package sklearn
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=48809d88893a3f17d79f8e5acbd28126de919b8ced6d1f6856a61fd6bfae571d
sha512=9e1d01c42aed436163b1ce50bee141f40cb5bc943d5dd16d6eb21f1b53d613933533c70f28675e418a550cf44e0cd66d47496e462132769b05dec64bf3db560c
doc/sklearn/Sklearn/Covariance/EmpiricalCovariance/index.html
Module Covariance.EmpiricalCovariance
Source
Maximum likelihood covariance estimator
Read more in the :ref:`User Guide <covariance>`.
Parameters ---------- store_precision : bool, default=True Specifies if the estimated precision is stored.
assume_centered : bool, default=False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation.
Attributes ---------- location_ : ndarray of shape (n_features,) Estimated location, i.e. the estimated mean.
covariance_ : ndarray of shape (n_features, n_features) Estimated covariance matrix
precision_ : ndarray of shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True)
Examples -------- >>> import numpy as np >>> from sklearn.covariance import EmpiricalCovariance >>> from sklearn.datasets import make_gaussian_quantiles >>> real_cov = np.array([.8, .3], ... [.3, .4]
) >>> rng = np.random.RandomState(0) >>> X = rng.multivariate_normal(mean=0, 0
, ... cov=real_cov, ... size=500) >>> cov = EmpiricalCovariance().fit(X) >>> cov.covariance_ array([0.7569..., 0.2818...], [0.2818..., 0.3928...]
) >>> cov.location_ array(0.0622..., 0.0193...
)
val error_norm :
?norm:[ `Frobenius | `Spectral ] ->
?scaling:bool ->
?squared:bool ->
comp_cov:[> `ArrayLike ] Np.Obj.t ->
[> tag ] Obj.t ->
float
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).
Parameters ---------- comp_cov : array-like of shape (n_features, n_features) The covariance to compare with.
norm : 'frobenius', 'spectral'
, default='frobenius' The type of norm used to compute the error. Available error types:
- 'frobenius' (default): sqrt(tr(A^t.A))
- 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``.
scaling : bool, default=True If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled.
squared : bool, default=True Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned.
Returns ------- result : float The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators.
Fits the Maximum Likelihood Estimator covariance model according to the given training data and parameters.
Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features.
y : Ignored Not used, present for API consistence purpose.
Returns ------- self : object
Get parameters for this estimator.
Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns ------- params : mapping of string to any Parameter names mapped to their values.
Getter for the precision matrix.
Returns ------- precision_ : array-like of shape (n_features, n_features) The precision matrix associated to the current covariance object.
Computes the squared Mahalanobis distances of given observations.
Parameters ---------- X : array-like of shape (n_samples, n_features) The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.
Returns ------- dist : ndarray of shape (n_samples,) Squared Mahalanobis distances of the observations.
Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix.
Parameters ---------- X_test : array-like of shape (n_samples, n_features) Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).
y : Ignored Not used, present for API consistence purpose.
Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.
Parameters ---------- **params : dict Estimator parameters.
Returns ------- self : object Estimator instance.
Attribute location_: get value or raise Not_found if None.
Attribute location_: get value as an option.
Attribute covariance_: get value or raise Not_found if None.
Attribute covariance_: get value as an option.
Attribute precision_: get value or raise Not_found if None.
Attribute precision_: get value as an option.
Pretty-print the object to a formatter.