package rune
Automatic differentiation and JIT compilation for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha1.tbz
sha256=8e277ed56615d388bc69c4333e43d1acd112b5f2d5d352e2453aef223ff59867
sha512=369eda6df6b84b08f92c8957954d107058fb8d3d8374082e074b56f3a139351b3ae6e3a99f2d4a4a2930dd950fd609593467e502368a13ad6217b571382da28c
doc/src/rune.jit/ir.ml.html
Source file ir.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
(* ml - Complete IR with all tinygrad operations *) (* ───── Scalars & element types ───── *) module Dtype = struct type _ t = | Float32 : float t | Int32 : int32 t | Bool : bool t | Uint8 : int t | Unit : unit t type any = Any_Dtype : 'a t -> any [@@unboxed] let to_string : type a. a t -> string = function | Float32 -> "float32" | Int32 -> "int32" | Bool -> "bool" | Uint8 -> "uint8" | Unit -> "unit" let any_to_string (Any_Dtype d) = to_string d let sizeof_elt : type a. a t -> int = function | Float32 | Int32 -> 4 | Bool | Uint8 -> 1 | Unit -> 0 end (* ───── SSA variables & symbolic variables ───── *) module Var = struct type t = int let counter = ref 0 let fresh () = incr counter; !counter let compare = Int.compare let equal = Int.equal let hash = Hashtbl.hash let pp fmt v = Format.fprintf fmt "v%d" v let to_string = Format.asprintf "%a" pp module Set = struct include Set.Make (struct type nonrec t = t let compare = compare end) let pp fmt s = Format.fprintf fmt "{%a}" (Format.pp_print_list ~pp_sep:(fun f () -> Format.pp_print_string f ", ") pp) (elements s) end end (* Symbolic variables for dynamic shapes *) module SymVar = struct type t = { name : string; min_val : int; max_val : int } end (* ───── Misc enums & types ───── *) module Special_index_kind = struct type t = | Global_task_idx of int (* 0=x,1=y,2=z *) | Local_thread_idx of int | Workgroup_idx of int end type var_metadata = { dtype : Dtype.any; shape : int array; device : string option; } type kernel_metadata = { name : string; local_dims : int; upcasted : int; dont_use_locals : bool; } type custom_attr = | Attr_Int of int | Attr_Float of float | Attr_String of string | Attr_Shape of int array (* Shape tracker for VIEW operations *) type shape_tracker = { views : view list; shape : int array } and view = { shape : int array; strides : int array; offset : int; mask : (int * int) array option; (* for masked/valid regions *) } (* ───── Operation kinds ───── *) type binop_kind = | Add | Mul | Sub | Div | Idiv | Fdiv | Mod | Pow | Max | Min | Cmplt | Cmpne | Xor | Or | And | Shl | Shr (* bitwise shifts *) type unary_op_kind = Neg | Log2 | Exp2 | Sin | Sqrt | Recip type ternary_op_kind = Where | Mulacc (* multiply-accumulate *) type reduce_op_kind = Reduce_Sum | Reduce_Max | Reduce_Prod (* ───── High-level graph IR ───── *) type _ node_t = (* ──── Buffer/Memory Operations ──── *) | Buffer : { dtype : 'a Dtype.t; size_in_elements : int; device : string; out_var : Var.t; } -> 'a node_t | Buffer_View : { (* view into existing buffer *) buffer_var : Var.t; size : int; offset : int; dtype : 'a Dtype.t; out_var : Var.t; } -> 'a node_t | Placeholder : { out_var : Var.t; dtype : 'a Dtype.t; shape : int array; } -> 'a node_t | Const_Scalar : { value : 'a; dtype : 'a Dtype.t; out_var : Var.t; } -> 'a node_t | Vconst : { (* vector constant *) values : 'a array; dtype : 'a Dtype.t; out_var : Var.t; } -> 'a node_t (* ──── Compute Operations ──── *) | Binop : { op : binop_kind; a_var : Var.t; b_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Unary : { op : unary_op_kind; in_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Ternary : { op : ternary_op_kind; a_var : Var.t; b_var : Var.t; c_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Movement/Shape Operations ──── *) | View : { (* zero-copy shape operations *) in_var : Var.t; shape_tracker : shape_tracker; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Reshape : { in_var : Var.t; new_shape : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Permute : { in_var : Var.t; axes_permutation : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Expand : { in_var : Var.t; new_target_shape : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Pad : { in_var : Var.t; pad_width : (int * int) array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Shrink : { in_var : Var.t; limits : (int * int) array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Flip : { in_var : Var.t; axes : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Reduction Operations ──── *) | Reduce_Axis : { in_var : Var.t; reduce_op_kind : reduce_op_kind; axes : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Advanced Operations ──── *) | Valid : { (* masked valid regions *) in_var : Var.t; shape_tracker : shape_tracker; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Index : { (* explicit indexing *) in_var : Var.t; idx_var : Var.t; valid_var : Var.t option; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Gep : { (* get element pointer for vectors *) in_var : Var.t; indices : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Vectorize : { (* create vector from scalars *) in_vars : Var.t array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Wmma : { (* tensor core operations *) a_var : Var.t; b_var : Var.t; c_var : Var.t; m : int; n : int; k : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Type Operations ──── *) | Cast : { in_var : Var.t; target_dtype : Dtype.any; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Bitcast : { (* reinterpret bits *) in_var : Var.t; target_dtype : Dtype.any; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Memory Operations ──── *) | Contiguous : { in_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Copy : { in_var : Var.t; target_device : string; clone : bool; (* if true, force copy even on same device *) out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Assign : { target_var : Var.t; updates : (Var.t * Var.t * (int * int) option) array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Symbolic/Dynamic Shapes ──── *) | Define_Var : { (* symbolic variables *) sym_var : SymVar.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Bind : { (* bind symbolic var to value *) sym_var : Var.t; value : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── AutoGrad Support ──── *) | Detach : { (* stop gradient *) in_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Contiguous_Backward : { (* backward pass marker *) in_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Kernel/Graph Management ──── *) | Sink : { (* dependency synchronization *) deps : Var.t array; dtype : 'a Dtype.t; } -> 'a node_t | Kernel : { (* kernel wrapper *) ast : any_node; input_vars : Var.t array; output_vars : Var.t array; metadata : kernel_metadata; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Unique : { (* unique identifier generation *) id : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Device Management ──── *) | Device : { (* device marker *) device_name : string; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Multi : { (* multi-device tensor *) device_vars : Var.t array; axis : int option; real_mask : bool array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Optimization Directives ──── *) | Fuse : { (* fusion marker *) in_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Unroll : { (* loop unroll directive *) loop_var : Var.t; unroll_factor : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Contract : { (* tensor contraction *) in_vars : Var.t array; contraction_axes : (int * int) array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t (* ──── Miscellaneous Operations ──── *) | Cat : { in_vars : Var.t array; axis : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Threefry : { ctr_var : Var.t; key_var : Var.t; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Gather : { src_var : Var.t; indices_var : Var.t; axis : int; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Scatter : { indices_var : Var.t; updates_var : Var.t; axis : int; shape : int array; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Custom : { (* custom operation *) op_name : string; in_vars : Var.t array; attributes : (string * custom_attr) list; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t | Noop : { (* no operation *) in_var : Var.t option; out_var : Var.t; dtype : 'a Dtype.t; } -> 'a node_t and any_node = Any_Node : 'a node_t -> any_node [@@unboxed] type graph_t = { nodes : any_node list; vars_metadata : (Var.t, var_metadata) Hashtbl.t; input_vars : Var.t list; output_vars : Var.t list; symbolic_vars : SymVar.t list; } let buffer ~dtype ~size ~device ~out_var = Buffer { dtype; size_in_elements = size; device; out_var } let unary ~op ~in_var ~out_var ~dtype = Unary { op; in_var; out_var; dtype } let binary ~op ~a_var ~b_var ~out_var ~dtype = Binop { op; a_var; b_var; out_var; dtype } let ternary ~op ~a_var ~b_var ~c_var ~out_var ~dtype = Ternary { op; a_var; b_var; c_var; out_var; dtype } let const_scalar ~value ~out_var ~dtype = Const_Scalar { value; out_var; dtype } let vconst ~values ~out_var ~dtype = Vconst { values; out_var; dtype } let reshape ~in_var ~new_shape ~out_var ~dtype = Reshape { in_var; new_shape; out_var; dtype } let permute ~in_var ~axes_permutation ~out_var ~dtype = Permute { in_var; axes_permutation; out_var; dtype } let expand ~in_var ~new_target_shape ~out_var ~dtype = Expand { in_var; new_target_shape; out_var; dtype } let pad ~in_var ~pad_width ~out_var ~dtype = Pad { in_var; pad_width; out_var; dtype } let shrink ~in_var ~limits ~out_var ~dtype = Shrink { in_var; limits; out_var; dtype } let reduce_axis ~in_var ~reduce_op_kind ~axes ~out_var ~dtype = Reduce_Axis { in_var; reduce_op_kind; axes; out_var; dtype } let cast ~in_var ~target_dtype ~out_var ~dtype = Cast { in_var; target_dtype; out_var; dtype } let bitcast ~in_var ~target_dtype ~out_var ~dtype = Bitcast { in_var; target_dtype; out_var; dtype } let view ~in_var ~shape_tracker ~out_var ~dtype = View { in_var; shape_tracker; out_var; dtype } let copy ~in_var ~target_device ~clone ~out_var ~dtype = Copy { in_var; target_device; clone; out_var; dtype } let cat ~in_vars ~axis ~out_var ~dtype = Cat { in_vars; axis; out_var; dtype } let gather ~src_var ~indices_var ~axis ~out_var ~dtype = Gather { src_var; indices_var; axis; out_var; dtype } let scatter ~indices_var ~updates_var ~axis ~shape ~out_var ~dtype = Scatter { indices_var; updates_var; axis; shape; out_var; dtype } let fresh_var () = Var.fresh () (* ───── Scheduled IR ───── *) (* ───── Scheduled IR (single module, structured loops/tiles/mapping) ───── *) module Scheduled = struct (* Utilities *) let[@inline] prod (arr : int array) = Array.fold_left ( * ) 1 arr let[@inline] ensure3 (a : int array) : int array = match Array.length a with | 3 -> a | 0 -> [| 1; 1; 1 |] | 1 -> [| a.(0); 1; 1 |] | 2 -> [| a.(0); a.(1); 1 |] | _ -> [| a.(0); a.(1); a.(2) |] let[@inline] contiguous_strides_elems (shape : int array) : int array = let n = Array.length shape in if n = 0 then [||] else let s = Array.make n 0 in let stride = ref 1 in for i = n - 1 downto 0 do s.(i) <- !stride; stride := !stride * if shape.(i) = 0 then 1 else shape.(i) done; s (* Core scheduling types *) type axis_role = [ `Normal | `Reduction ] type axis = { name : string; size : int option; (* known static extent or None (symbolic) *) sym : SymVar.t option; (* the symbolic var that bounds the axis *) role : axis_role; } type mapping = { block : int list; (* threadblock / grid dims on GPU; core on CPU *) thread : int list; (* thread / lane *) vec : int list; (* vector lanes (SIMD) *) serial : int list; (* remaining serial loops *) } type iter_space = { axes : axis array; (* logical iteration axes *) (* mapping selects WHICH axis indices (into [axes]) map to each machine level *) mapping : mapping; (* tiling: for each axis i, a list of tile sizes (outer→inner) *) tiles : int list array; } type memory_scope = Global | Register (* Layout strides are measured in ELEMENTS (not bytes); dtype tells byte width *) type layout = { shape : int array; (* logical shape in elements *) strides : int array; (* strides in elements (row-major typical) *) alignment : int; (* bytes *) vector_width : int; (* elements per vector lane *) contiguous_axes : int list; (* for coalescing; usually [last;...] *) } type allocation = { scope : memory_scope; size_bytes : int; (* final allocated size (post-tiling/packing) *) lifetime : int * int; (* inclusive item-id range for reuse *) alias_group : int option; (* optional alias set id for in-place plans *) } type buffer_info = { buf_var : Var.t; dtype : Dtype.any; layout : layout; alloc : allocation; is_input : bool; is_output : bool; } type loop_hint = | Vectorize of { axis : int; width : int } | Unroll of { axis : int; factor : int } | Prefetch of { var : Var.t; into : memory_scope; distance : int } | Pipeline of { axis : int; stages : int; overlap : bool } type reduction_plan = { axes : int list; (* indices (into iter_space.axes) tagged as reductions *) intra_thread : [ `Tree | `Welford | `Shfl | `None ]; inter_thread : [ `SharedTree | `Atomic | `GridReduce ]; } type schedule_context = { global_dims : int array; (* [|gx;gy;gz|] *) local_dims : int array; (* [|lx;ly;lz|] *) upcasted : int; device : string; stream : int option; } type scheduled_op = | S_Kernel of { kernel_id : int; kernel_name : string; ops : any_node list; (* HL ops fused into this kernel *) inputs : buffer_info list; outputs : buffer_info list; iter : iter_space; (* explicit loops/tiling/mapping *) reduce : reduction_plan option; hints : loop_hint list; context : schedule_context; } | S_Memory_Transfer of { transfer_id : int; src_var : Var.t; dst_var : Var.t; src_device : string; dst_device : string; dims : int array; (* ND copy extents in elements *) src_strides : int array option; (* elements; pitched if provided *) dst_strides : int array option; (* elements *) size_bytes : int; (* optional precomputed flat size *) is_async : bool; stream : int option; } | S_Synchronization of { sync_id : int; sync_type : [ `Barrier | `Fence | `Event of int ]; scope : [ `Threadgroup | `Device | `System ]; devices : string list; stream : int option; } | S_Host_Callback of { callback_id : int; callback_name : string; input_vars : Var.t list; output_vars : Var.t list; } type dependency = { dep_from : int; (* schedule_item id *) dep_to : int; (* schedule_item id *) dep_vars : Var.t list; (* values creating the edge *) kind : [ `Data | `Control ]; } type schedule_item = { item_id : int; operation : scheduled_op; depends_on : int list; (* item ids *) dependents : int list; (* filled by validation/toposort *) } type fusion_opportunity = { kernel_a : int; (* item id *) kernel_b : int; (* item id *) fusion_type : [ `Elementwise | `Reduction | `Mixed ]; benefit_score : float; memory_saved : int; (* bytes *) } (* Lightweight analysis product kept outside the core op shape *) type item_analysis = { item_id : int; flops : int; bytes_read : int; bytes_written : int; regs_per_thread : int; smem_bytes : int; occupancy : float; (* 0–1 estimate *) est_ns : int; (* estimated latency in ns *) } type graph_t = { schedule_items : schedule_item array; dependencies : dependency list; fusion_opportunities : fusion_opportunity list; analysis : item_analysis array; (* same order as items; may be empty *) critical_path : int list; (* item ids *) total_memory_usage : int; (* approximate peak, bytes *) estimated_runtime_ns : int; (* critical path sum *) vars_metadata : (Var.t, var_metadata) Hashtbl.t; symbolic_vars : SymVar.t list; } (* Validation & helpers *) let validate_dims3 (a : int array) (label : string) : unit = if Array.length a <> 3 then invalid_arg (Printf.sprintf "Scheduled.%s must be length-3" label) let validate_iter_space (it : iter_space) : unit = let n = Array.length it.axes in let in_range i = if i < 0 || i >= n then invalid_arg (Printf.sprintf "Scheduled.iter_space: axis index %d out of range 0..%d" i (n - 1)) in List.iter in_range it.mapping.block; List.iter in_range it.mapping.thread; List.iter in_range it.mapping.vec; List.iter in_range it.mapping.serial; if Array.length it.tiles <> n then invalid_arg "Scheduled.iter_space: tiles length must match axes length" let size_bytes_of_layout (dt : Dtype.any) (ly : layout) : int = let elt = match dt with | Dtype.Any_Dtype Dtype.Float32 -> 4 | Dtype.Any_Dtype Dtype.Int32 -> 4 | Dtype.Any_Dtype Dtype.Uint8 -> 1 | Dtype.Any_Dtype Dtype.Bool -> 1 | Dtype.Any_Dtype Dtype.Unit -> 0 in prod ly.shape * elt let default_layout ?(vector_width = 1) ?(alignment = 16) (shape : int array) : layout = { shape; strides = contiguous_strides_elems shape; alignment; vector_width; contiguous_axes = (let n = Array.length shape in let rec aux i acc = if i < 0 then acc else aux (i - 1) (i :: acc) in aux (n - 1) []); } let default_alloc ~scope ~dtype ~layout ~lifetime : allocation = let sz = size_bytes_of_layout dtype layout in { scope; size_bytes = sz; lifetime; alias_group = None } (* Build dependents lists from depends_on *) let compute_dependents (items : schedule_item array) : unit = let n = Array.length items in let deps_rev : int list array = Array.make n [] in Array.iter (fun (it : schedule_item) -> List.iter (fun (p : int) -> if p >= 0 && p < n then deps_rev.(p) <- it.item_id :: deps_rev.(p)) it.depends_on) items; Array.iteri (fun i (it : schedule_item) -> items.(i) <- { it with dependents = List.rev deps_rev.(i) }) items (* Topological order (Kahn). Returns item ids in topo sequence. *) let topological_order (items : schedule_item array) : int list = let n = Array.length items in let indeg = Array.make n 0 in Array.iter (fun (it : schedule_item) -> (* indegree of a node is number of its dependencies *) indeg.(it.item_id) <- List.length it.depends_on) items; let q = Queue.create () in for i = 0 to n - 1 do if indeg.(i) = 0 then Queue.add i q done; let order = ref [] in while not (Queue.is_empty q) do let u = Queue.pop q in order := u :: !order; List.iter (fun v -> indeg.(v) <- indeg.(v) - 1; if indeg.(v) = 0 then Queue.add v q) items.(u).dependents done; List.rev !order let find_critical_path (g : graph_t) : int list = let n = Array.length g.schedule_items in if n = 0 then [] else let cost = Array.make n 1 in Array.iter (fun a -> if a.item_id < n then cost.(a.item_id) <- max 1 a.est_ns) g.analysis; let dist = Array.make n min_int in let prev = Array.make n (-1) in let indeg = Array.make n 0 in Array.iter (fun (it : schedule_item) -> indeg.(it.item_id) <- List.length it.depends_on) g.schedule_items; let q = Queue.create () in for i = 0 to n - 1 do if indeg.(i) = 0 then ( dist.(i) <- cost.(i); Queue.add i q) done; while not (Queue.is_empty q) do let u = Queue.pop q in List.iter (fun v -> (if dist.(u) <> min_int then let cand = dist.(u) + cost.(v) in if cand > dist.(v) then ( dist.(v) <- cand; prev.(v) <- u)); indeg.(v) <- indeg.(v) - 1; if indeg.(v) = 0 then Queue.add v q) g.schedule_items.(u).dependents done; let end_id = ref 0 in for i = 1 to n - 1 do if dist.(i) > dist.(!end_id) then end_id := i done; let rec build acc u = if u = -1 then acc else build (u :: acc) prev.(u) in build [] !end_id let sum_estimated_runtime_ns (g : graph_t) : int = List.fold_left (fun acc id -> match Array.find_opt (fun a -> a.item_id = id) g.analysis with | Some a -> acc + max 1 a.est_ns | None -> acc + 1) 0 g.critical_path (* Very rough peak memory estimate: sum of distinct kernel allocations at each item *) let estimate_peak_memory (g : graph_t) : int = let mem_at_item (it : schedule_item) : int = match it.operation with | S_Kernel { inputs; outputs; _ } -> let sum l = List.fold_left (fun acc b -> acc + b.alloc.size_bytes) 0 l in (* NOTE: This double counts shared/register; acceptable as an upper bound. *) sum inputs + sum outputs | S_Memory_Transfer { size_bytes; _ } -> size_bytes | _ -> 0 in Array.fold_left (fun acc it -> max acc (mem_at_item it)) 0 g.schedule_items (* Constructors *) let make_iter_space ~axes ~mapping ~tiles : iter_space = let s = { axes; mapping; tiles } in validate_iter_space s; s let make_buffer_info ~(buf_var : Var.t) ~(dtype : Dtype.any) ~(shape : int array) ~(scope : memory_scope) ~(is_input : bool) ~(is_output : bool) ~(lifetime : int * int) : buffer_info = let layout = default_layout shape in let alloc = default_alloc ~scope ~dtype ~layout ~lifetime in { buf_var; dtype; layout; alloc; is_input; is_output } let create_kernel ~kernel_id ~kernel_name ~ops ~inputs ~outputs ~iter ~reduce ~hints ~context : scheduled_op = validate_dims3 context.global_dims "context.global_dims"; validate_dims3 context.local_dims "context.local_dims"; validate_iter_space iter; S_Kernel { kernel_id; kernel_name; ops; inputs; outputs; iter; reduce; hints; context; } let create_memory_transfer ~transfer_id ~src_var ~dst_var ~src_device ~dst_device ~dims ?src_strides ?dst_strides ~size_bytes ~is_async ~stream () : scheduled_op = S_Memory_Transfer { transfer_id; src_var; dst_var; src_device; dst_device; dims; src_strides; dst_strides; size_bytes; is_async; stream; } let create_synchronization ~sync_id ~sync_type ~scope ~devices ~stream : scheduled_op = S_Synchronization { sync_id; sync_type; scope; devices; stream } let create_host_callback ~callback_id ~callback_name ~input_vars ~output_vars : scheduled_op = S_Host_Callback { callback_id; callback_name; input_vars; output_vars } let create_schedule_item ~item_id ~operation ~depends_on : schedule_item = { item_id; operation; depends_on; dependents = [] } end (* ───── Low-level / lowered IR ───── *) module Lowered = struct type alu_op = | Binary of binop_kind | Unary of unary_op_kind | Ternary of ternary_op_kind type instruction = (* Memory allocation *) | L_Buffer of { dtype : Dtype.any; size : int; out : Var.t } | L_Local of { dtype : Dtype.any; size : int; out : Var.t } | L_Acc of { dtype : Dtype.any; out : Var.t } (* Memory definitions *) | L_Define_Global of { (* global memory definition *) ptr : Var.t; dtype : Dtype.any; size : int; } (* Constants and indices *) | L_Const of { dtype : Dtype.any; value : string; out : Var.t } | L_Vconst of { (* vector constant *) dst : Var.t; values : string array; dtype : Dtype.any; } | L_Special of { dst : Var.t; kind : Special_index_kind.t } | L_Define_Var of { sym_var : SymVar.t; out : Var.t } (* Control flow *) | L_Range of { idx : Var.t; bound : Var.t } | L_EndRange | L_If of { cond : Var.t } | L_EndIf | L_Barrier (* Block operations *) | L_Block of { (* block marker *) block_id : int; start : bool; (* true for BLOCKSTART, false for BLOCKEND *) } (* Unrolling *) | L_Unroll of { (* unrolled loop *) idx : Var.t; iterations : int; } (* Memory access *) | L_Load of { dst : Var.t; buf : Var.t; idx : Var.t; dtype : Dtype.any; valid : Var.t option; (* masked loads *) } | L_Store of { buf : Var.t; idx : Var.t; src : Var.t; valid : Var.t option; (* masked stores *) } (* Compute *) | L_ALU of { dst : Var.t; op : alu_op; args : Var.t list; dtype : Dtype.any; } (* Vector operations *) | L_Gep of { (* get element from vector *) dst : Var.t; src : Var.t; indices : int array; dtype : Dtype.any; } | L_Vectorize of { (* build vector *) dst : Var.t; srcs : Var.t array; dtype : Dtype.any; } (* Pointer operations *) | L_Ptrcat of { (* pointer concatenation *) dst : Var.t; ptrs : Var.t array; dtype : Dtype.any; } (* Tensor core operations *) | L_Wmma of { dst : Var.t; a : Var.t; b : Var.t; c : Var.t; m : int; n : int; k : int; dtype : Dtype.any; } (* Data movement *) | L_Cast of { dst : Var.t; src : Var.t; dtype : Dtype.any } | L_Bitcast of { dst : Var.t; src : Var.t; dtype : Dtype.any } | L_Assign of { dst : Var.t; src : Var.t } (* Custom operations *) | L_Custom of { dst : Var.t option; op_name : string; args : Var.t array; attributes : (string * custom_attr) list; inline : bool; (* CUSTOMI vs CUSTOM *) } (* No-op *) | L_Noop type graph_t = { instructions : instruction list; vars_metadata : (Var.t, var_metadata) Hashtbl.t; kernel_input_vars : Var.t list; kernel_output_vars : Var.t list; symbolic_vars : SymVar.t list; } end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>