package rocq-runtime
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
The Rocq Prover -- Core Binaries and Tools
Install
dune-project
Dependency
Authors
Maintainers
Sources
rocq-9.1.0.tar.gz
sha256=b236dc44f92e1eeca6877c7ee188a90c2303497fe7beb99df711ed5a7ce0d824
doc/src/extraction_plugin/extract_env.ml.html
Source file extract_env.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Miniml open Constr open Declarations open Mod_declarations open Names open ModPath open Libnames open Pp open CErrors open Util open Table open Extraction open Modutil open Common (****************************************) (*S Part I: computing Rocq environment. *) (****************************************) let toplevel_env () = let mp, struc = Safe_typing.flatten_env (Global.safe_env ()) in mp, List.rev struc let environment_until dir_opt = let rec parse = function | [] when Option.is_empty dir_opt -> [toplevel_env ()] | [] -> [] | d :: l -> let meb = Modops.destr_nofunctor (MPfile d) (mod_type @@ Global.lookup_module (MPfile d)) in match dir_opt with | Some d' when DirPath.equal d d' -> [MPfile d, meb] | _ -> (MPfile d, meb) :: (parse l) in parse (Library.loaded_libraries ()) (*s Visit: a structure recording the needed dependencies for the current extraction *) module type VISIT = sig type t (* Environment of visited data *) val make : unit -> t (* Add the module_path and all its prefixes to the mp visit list. We'll keep all fields of these modules. *) val add_mp_all : t -> ModPath.t -> unit (* Add reference / ... in the visit lists. These functions silently add the mp of their arg in the mp list *) val add_ref : t -> global -> unit val add_kn : t -> KerName.t -> InfvInst.t -> unit val add_decl_deps : t -> ml_decl -> unit val add_spec_deps : t -> ml_spec -> unit (* Test functions: is a particular object a needed dependency for the current extraction ? *) val needed_ind : t -> MutInd.t -> InfvInst.t -> bool val needed_cst : t -> Constant.t -> InfvInst.t -> bool val needed_mp : t -> ModPath.t -> bool val needed_mp_all : t -> ModPath.t -> bool end module Visit : VISIT = struct module KNOrd = struct type t = KerName.t * InfvInst.t let compare (kn1, i1) (kn2, i2) = let c = KerName.compare kn1 kn2 in if Int.equal c 0 then InfvInst.compare i1 i2 else c end module KNset = Set.Make(KNOrd) type t = { mutable kn : KNset.t; mutable mp : MPset.t; mutable mp_all : MPset.t } (* the imperative internal visit lists *) let make () = { kn = KNset.empty; mp = MPset.empty; mp_all = MPset.empty; } (* the accessor functions *) let needed_ind v i inst = KNset.mem (MutInd.user i, inst) v.kn let needed_cst v c inst = KNset.mem (Constant.user c, inst) v.kn let needed_mp v mp = MPset.mem mp v.mp || MPset.mem mp v.mp_all let needed_mp_all v mp = MPset.mem mp v.mp_all let add_mp v mp = check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp let add_mp_all v mp = check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp; v.mp_all <- MPset.add mp v.mp_all let add_kn v kn inst = v.kn <- KNset.add (kn, inst) v.kn; add_mp v (KerName.modpath kn) let add_ref v r = let open GlobRef in match r.glob with | ConstRef c -> add_kn v (Constant.user c) r.inst | IndRef (ind,_) | ConstructRef ((ind,_),_) -> add_kn v (MutInd.user ind) r.inst | VarRef _ -> assert false let add_decl_deps v decl = decl_iter_references (fun kn -> add_ref v kn) (fun r -> add_ref v r) (fun r -> add_ref v r) decl let add_spec_deps v spec = spec_iter_references (fun r -> add_ref v r) (fun r -> add_ref v r) (fun r -> add_ref v r) spec end let get_mono_inst_univs = function | Monomorphic -> [InfvInst.empty] | Polymorphic uctx -> InfvInst.generate uctx let get_mono_inst = function | SFBconst cb -> get_mono_inst_univs cb.const_universes | SFBmind mib -> get_mono_inst_univs mib.mind_universes | SFBrules _ -> [InfvInst.empty] | SFBmodule _ | SFBmodtype _ -> assert false let add_field_label venv mp = function | (lab, (SFBconst _|SFBmind _ | SFBrules _ as f)) -> let insts = get_mono_inst f in List.iter (fun inst -> Visit.add_kn venv (KerName.make mp lab) inst) insts | (lab, (SFBmodule _|SFBmodtype _)) -> Visit.add_mp_all venv (MPdot (mp,lab)) let rec add_labels venv mp = function | MoreFunctor (_,_,m) -> add_labels venv mp m | NoFunctor sign -> List.iter (fun f -> add_field_label venv mp f) sign exception Impossible let check_arity env cb = let t = cb.const_type in if Reduction.is_arity env t then raise Impossible let get_body lbody = EConstr.of_constr lbody let check_fix env sg cb i = match cb.const_body with | Def lbody -> (match EConstr.kind sg (get_body lbody) with | Fix ((_,j),recd) when Int.equal i j -> check_arity env cb; (true,recd) | CoFix (j,recd) when Int.equal i j -> check_arity env cb; (false,recd) | _ -> raise Impossible) | Undef _ | OpaqueDef _ | Primitive _ | Symbol _ -> raise Impossible let prec_declaration_equal sg (na1, ca1, ta1) (na2, ca2, ta2) = Array.equal (Context.eq_annot Name.equal (EConstr.ERelevance.equal sg)) na1 na2 && Array.equal (EConstr.eq_constr sg) ca1 ca2 && Array.equal (EConstr.eq_constr sg) ta1 ta2 let factor_fix env sg l cb msb = let _,recd as check = check_fix env sg cb 0 in let n = Array.length (let fi,_,_ = recd in fi) in if Int.equal n 1 then [|l|], recd, msb else begin if List.length msb < n-1 then raise Impossible; let msb', msb'' = List.chop (n-1) msb in let labels = Array.make n l in List.iteri (fun j -> function | (l,SFBconst cb') -> let check' = check_fix env sg cb' (j+1) in if not ((fst check : bool) == (fst check') && prec_declaration_equal sg (snd check) (snd check')) then raise Impossible; labels.(j+1) <- l; | _ -> raise Impossible) msb'; labels, recd, msb'' end (** Expanding a [module_alg_expr] into a version without abbreviations or functor applications. This is done via a detour to entries (hack proposed by Elie) *) let vm_state = (* VM bytecode is not needed here *) let vm_handler _ _ _ () = (), None in ((), { Mod_typing.vm_handler }) let expand_mexpr env mp me = let inl = Some (Flags.get_inline_level()) in let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in let mb, (_, cst), _ = Mod_typing.translate_module state vm_state env mp inl (MExpr ([], me, None)) in mod_type mb, mod_delta mb let expand_modtype env mp me = let inl = Some (Flags.get_inline_level()) in let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in let mtb, _cst, _ = Mod_typing.translate_modtype state vm_state env mp inl ([],me) in mtb let no_delta = Mod_subst.empty_delta_resolver let flatten_modtype env mp me_alg struc_opt = match struc_opt with | Some me -> me, no_delta mp | None -> let mtb = expand_modtype env mp me_alg in mod_type mtb, mod_delta mtb (** Ad-hoc update of environment, inspired by [Mod_typing.check_with_aux_def]. *) let env_for_mtb_with_def env mp me reso idl = let struc = Modops.destr_nofunctor mp me in let l = Label.of_id (List.hd idl) in let spot = function (l',SFBconst _) -> Label.equal l l' | _ -> false in let before = fst (List.split_when spot struc) in Modops.add_structure mp before reso env let make_cst resolver mp l = Mod_subst.constant_of_delta_kn resolver (KerName.make mp l) let make_mind resolver mp l = Mod_subst.mind_of_delta_kn resolver (KerName.make mp l) (* From a [structure_body] (i.e. a list of [structure_field_body]) to specifications. *) let rec extract_structure_spec table venv env mp reso = function | [] -> [] | (l, SFBconst cb) :: msig -> let insts = get_mono_inst_univs cb.const_universes in let c = make_cst reso mp l in let map inst = extract_constant_spec table env c inst cb in let consts = List.map map insts in let specs = extract_structure_spec table venv env mp reso msig in let fold s specs = if logical_spec s then specs else let () = Visit.add_spec_deps venv s in (l, Spec s) :: specs in List.fold_right fold consts specs | (l, SFBmind mib) :: msig -> let insts = get_mono_inst_univs mib.mind_universes in let mind = make_mind reso mp l in let map inst = Sind (extract_inductive table env mind inst) in let minds = List.map map insts in let specs = extract_structure_spec table venv env mp reso msig in let fold s specs = if logical_spec s then specs else let () = Visit.add_spec_deps venv s in (l, Spec s) :: specs in List.fold_right fold minds specs | (l, SFBrules _) :: msig -> let specs = extract_structure_spec table venv env mp reso msig in specs | (l,SFBmodule mb) :: msig -> let specs = extract_structure_spec table venv env mp reso msig in let mp = MPdot (mp, l) in let spec = extract_mbody_spec table venv env mp mb in (l,Smodule spec) :: specs | (l,SFBmodtype mtb) :: msig -> let specs = extract_structure_spec table venv env mp reso msig in let mp = MPdot (mp, l) in let spec = extract_mbody_spec table venv env mp mtb in (l,Smodtype spec) :: specs (* From [module_expression] to specifications *) (* Invariant: the [me_alg] given to [extract_mexpr_spec] and [extract_mexpression_spec] should come from a [mod_type_alg] field. This way, any encountered [MEident] should be a true module type. *) and extract_mexpr_spec table venv env mp1 (me_struct_o,me_alg) = match me_alg with | MEident mp -> let () = Visit.add_mp_all venv mp in MTident mp | MEwith(me',WithDef(idl,(c,ctx)))-> let () = match ctx with | None -> () | Some auctx -> (* XXX *) if Array.is_empty (UVars.AbstractContext.names auctx).quals then () else user_err Pp.(str "Extraction of \"with Definition\" clauses not supported for sort polymorphic definitions.") in let me_struct,delta = flatten_modtype env mp1 me' me_struct_o in let env' = env_for_mtb_with_def env mp1 me_struct delta idl in let mt = extract_mexpr_spec table venv env mp1 (None,me') in let sg = Evd.from_env env in (match extract_with_type table env' sg (EConstr.of_constr c) with (* cb may contain some kn *) | None -> mt | Some (vl,typ) -> let () = type_iter_references (fun r -> Visit.add_ref venv r) typ in MTwith (mt, ML_With_type (InfvInst.empty, idl, vl, typ))) | MEwith(me',WithMod(idl,mp))-> let () = Visit.add_mp_all venv mp in MTwith (extract_mexpr_spec table venv env mp1 (None, me'), ML_With_module(idl, mp)) | MEapply _ -> (* No higher-order module type in OCaml : we use the expanded version *) let me_struct,delta = flatten_modtype env mp1 me_alg me_struct_o in extract_msignature_spec table venv env mp1 delta me_struct and extract_mexpression_spec table venv env mp1 (me_struct,me_alg) = match me_alg with | MEMoreFunctor me_alg' -> let mbid, mtb, me_struct' = match me_struct with | MoreFunctor (mbid, mtb, me') -> (mbid, mtb, me') | _ -> assert false in let mp = MPbound mbid in let env' = Modops.add_module_parameter mbid mtb env in MTfunsig (mbid, extract_mbody_spec table venv env mp mtb, extract_mexpression_spec table venv env' mp1 (me_struct', me_alg')) | MENoFunctor m -> extract_mexpr_spec table venv env mp1 (Some me_struct, m) and extract_msignature_spec table venv env mp1 reso = function | NoFunctor struc -> let env' = Modops.add_structure mp1 struc reso env in MTsig (mp1, extract_structure_spec table venv env' mp1 reso struc) | MoreFunctor (mbid, mtb, me) -> let mp = MPbound mbid in let env' = Modops.add_module_parameter mbid mtb env in MTfunsig (mbid, extract_mbody_spec table venv env mp mtb, extract_msignature_spec table venv env' mp1 reso me) and extract_mbody_spec : 'a. State.t -> _ -> _ -> _ -> 'a generic_module_body -> _ = fun table venv env mp mb -> match mod_type_alg mb with | Some ty -> extract_mexpression_spec table venv env mp (mod_type mb, ty) | None -> extract_msignature_spec table venv env mp (mod_delta mb) (mod_type mb) (* From a [structure_body] (i.e. a list of [structure_field_body]) to implementations. NB: when [all=false], the evaluation order of the list is important: last to first ensures correct dependencies. *) let rec extract_structure table access venv env mp reso ~all = function | [] -> [] | (l, SFBconst cb) :: struc -> let sg = Evd.from_env env in let fix, struc = match factor_fix env sg l cb struc with | (vl, recd, struc) -> Some (vl, recd), struc | exception Impossible -> None, struc in let ms = extract_structure table access venv env mp reso ~all struc in let insts = get_mono_inst_univs cb.const_universes in let c = make_cst reso mp l in let map inst = match fix with | None -> let b = Visit.needed_cst venv c inst in if all || b then let d = extract_constant table access env c inst cb in if (not b) && (logical_decl d) then None else let () = Visit.add_decl_deps venv d in Some (l, SEdecl d) else None | Some (vl, recd) -> let vc = Array.map (make_cst reso mp) vl in let b = Array.exists (fun vf -> Visit.needed_cst venv vf inst) vc in if all || b then let d = extract_fixpoint table env sg vc inst recd in if (not b) && (logical_decl d) then None else let () = Visit.add_decl_deps venv d in Some (l, SEdecl d) else None in let consts = List.map_filter map insts in consts @ ms | (l, SFBmind mib) :: struc -> let ms = extract_structure table access venv env mp reso ~all struc in let insts = get_mono_inst_univs mib.mind_universes in let mind = make_mind reso mp l in let map inst = let b = Visit.needed_ind venv mind inst in if all || b then let d = Dind (extract_inductive table env mind inst) in if (not b) && (logical_decl d) then None else let () = Visit.add_decl_deps venv d in Some (l, SEdecl d) else None in let inds = List.map_filter map insts in inds @ ms | (l, SFBrules rrb) :: struc -> let inst = InfvInst.empty in (* FIXME ? *) let b = List.exists (fun (cst, _) -> Visit.needed_cst venv cst inst) rrb.rewrules_rules in let ms = extract_structure table access venv env mp reso ~all struc in if all || b then begin List.iter (fun (cst, _) -> Table.add_symbol_rule (State.get_table table) { glob = ConstRef cst; inst } l) rrb.rewrules_rules; ms end else ms | (l,SFBmodule mb) :: struc -> let ms = extract_structure table access venv env mp reso ~all struc in let mp = MPdot (mp,l) in let all' = all || Visit.needed_mp_all venv mp in if all' || Visit.needed_mp venv mp then (l, SEmodule (extract_module table access venv env mp ~all:all' mb)) :: ms else ms | (l,SFBmodtype mtb) :: struc -> let ms = extract_structure table access venv env mp reso ~all struc in let mp = MPdot (mp,l) in if all || Visit.needed_mp venv mp then (l, SEmodtype (extract_mbody_spec table venv env mp mtb)) :: ms else ms (* From [module_expr] and [module_expression] to implementations *) and extract_mexpr table access venv env mp = function | MEwith _ -> assert false (* no 'with' syntax for modules *) | me when lang () != Ocaml -> (* In Haskell/Scheme, we expand everything. For now, we also extract everything, dead code will be removed later (see [Modutil.optimize_struct]. *) let sign, delta = expand_mexpr env mp me in extract_msignature table access venv env mp delta ~all:true sign | MEident mp -> if is_modfile mp && not (State.get_modular table) then error_MPfile_as_mod mp false; Visit.add_mp_all venv mp; Miniml.MEident mp | MEapply (me, arg) -> Miniml.MEapply (extract_mexpr table access venv env mp me, extract_mexpr table access venv env mp (MEident arg)) and extract_mexpression table access venv env mp mty = function | MENoFunctor me -> extract_mexpr table access venv env mp me | MEMoreFunctor me -> let (mbid, mtb, mty) = match mty with | MoreFunctor (mbid, mtb, mty) -> (mbid, mtb, mty) | NoFunctor _ -> assert false in let mp1 = MPbound mbid in let env' = Modops.add_module_parameter mbid mtb env in Miniml.MEfunctor (mbid, extract_mbody_spec table venv env mp1 mtb, extract_mexpression table access venv env' mp mty me) and extract_msignature table access venv env mp reso ~all = function | NoFunctor struc -> let env' = Modops.add_structure mp struc reso env in Miniml.MEstruct (mp,extract_structure table access venv env' mp reso ~all struc) | MoreFunctor (mbid, mtb, me) -> let mp1 = MPbound mbid in let env' = Modops.add_module_parameter mbid mtb env in Miniml.MEfunctor (mbid, extract_mbody_spec table venv env mp1 mtb, extract_msignature table access venv env' mp reso ~all me) and extract_module table access venv env mp ~all mb = (* A module has an empty [mod_expr] when : - it is a module variable (for instance X inside a Module F [X:SIG]) - it is a module assumption (Declare Module). Since we look at modules from outside, we shouldn't have variables. But a Declare Module at toplevel seems legal (cf #2525). For the moment we don't support this situation. *) let impl = match Mod_declarations.mod_expr mb with | Abstract -> error_no_module_expr mp | Algebraic me -> extract_mexpression table access venv env mp (mod_type mb) me | Struct sign -> (* This module has a signature, otherwise it would be FullStruct. We extract just the elements required by this signature. *) let () = add_labels venv mp (mod_type mb) in let sign = Modops.annotate_struct_body sign (mod_type mb) in extract_msignature table access venv env mp (mod_delta mb) ~all:false sign | FullStruct -> extract_msignature table access venv env mp (mod_delta mb) ~all (mod_type mb) in (* Slight optimization: for modules without explicit signatures ([FullStruct] case), we build the type out of the extracted implementation *) let typ = match Mod_declarations.mod_expr mb with | FullStruct -> assert (Option.is_empty @@ mod_type_alg mb); mtyp_of_mexpr impl | _ -> extract_mbody_spec table venv env mp mb in { ml_mod_expr = impl; ml_mod_type = typ } let mono_environment table ~opaque_access refs mpl = let venv = Visit.make () in let () = List.iter (fun r -> Visit.add_ref venv r) refs in let () = List.iter (fun mp -> Visit.add_mp_all venv mp) mpl in let env = Global.env () in let l = List.rev (environment_until None) in List.rev_map (fun (mp,struc) -> mp, extract_structure table opaque_access venv env mp (no_delta mp) ~all:(Visit.needed_mp_all venv mp) struc) l (**************************************) (*S Part II : Input/Output primitives *) (**************************************) let descr () = match lang () with | Ocaml -> Ocaml.ocaml_descr | Haskell -> Haskell.haskell_descr | Scheme -> Scheme.scheme_descr | JSON -> Json.json_descr (* From a filename string "foo.ml" or "foo", builds "foo.ml" and "foo.mli" Works similarly for the other languages. *) let default_id = Id.of_string "Main" let mono_filename f = let d = descr () in match f with | None -> None, None, default_id | Some f -> let f = if Filename.check_suffix f d.file_suffix then Filename.chop_suffix f d.file_suffix else f in let id = if lang () != Haskell then default_id else try Id.of_string (Filename.basename f) with UserError _ -> user_err Pp.(str "Extraction: provided filename is not a valid identifier") in let f = if Filename.is_relative f then Filename.concat (output_directory ()) f else f in Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id (* Builds a suitable filename from a module id *) let module_filename table mp = let f = file_of_modfile (State.get_table table) mp in let id = Id.of_string f in let f = Filename.concat (output_directory ()) f in let d = descr () in let fimpl_base = d.file_naming table mp ^ d.file_suffix in let fimpl = Filename.concat (output_directory ()) fimpl_base in Some fimpl, Option.map ((^) f) d.sig_suffix, id (*s Extraction of one decl to stdout. *) let print_one_decl table struc mp decl = let d = descr () in let () = State.reset table in let table = State.set_phase table Pre in ignore (d.pp_struct table struc); let table = State.set_phase table Impl in let ans = State.with_visibility table mp [] begin fun table -> d.pp_decl table decl end in v 0 ans (*s Extraction of a ml struct to a file. *) (** For Recursive Extraction, writing directly on stdout won't work with rocqide, we use a buffer instead *) let formatter buf dry file = let ft = if dry then Format.make_formatter (fun _ _ _ -> ()) (fun _ -> ()) else match file with | Some f -> Topfmt.with_output_to f | None -> Format.formatter_of_buffer buf in (* XXX: Fixme, this shouldn't depend on Topfmt *) (* We never want to see ellipsis ... in extracted code *) Format.pp_set_max_boxes ft max_int; (* We reuse the width information given via "Set Printing Width" *) (match Topfmt.get_margin () with | None -> () | Some i -> Format.pp_set_margin ft i; Format.pp_set_max_indent ft (i-10)); (* note: max_indent should be < margin above, otherwise it's ignored *) ft let get_comment () = let s = file_comment () in if String.is_empty s then None else let split_comment = Str.split (Str.regexp "[ \t\n]+") s in Some (prlist_with_sep spc str split_comment) let print_structure_to_file table (fn,si,mo) dry struc = let buf = Buffer.create 1000 in let d = descr () in let () = State.reset table in let unsafe_needs = { mldummy = struct_ast_search Mlutil.isMLdummy struc; tdummy = struct_type_search Mlutil.isTdummy struc; tunknown = struct_type_search ((==) Tunknown) struc; magic = if lang () != Haskell then false else struct_ast_search (function MLmagic _ -> true | _ -> false) struc } in (* First, a dry run, for computing objects to rename or duplicate *) let table = State.set_phase table Pre in ignore (d.pp_struct table struc); let opened = opened_libraries table in (* Print the implementation *) let cout = if dry then None else Option.map open_out fn in let ft = formatter buf dry cout in let comment = get_comment () in begin try (* The real printing of the implementation *) let table = State.set_phase table Impl in pp_with ft (d.preamble table mo comment opened unsafe_needs); pp_with ft (d.pp_struct table struc); Format.pp_print_flush ft (); Option.iter close_out cout; with reraise -> Format.pp_print_flush ft (); Option.iter close_out cout; raise reraise end; if not dry then Option.iter info_file fn; (* Now, let's print the signature *) Option.iter (fun si -> let cout = open_out si in let ft = formatter buf false (Some cout) in begin try let table = State.set_phase table Intf in pp_with ft (d.sig_preamble table mo comment opened unsafe_needs); pp_with ft (d.pp_sig table (signature_of_structure struc)); Format.pp_print_flush ft (); close_out cout; with reraise -> Format.pp_print_flush ft (); close_out cout; raise reraise end; info_file si) (if dry then None else si); (* Print the buffer content via Rocq standard formatter (ok with rocqide). *) if not (Int.equal (Buffer.length buf) 0) then begin Feedback.msg_notice (str (Buffer.contents buf)); end (*********************************************) (*s Part III: the actual extraction commands *) (*********************************************) let init ?(inner=false) modular library = if not inner then check_inside_section (); let keywords = (descr ()).keywords in let state = State.make ~modular ~library ~keywords () in if modular && lang () == Scheme then error_scheme (); state let warns table = let table = State.get_table table in warning_opaques table (access_opaque ()); warning_axioms table (* From a list of [reference], let's retrieve whether they correspond to modules or [global_reference]. Warn the user if both is possible. *) let rec locate_ref = function | [] -> [],[] | qid::l -> let mpo = try Some (Nametab.locate_module qid) with Not_found -> None and ro = try let gr = Smartlocate.global_with_alias qid in let inst = Environ.universes_of_global (Global.env ()) gr in Some (List.map (fun inst -> { glob = gr; inst }) (InfvInst.generate inst)) with Nametab.GlobalizationError _ | UserError _ -> None in match mpo, ro with | None, None -> Nametab.error_global_not_found ~info:Exninfo.null qid | None, Some r -> let refs, mps = locate_ref l in r @ refs,mps | Some mp, None -> let refs,mps = locate_ref l in refs,mp::mps | Some mp, Some r -> let () = warning_ambiguous_name ?loc:qid.CAst.loc (qid, mp, (List.hd r).glob) in let refs,mps = locate_ref l in refs,mp::mps (*s Recursive extraction in the Rocq toplevel. The vernacular command is \verb!Recursive Extraction! [qualid1] ... [qualidn]. Also used when extracting to a file with the command: \verb!Extraction "file"! [qualid1] ... [qualidn]. *) let full_extr opaque_access f (refs,mps) = let table = init false false in List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps; let struc = optimize_struct table (refs,mps) (mono_environment table ~opaque_access refs mps) in let () = warns table in print_structure_to_file table (mono_filename f) false struc let full_extraction ~opaque_access f lr = full_extr opaque_access f (locate_ref lr) (*s Separate extraction is similar to recursive extraction, with the output decomposed in many files, one per Rocq .v file *) let separate_extraction ~opaque_access lr = let table = init true false in let refs,mps = locate_ref lr in let struc = optimize_struct table (refs,mps) (mono_environment table ~opaque_access refs mps) in let () = List.iter (function | MPfile _, _ -> () | (MPdot _ | MPbound _), _ -> user_err (str "Separate Extraction from inside a module is not supported.")) struc in let () = warns table in let print = function | (MPfile dir as mp, sel) as e -> print_structure_to_file table (module_filename table mp) false [e] | (MPdot _ | MPbound _), _ -> assert false in let () = List.iter print struc in () (*s Simple extraction in the Rocq toplevel. The vernacular command is \verb!Extraction! [qualid]. *) let simple_extraction ~opaque_access r = match locate_ref [r] with | ([], [mp]) as p -> full_extr opaque_access None p | [r],[] -> let table = init false false in let struc = optimize_struct table ([r],[]) (mono_environment table ~opaque_access [r] []) in let d = get_decl_in_structure r struc in let () = warns table in let flag = if is_custom r then str "(** User defined extraction *)" ++ fnl() else mt () in let ans = flag ++ print_one_decl table struc (modpath_of_r r) d in Feedback.msg_notice ans | _ -> assert false (*s (Recursive) Extraction of a library. The vernacular command is \verb!(Recursive) Extraction Library! [M]. *) let extraction_library ~opaque_access is_rec CAst.{loc;v=m} = let table = init true true in let dir_m = (* XXX WTF is going on here? *) let q = qualid_of_ident m in try Nametab.full_name_module q with Not_found -> error_unknown_module ?loc q in let dir_m = dirpath_of_path dir_m in let venv = Visit.make () in let () = Visit.add_mp_all venv (MPfile dir_m) in let env = Global.env () in let l = List.rev (environment_until (Some dir_m)) in let select l (mp,struc) = if Visit.needed_mp venv mp then (mp, extract_structure table opaque_access venv env mp (no_delta mp) ~all:true struc) :: l else l in let struc = List.fold_left select [] l in let struc = optimize_struct table ([],[]) struc in let () = warns table in let print = function | (MPfile dir as mp, sel) as e -> let dry = not is_rec && not (DirPath.equal dir dir_m) in print_structure_to_file table (module_filename table mp) dry [e] | _ -> assert false in let () = List.iter print struc in () (* For the test-suite : extraction to a temporary file + run ocamlc on it *) let compile f = try let args = [ "ocamlc" ; "-package";"zarith" ; "-I"; Filename.dirname f ; "-c"; f^"i" ; f ] in let res = CUnix.sys_command (Boot.Env.ocamlfind ()) args in match res with | Unix.WEXITED 0 -> () | Unix.WEXITED n | Unix.WSIGNALED n | Unix.WSTOPPED n -> CErrors.user_err Pp.(str "Compilation of file " ++ str f ++ str " failed with exit code " ++ int n) with Unix.Unix_error (e,_,_) -> CErrors.user_err Pp.(str "Compilation of file " ++ str f ++ str " failed with error " ++ str (Unix.error_message e)) let remove f = if Sys.file_exists f then Sys.remove f let extract_and_compile ~opaque_access l = if lang () != Ocaml then CErrors.user_err (Pp.str "This command only works with OCaml extraction"); let f = Filename.temp_file "testextraction" ".ml" in let () = full_extraction ~opaque_access (Some f) l in let () = compile f in let () = remove f; remove (f^"i") in let base = Filename.chop_suffix f ".ml" in let () = remove (base^".cmo"); remove (base^".cmi") in Feedback.msg_notice (str "Extracted code successfully compiled") (* Show the extraction of the current ongoing proof *) let show_extraction ~pstate = let table = init ~inner:true false false in let prf = Declare.Proof.get pstate in let sigma, env = Declare.Proof.get_current_context pstate in let trms = Proof.partial_proof prf in let extr_term t = (* FIXME: substitute relevances with ground ones *) let ast, ty = extract_constr table env sigma t in let mp = Lib.current_mp () in let l = Label.of_id (Declare.Proof.get_name pstate) in let fake_ref = { glob = GlobRef.ConstRef (Constant.make2 mp l); inst = InfvInst.empty } in let decl = Dterm (fake_ref, ast, ty) in print_one_decl table [] mp decl in Feedback.msg_notice (Pp.prlist_with_sep Pp.fnl extr_term trms)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>