_int32 (trunc_sat_f32_u (of_fp32 1 op' v))
| Trunc_sat_f64_s -> bitv_of_int32 (trunc_sat_f64_s (of_fp64 1 op' v))
| Trunc_sat_f64_u -> bitv_of_int32 (trunc_sat_f64_u (of_fp64 1 op' v))
| Reinterpret_float -> bitv_of_int32 (of_fp32 1 op' v)
| Sign_extend n -> to_bitv (Bitvector.sign_extend n (of_bitv 1 op' v))
| Zero_extend n -> to_bitv (Bitvector.zero_extend n (of_bitv 1 op' v))
| OfBool -> v
| ToBool | _ -> eval_error (`Unsupported_operator (op', Ty_bitv 32))
end
module I64CvtOp = struct
let extend_i32_u (x : int32) =
Int64.(logand (of_int32 x) 0x0000_0000_ffff_ffffL)
let trunc_f32_s (x : int32) =
if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int32.float_of_bits x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then eval_error `Integer_overflow
else Int64.of_float xf
let trunc_f32_u (x : int32) =
if Int32.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then eval_error `Integer_overflow
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let trunc_f64_s (x : int64) =
if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int64.float_of_bits x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then eval_error `Integer_overflow
else Int64.of_float xf
let trunc_f64_u (x : int64) =
if Int64.Infix.(x <> x) then eval_error `Conversion_to_integer
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then eval_error `Integer_overflow
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let trunc_sat_f32_s (x : int32) =
if Int32.Infix.(x <> x) then 0L
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int
else Int64.of_float xf
let trunc_sat_f32_u (x : int32) =
if Int32.Infix.(x <> x) then 0L
else
let xf = Int32.float_of_bits x in
if Float.Infix.(xf <= -1.0) then 0L
else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let trunc_sat_f64_s (x : int64) =
if Int64.Infix.(x <> x) then 0L
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf < Int64.(to_float min_int)) then Int64.min_int
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then Int64.max_int
else Int64.of_float xf
let trunc_sat_f64_u (x : int64) =
if Int64.Infix.(x <> x) then 0L
else
let xf = Int64.float_of_bits x in
if Float.Infix.(xf <= -1.0) then 0L
else if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0) then -1L
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| Sign_extend n -> to_bitv (Bitvector.sign_extend n (of_bitv 1 op' v))
| Zero_extend n -> to_bitv (Bitvector.zero_extend n (of_bitv 1 op' v))
| TruncSF32 -> bitv_of_int64 (trunc_f32_s (of_fp32 1 op' v))
| TruncUF32 -> bitv_of_int64 (trunc_f32_u (of_fp32 1 op' v))
| TruncSF64 -> bitv_of_int64 (trunc_f64_s (of_fp64 1 op' v))
| TruncUF64 -> bitv_of_int64 (trunc_f64_u (of_fp64 1 op' v))
| Trunc_sat_f32_s -> bitv_of_int64 (trunc_sat_f32_s (of_fp32 1 op' v))
| Trunc_sat_f32_u -> bitv_of_int64 (trunc_sat_f32_u (of_fp32 1 op' v))
| Trunc_sat_f64_s -> bitv_of_int64 (trunc_sat_f64_s (of_fp64 1 op' v))
| Trunc_sat_f64_u -> bitv_of_int64 (trunc_sat_f64_u (of_fp64 1 op' v))
| Reinterpret_float -> bitv_of_int64 (of_fp64 1 op' v)
| WrapI64 -> type_error 1 v (Ty_bitv 64) op' "Cannot wrapI64 on an I64"
| ToBool | OfBool | _ -> eval_error (`Unsupported_operator (op', Ty_bitv 64))
end
module F32CvtOp = struct
let demote_f64 x =
let xf = Int64.float_of_bits x in
if Float.Infix.(xf = xf) then Int32.bits_of_float xf
else
let nan64bits = x in
let sign_field =
Int64.(shift_left (shift_right_logical nan64bits 63) 31)
in
let significand_field =
Int64.(shift_right_logical (shift_left nan64bits 12) 41)
in
let fields = Int64.logor sign_field significand_field in
Int32.logor 0x7fc0_0000l (Int64.to_int32 fields)
let convert_i32_s x = Int32.bits_of_float (Int32.to_float x)
let convert_i32_u x =
Int32.bits_of_float
Int32.(
Int32.Infix.(
if x >= 0l then to_float x
else to_float (logor (shift_right_logical x 1) (logand x 1l)) *. 2.0 ) )
let convert_i64_s x =
Int32.bits_of_float
Int64.(
Int64.Infix.(
if abs x < 0x10_0000_0000_0000L then to_float x
else
let r = if logand x 0xfffL = 0L then 0L else 1L in
to_float (logor (shift_right x 12) r) *. 0x1p12 ) )
let convert_i64_u x =
Int32.bits_of_float
Int64.(
Int64.Infix.(
if I64.lt_u x 0x10_0000_0000_0000L then to_float x
else
let r = if logand x 0xfffL = 0L then 0L else 1L in
to_float (logor (shift_right_logical x 12) r) *. 0x1p12 ) )
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| DemoteF64 -> to_fp32 (demote_f64 (of_fp64 1 op' v))
| ConvertSI32 -> to_fp32 (convert_i32_s (int32_of_bitv 1 op' v))
| ConvertUI32 -> to_fp32 (convert_i32_u (int32_of_bitv 1 op' v))
| ConvertSI64 -> to_fp32 (convert_i64_s (int64_of_bitv 1 op' v))
| ConvertUI64 -> to_fp32 (convert_i64_u (int64_of_bitv 1 op' v))
| Reinterpret_int -> to_fp32 (int32_of_bitv 1 op' v)
| PromoteF32 -> type_error 1 v (Ty_fp 32) op' "F64 must promote F32"
| ToString | OfString | _ ->
eval_error (`Unsupported_operator (op', Ty_fp 32))
end
module F64CvtOp = struct
let promote_f32 x =
let xf = Int32.float_of_bits x in
if Float.Infix.(xf = xf) then Int64.bits_of_float xf
else
let nan32bits = I64CvtOp.extend_i32_u x in
let sign_field =
Int64.(shift_left (shift_right_logical nan32bits 31) 63)
in
let significand_field =
Int64.(shift_right_logical (shift_left nan32bits 41) 12)
in
let fields = Int64.logor sign_field significand_field in
Int64.logor 0x7ff8_0000_0000_0000L fields
let convert_i32_s x = Int64.bits_of_float (Int32.to_float x)
let convert_i32_u x =
Int64.bits_of_float
Int64.(to_float (logand (of_int32 x) 0x0000_0000_ffff_ffffL))
let convert_i64_s x = Int64.bits_of_float (Int64.to_float x)
let convert_i64_u (x : int64) =
Int64.bits_of_float
Int64.(
Int64.Infix.(
if x >= 0L then to_float x
else to_float (logor (shift_right_logical x 1) (logand x 1L)) *. 2.0 ) )
let cvtop (op : Ty.Cvtop.t) v : Value.t =
let op' = `Cvtop op in
match op with
| PromoteF32 -> to_fp64 (promote_f32 (of_fp32 1 op' v))
| ConvertSI32 -> to_fp64 (convert_i32_s (int32_of_bitv 1 op' v))
| ConvertUI32 -> to_fp64 (convert_i32_u (int32_of_bitv 1 op' v))
| ConvertSI64 -> to_fp64 (convert_i64_s (int64_of_bitv 1 op' v))
| ConvertUI64 -> to_fp64 (convert_i64_u (int64_of_bitv 1 op' v))
| Reinterpret_int -> to_fp64 (int64_of_bitv 1 op' v)
| DemoteF64 -> type_error 1 v (Ty_fp 64) op' "F32 must demote a F64"
| ToString | OfString | _ ->
eval_error (`Unsupported_operator (op', Ty_fp 64))
end
let unop ty op v =
match ty with
| Ty.Ty_int -> Int.unop op v
| Ty_real -> Real.unop op v
| Ty_bool -> Bool.unop op v
| Ty_str -> Str.unop op v
| Ty_list -> Lst.unop op v
| Ty_bitv _ -> Bitv.unop op v
| Ty_fp 32 -> F32.unop op v
| Ty_fp 64 -> F64.unop op v
| Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp | Ty_roundingMode ->
eval_error (`Unsupported_theory ty)
let binop ty op v1 v2 =
match ty with
| Ty.Ty_int -> Int.binop op v1 v2
| Ty_real -> Real.binop op v1 v2
| Ty_bool -> Bool.binop op v1 v2
| Ty_str -> Str.binop op v1 v2
| Ty_list -> Lst.binop op v1 v2
| Ty_bitv _ -> Bitv.binop op v1 v2
| Ty_fp 32 -> F32.binop op v1 v2
| Ty_fp 64 -> F64.binop op v1 v2
| Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp | Ty_roundingMode ->
eval_error (`Unsupported_theory ty)
let triop ty op v1 v2 v3 =
match ty with
| Ty.Ty_bool -> Bool.triop op v1 v2 v3
| Ty_str -> Str.triop op v1 v2 v3
| Ty_list -> Lst.triop op v1 v2 v3
| ty -> eval_error (`Unsupported_theory ty)
let relop ty op v1 v2 =
match ty with
| Ty.Ty_int -> Int.relop op v1 v2
| Ty_real -> Real.relop op v1 v2
| Ty_bool -> Bool.relop op v1 v2
| Ty_str -> Str.relop op v1 v2
| Ty_bitv _ -> Bitv.relop op v1 v2
| Ty_fp 32 -> F32.relop op v1 v2
| Ty_fp 64 -> F64.relop op v1 v2
| ty -> eval_error (`Unsupported_theory ty)
let cvtop ty op v =
match ty with
| Ty.Ty_int -> Int.cvtop op v
| Ty_real -> Real.cvtop op v
| Ty_str -> Str.cvtop op v
| Ty_bitv 32 -> I32CvtOp.cvtop op v
| Ty_bitv 64 -> I64CvtOp.cvtop op v
| Ty_bitv _m -> Bitv.cvtop op v
| Ty_fp 32 -> F32CvtOp.cvtop op v
| Ty_fp 64 -> F64CvtOp.cvtop op v
| ty -> eval_error (`Unsupported_theory ty)
let naryop ty op vs =
match ty with
| Ty.Ty_bool -> Bool.naryop op vs
| Ty_str -> Str.naryop op vs
| Ty_list -> Lst.naryop op vs
| ty -> eval_error (`Unsupported_theory ty)