package saga
Text processing and NLP extensions for Nx
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha1.tbz
sha256=8e277ed56615d388bc69c4333e43d1acd112b5f2d5d352e2453aef223ff59867
sha512=369eda6df6b84b08f92c8957954d107058fb8d3d8374082e074b56f3a139351b3ae6e3a99f2d4a4a2930dd950fd609593467e502368a13ad6217b571382da28c
doc/src/saga.tokenizers/models.ml.html
Source file models.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
(** Tokenization models module. *) type token = { id : int; value : string; offsets : int * int } (** Tokenization result *) type bpe_model = { vocab : Bpe.vocab; merges : Bpe.merges; cache_capacity : int; dropout : float option; unk_token : string option; continuing_subword_prefix : string option; end_of_word_suffix : string option; fuse_unk : bool; byte_fallback : bool; } (** BPE model configuration *) type wordpiece_model = { vocab : Wordpiece.vocab; unk_token : string; max_input_chars_per_word : int; } (** WordPiece model configuration *) type wordlevel_model = { vocab : (string, int) Hashtbl.t; unk_token : string } (** WordLevel model configuration *) type unigram_model = { vocab : (string * float) list } (** Unigram model configuration *) (** Main model type *) type t = | BPE of bpe_model | WordPiece of wordpiece_model | WordLevel of wordlevel_model | Unigram of unigram_model (** Convert internal tokens to generic tokens *) let convert_bpe_token (tok : Bpe.token) : token = { id = tok.id; value = tok.value; offsets = tok.offsets } let convert_wordpiece_token (tok : Wordpiece.token) : token = { id = tok.id; value = tok.value; offsets = tok.offsets } (** Tokenize using BPE *) let tokenize_bpe (model : bpe_model) text = let config = Bpe. { vocab = model.vocab; merges = model.merges; cache_capacity = model.cache_capacity; dropout = model.dropout; unk_token = model.unk_token; continuing_subword_prefix = model.continuing_subword_prefix; end_of_word_suffix = model.end_of_word_suffix; fuse_unk = model.fuse_unk; byte_fallback = model.byte_fallback; ignore_merges = false; } in Bpe.tokenize (Bpe.create config) text |> List.map convert_bpe_token (** Tokenize using WordPiece *) let tokenize_wordpiece (model : wordpiece_model) text = let config = Wordpiece. { vocab = model.vocab; unk_token = model.unk_token; max_input_chars_per_word = model.max_input_chars_per_word; continuing_subword_prefix = "##"; } in Wordpiece.tokenize (Wordpiece.create config) text |> List.map convert_wordpiece_token (** Tokenize using WordLevel *) let tokenize_wordlevel vocab unk_token text = if String.length text = 0 then [] else if Hashtbl.length vocab = 0 then (* Check if this is the special chars() model *) if unk_token = "" then ( (* Character-level tokenization *) let chars = ref [] in let offset = ref 0 in String.iter (fun c -> let char_str = String.make 1 c in let id = Char.code c in (* Use ASCII code as ID *) chars := { id; value = char_str; offsets = (!offset, !offset + 1) } :: !chars; incr offset) text; List.rev !chars) else (* No vocabulary - cannot tokenize *) [] else (* Try to find the text in vocab, otherwise use unk_token *) let id = try Hashtbl.find vocab text with Not_found -> ( try Hashtbl.find vocab unk_token with Not_found -> 0 (* Default to 0 if no unk_token *)) in [ { id; value = text; offsets = (0, String.length text) } ] (** Tokenize using Unigram *) let tokenize_unigram (model : unigram_model) text = (* Simple greedy longest-match-first over the provided vocab tokens. *) let vocab_tbl = Hashtbl.create (List.length model.vocab) in List.iteri (fun i (tok, _) -> Hashtbl.add vocab_tbl tok i) model.vocab; let len = String.length text in let rec consume pos acc = if pos >= len then List.rev acc else if text.[pos] = ' ' || text.[pos] = '\n' || text.[pos] = '\t' then consume (pos + 1) acc else (* try longest match *) let best = ref None in for l = len - pos downto 1 do let s = String.sub text pos l in match Hashtbl.find_opt vocab_tbl s with | Some id -> best := Some (id, s, (pos, pos + l)); (* first (longest) match wins *) raise Exit | None -> () done; match !best with | Some (id, s, off) -> let tok = { id; value = s; offsets = off } in consume (snd off) (tok :: acc) | None -> (* fallback: single char *) let s = String.sub text pos 1 in let id = Hashtbl.hash s mod max 1 (List.length model.vocab + 1) in let tok = { id; value = s; offsets = (pos, pos + 1) } in consume (pos + 1) (tok :: acc) in try consume 0 [] with Exit -> [] (** Main tokenize function *) let tokenize model text = match model with | BPE bpe -> tokenize_bpe bpe text | WordPiece wp -> tokenize_wordpiece wp text | WordLevel wl -> tokenize_wordlevel wl.vocab wl.unk_token text | Unigram ug -> tokenize_unigram ug text (** Get token ID *) let token_to_id model token = match model with | BPE { vocab; _ } -> ( try Some (Hashtbl.find vocab token) with Not_found -> None) | WordPiece { vocab; _ } -> ( try Some (Hashtbl.find vocab token) with Not_found -> None) | WordLevel { vocab; _ } -> ( try Some (Hashtbl.find vocab token) with Not_found -> None) | Unigram { vocab } -> List.find_opt (fun (s, _) -> s = token) vocab |> Option.map (fun _ -> 0) (* TODO: Proper implementation *) (** Get token from ID *) let id_to_token model id = match model with | BPE { vocab; _ } -> Hashtbl.fold (fun token tid acc -> if tid = id then Some token else acc) vocab None | WordPiece { vocab; _ } -> Hashtbl.fold (fun token tid acc -> if tid = id then Some token else acc) vocab None | WordLevel { vocab; unk_token; _ } -> (* Check if this is a chars() model *) if Hashtbl.length vocab = 0 && unk_token = "" then (* Character-level model - convert ID back to char *) if id >= 0 && id <= 255 then Some (String.make 1 (Char.chr id)) else None else Hashtbl.fold (fun token tid acc -> if tid = id then Some token else acc) vocab None | Unigram _ -> None (* TODO: Proper implementation *) (** Get vocabulary *) let get_vocab model = match model with | BPE { vocab; _ } -> Hashtbl.fold (fun token id acc -> (token, id) :: acc) vocab [] | WordPiece { vocab; _ } -> Hashtbl.fold (fun token id acc -> (token, id) :: acc) vocab [] | WordLevel { vocab; _ } -> Hashtbl.fold (fun token id acc -> (token, id) :: acc) vocab [] | Unigram { vocab } -> List.mapi (fun i (token, _) -> (token, i)) vocab (** Get vocabulary size *) let get_vocab_size model = match model with | BPE { vocab; _ } -> Hashtbl.length vocab | WordPiece { vocab; _ } -> Hashtbl.length vocab | WordLevel { vocab; _ } -> Hashtbl.length vocab | Unigram { vocab } -> List.length vocab (** Save model *) let save model ~folder ?(prefix = "") () = let path = folder in (* For compatibility with existing code *) let _ = prefix in match model with | BPE bpe -> let config = Bpe. { vocab = bpe.vocab; merges = bpe.merges; cache_capacity = bpe.cache_capacity; dropout = bpe.dropout; unk_token = bpe.unk_token; continuing_subword_prefix = bpe.continuing_subword_prefix; end_of_word_suffix = bpe.end_of_word_suffix; fuse_unk = bpe.fuse_unk; byte_fallback = bpe.byte_fallback; ignore_merges = false; } in let _ = Bpe.save (Bpe.create config) ~path () in [ "vocab.json"; "merges.txt" ] (* Return list of created files *) | WordPiece wp -> let config = Wordpiece. { vocab = wp.vocab; unk_token = wp.unk_token; max_input_chars_per_word = wp.max_input_chars_per_word; continuing_subword_prefix = "##"; } in let _ = Wordpiece.save (Wordpiece.create config) ~path () in [ "vocab.txt" ] (* Return list of created files *) | _ -> [] (* TODO: Implement for other models *) (** Constructors *) let bpe ?(vocab = []) ?(merges = []) ?(cache_capacity = 10000) ?dropout ?unk_token ?continuing_subword_prefix ?end_of_word_suffix ?(fuse_unk = false) ?(byte_fallback = false) ?(ignore_merges = false) () = let _ = ignore_merges in (* Not used for now *) let vocab_tbl = Hashtbl.create (max 1000 (List.length vocab)) in List.iter (fun (token, id) -> Hashtbl.add vocab_tbl token id) vocab; BPE { vocab = vocab_tbl; merges; cache_capacity; dropout; unk_token; continuing_subword_prefix; end_of_word_suffix; fuse_unk; byte_fallback; } let wordpiece ?(vocab = []) ?(unk_token = "[UNK]") ?(continuing_subword_prefix = "##") ?(max_input_chars_per_word = 100) () = let _ = continuing_subword_prefix in (* Used by WordPiece internally *) let vocab_tbl = Hashtbl.create (max 1000 (List.length vocab)) in List.iter (fun (token, id) -> Hashtbl.add vocab_tbl token id) vocab; WordPiece { vocab = vocab_tbl; unk_token; max_input_chars_per_word } let word_level ?(vocab = []) ?(unk_token = "<unk>") () = let vocab_tbl = Hashtbl.create (List.length vocab) in List.iter (fun (token, id) -> Hashtbl.add vocab_tbl token id) vocab; WordLevel { vocab = vocab_tbl; unk_token } let unigram ?(vocab = []) ?(unk_token = "<unk>") ?(byte_fallback = false) ?(max_piece_length = 16) ?(n_sub_iterations = 2) ?(shrinking_factor = 0.75) () = let _ = ( unk_token, byte_fallback, max_piece_length, n_sub_iterations, shrinking_factor ) in Unigram { vocab } let chars () = (* Character-level tokenization - create a special marker *) (* We'll handle this as a special case in tokenize *) WordLevel { vocab = Hashtbl.create 256; unk_token = "" } let regex _pattern = (* Regex-based tokenization not implemented yet *) failwith "Regex tokenization not yet implemented" let from_file ~vocab ?merges () = let _ = merges in (* Load vocab file and create appropriate model *) (* For now, create a simple word-level model *) let vocab_list = try let ic = open_in vocab in let rec read_lines acc = try let line = input_line ic in let parts = String.split_on_char '\t' line in match parts with | [ token; id ] -> read_lines ((token, int_of_string id) :: acc) | _ -> read_lines acc with End_of_file -> close_in ic; List.rev acc in read_lines [] with _ -> [] in word_level ~vocab:vocab_list () (** Add tokens to model's vocabulary *) let add_tokens model tokens = match model with | BPE { vocab; _ } -> let start_id = Hashtbl.length vocab in let count = ref 0 in List.iteri (fun i token -> if not (Hashtbl.mem vocab token) then ( Hashtbl.add vocab token (start_id + i); incr count)) tokens; !count | WordPiece { vocab; _ } -> let start_id = Hashtbl.length vocab in let count = ref 0 in List.iteri (fun i token -> if not (Hashtbl.mem vocab token) then ( Hashtbl.add vocab token (start_id + i); incr count)) tokens; !count | WordLevel { vocab; _ } -> let start_id = Hashtbl.length vocab in let count = ref 0 in List.iteri (fun i token -> if not (Hashtbl.mem vocab token) then ( Hashtbl.add vocab token (start_id + i); incr count)) tokens; !count | Unigram _ -> (* For Unigram, vocabulary is immutable list of (string * float) *) (* Would need to change the model structure to support mutable vocab *) (* For now, just return the number of tokens that would be added *) List.length tokens (** Serialization *) let to_json = function | BPE bpe -> `Assoc [ ("type", `String "BPE"); ( "dropout", match bpe.dropout with None -> `Null | Some d -> `Float d ); ( "unk_token", match bpe.unk_token with None -> `Null | Some s -> `String s ); ( "continuing_subword_prefix", match bpe.continuing_subword_prefix with | None -> `Null | Some s -> `String s ); ( "end_of_word_suffix", match bpe.end_of_word_suffix with | None -> `Null | Some s -> `String s ); ("fuse_unk", `Bool bpe.fuse_unk); ("byte_fallback", `Bool bpe.byte_fallback); (* Include vocab *) ( "vocab", `Assoc (Hashtbl.fold (fun token id acc -> (token, `Int id) :: acc) bpe.vocab []) ); (* merges would be in separate files *) ] | WordPiece wp -> `Assoc [ ("type", `String "WordPiece"); ("unk_token", `String wp.unk_token); ("max_input_chars_per_word", `Int wp.max_input_chars_per_word); ( "vocab", `Assoc (Hashtbl.fold (fun token id acc -> (token, `Int id) :: acc) wp.vocab []) ); ] | WordLevel wl -> `Assoc [ ("type", `String "WordLevel"); ("unk_token", `String wl.unk_token); ( "vocab", `Assoc (Hashtbl.fold (fun token id acc -> (token, `Int id) :: acc) wl.vocab []) ); ] | Unigram _ -> `Assoc [ ("type", `String "Unigram") ] let of_json = function | `Assoc fields -> ( match List.assoc_opt "type" fields with | Some (`String "BPE") -> let dropout = match List.assoc_opt "dropout" fields with | Some (`Float d) -> Some d | _ -> None in let unk_token = match List.assoc_opt "unk_token" fields with | Some (`String s) -> Some s | _ -> None in let continuing_subword_prefix = match List.assoc_opt "continuing_subword_prefix" fields with | Some (`String s) -> Some s | _ -> None in let end_of_word_suffix = match List.assoc_opt "end_of_word_suffix" fields with | Some (`String s) -> Some s | _ -> None in let fuse_unk = match List.assoc_opt "fuse_unk" fields with | Some (`Bool b) -> b | _ -> false in let byte_fallback = match List.assoc_opt "byte_fallback" fields with | Some (`Bool b) -> b | _ -> false in let vocab = match List.assoc_opt "vocab" fields with | Some (`Assoc vocab_list) -> List.map (fun (token, id_json) -> match id_json with `Int id -> (token, id) | _ -> (token, 0)) vocab_list | _ -> [] in bpe ~vocab ?dropout ?unk_token ?continuing_subword_prefix ?end_of_word_suffix ~fuse_unk ~byte_fallback () | Some (`String "WordPiece") -> let unk_token = match List.assoc_opt "unk_token" fields with | Some (`String s) -> s | _ -> "[UNK]" in let max_input_chars_per_word = match List.assoc_opt "max_input_chars_per_word" fields with | Some (`Int i) -> i | _ -> 100 in let vocab = match List.assoc_opt "vocab" fields with | Some (`Assoc vocab_list) -> List.map (fun (token, id_json) -> match id_json with `Int id -> (token, id) | _ -> (token, 0)) vocab_list | _ -> [] in wordpiece ~vocab ~unk_token ~max_input_chars_per_word () | Some (`String "WordLevel") -> let unk_token = match List.assoc_opt "unk_token" fields with | Some (`String s) -> s | _ -> "<unk>" in let vocab = match List.assoc_opt "vocab" fields with | Some (`Assoc vocab_list) -> List.map (fun (token, id_json) -> match id_json with `Int id -> (token, id) | _ -> (token, 0)) vocab_list | _ -> [] in word_level ~vocab ~unk_token () | Some (`String "Unigram") -> unigram () | _ -> failwith "Unknown model type") | _ -> failwith "Invalid model JSON"
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>