package rocq-runtime
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
The Rocq Prover -- Core Binaries and Tools
Install
dune-project
Dependency
Authors
Maintainers
Sources
rocq-9.1.0.tar.gz
sha256=b236dc44f92e1eeca6877c7ee188a90c2303497fe7beb99df711ed5a7ce0d824
doc/src/rocq-runtime.kernel/mod_declarations.ml.html
Source file mod_declarations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Declarations open Declareops open Mod_subst type (_, 'v) when_mod_body = | ModBodyVal : 'v -> (mod_body, 'v) when_mod_body | ModTypeNul : (mod_type, 'v) when_mod_body type structure_field_body = (module_body, module_type_body) Declarations.structure_field_body and structure_body = (module_body, module_type_body) Declarations.structure_body (** A module signature is a structure, with possibly functors on top of it *) and module_signature = (module_type_body,structure_body) functorize and module_implementation = | Abstract (** no accessible implementation *) | Algebraic of module_expression (** non-interactive algebraic expression *) | Struct of structure_body (** interactive body living in the parameter context of [mod_type] *) | FullStruct (** special case of [Struct] : the body is exactly [mod_type] *) and 'a generic_module_body = { mod_expr : ('a, module_implementation) when_mod_body; (** implementation *) mod_type : module_signature; (** expanded type *) mod_type_alg : module_expression option; (** algebraic type *) mod_delta : Mod_subst.delta_resolver; (** quotiented set of equivalent constants and inductive names *) mod_retroknowledge : ('a, Retroknowledge.action list) when_mod_body } (** For a module, there are five possible situations: - [Declare Module M : T] then [mod_expr = Abstract; mod_type_alg = Some T] - [Module M := E] then [mod_expr = Algebraic E; mod_type_alg = None] - [Module M : T := E] then [mod_expr = Algebraic E; mod_type_alg = Some T] - [Module M. ... End M] then [mod_expr = FullStruct; mod_type_alg = None] - [Module M : T. ... End M] then [mod_expr = Struct; mod_type_alg = Some T] And of course, all these situations may be functors or not. *) and module_body = mod_body generic_module_body (** A [module_type_body] is just a [module_body] with no implementation and also an empty [mod_retroknowledge]. Its [mod_type_alg] contains the algebraic definition of this module type, or [None] if it has been built interactively. *) and module_type_body = mod_type generic_module_body type 'a module_retroknowledge = ('a, Retroknowledge.action list) when_mod_body (** Extra invariants : - No [MEwith] inside a [mod_expr] implementation : the 'with' syntax is only supported for module types - A module application is atomic, for instance ((M N) P) : * the head of [MEapply] can only be another [MEapply] or a [MEident] * the argument of [MEapply] is now directly forced to be a [ModPath.t]. *) (** Builders *) let make_module_body typ delta retro = { mod_expr = ModBodyVal FullStruct; mod_type = typ; mod_type_alg = None; mod_delta = delta; mod_retroknowledge = ModBodyVal retro; } let make_module_type typ delta = { mod_expr = ModTypeNul; mod_type = typ; mod_type_alg = None; mod_delta = delta; mod_retroknowledge = ModTypeNul; } let strengthen_module_body ~src typ delta mb = { mb with mod_expr = ModBodyVal (Algebraic (MENoFunctor (MEident src))); mod_type = typ; mod_delta = delta; } let strengthen_module_type struc delta mtb = { mtb with mod_type = NoFunctor struc; mod_delta = delta } let replace_module_body struc delta mb = (* This is only used by "with Module", we should try to inherit the algebraic type *) let () = match mb.mod_expr with ModBodyVal Abstract -> () | _ -> assert false in let () = match mb.mod_type with NoFunctor _ -> () | MoreFunctor _ -> assert false in { mb with mod_type = NoFunctor struc; mod_type_alg = None; mod_delta = delta } let module_type_of_module mb = { mb with mod_expr = ModTypeNul; mod_type_alg = None; mod_retroknowledge = ModTypeNul; } let module_body_of_type mtb = { mtb with mod_expr = ModBodyVal Abstract; mod_retroknowledge = ModBodyVal []; } (** Setters *) let set_implementation e mb = { mb with mod_expr = ModBodyVal e } let set_algebraic_type mb alg = { mb with mod_type_alg = Some alg } let set_retroknowledge mb rk = { mb with mod_retroknowledge = ModBodyVal rk } (** Accessors *) let mod_expr { mod_expr = ModBodyVal v; _ } = v let mod_type m = m.mod_type let mod_type_alg m = m.mod_type_alg let mod_delta m = m.mod_delta let mod_retroknowledge { mod_retroknowledge = ModBodyVal rk; _ } = rk let mod_global_delta m = match m.mod_type with | MoreFunctor _ -> None | NoFunctor _ -> Some m.mod_delta (** Hashconsing of modules *) let hcons_when_mod_body (type a b) (f : b -> b) : (a, b) when_mod_body -> (a, b) when_mod_body = function | ModBodyVal v as arg -> let v' = f v in if v == v' then arg else ModBodyVal v' | ModTypeNul -> ModTypeNul let hcons_functorize hty he hself f = match f with | NoFunctor e -> let e' = he e in if e == e' then f else NoFunctor e' | MoreFunctor (mid, ty, nf) -> (** FIXME *) let mid' = mid in let ty' = hty ty in let nf' = hself nf in if mid == mid' && ty == ty' && nf == nf' then f else MoreFunctor (mid, ty', nf') let hcons_module_alg_expr me = me let rec hcons_module_expression me = match me with | MENoFunctor malg -> let malg' = hcons_module_alg_expr malg in if malg == malg' then me else MENoFunctor malg' | MEMoreFunctor mf -> let mf' = hcons_module_expression mf in if mf' == mf then me else MEMoreFunctor mf' let rec hcons_structure_field_body sb = match sb with | SFBconst cb -> let cb' = hcons_const_body cb in if cb == cb' then sb else SFBconst cb' | SFBmind mib -> let mib' = hcons_mind mib in if mib == mib' then sb else SFBmind mib' | SFBmodule mb -> let mb' = hcons_generic_module_body mb in if mb == mb' then sb else SFBmodule mb' | SFBmodtype mb -> let mb' = hcons_generic_module_body mb in if mb == mb' then sb else SFBmodtype mb' | SFBrules _ -> sb (* TODO? *) and hcons_structure_body sb = (** FIXME *) let map (l, sfb as fb) = let _, l' = Names.Label.hcons l in let sfb' = hcons_structure_field_body sfb in if l == l' && sfb == sfb' then fb else (l', sfb') in List.Smart.map map sb and hcons_module_signature ms = hcons_functorize hcons_generic_module_body hcons_structure_body hcons_module_signature ms and hcons_module_implementation mip = match mip with | Abstract -> Abstract | Algebraic me -> let me' = hcons_module_expression me in if me == me' then mip else Algebraic me' | Struct ms -> let ms' = hcons_structure_body ms in if ms == ms' then mip else Struct ms | FullStruct -> FullStruct and hcons_generic_module_body : 'a. 'a generic_module_body -> 'a generic_module_body = fun mb -> let expr' = hcons_when_mod_body hcons_module_implementation mb.mod_expr in let type' = hcons_module_signature mb.mod_type in let type_alg' = mb.mod_type_alg in let delta' = mb.mod_delta in let retroknowledge' = mb.mod_retroknowledge in if mb.mod_expr == expr' && mb.mod_type == type' && mb.mod_type_alg == type_alg' && mb.mod_delta == delta' && mb.mod_retroknowledge == retroknowledge' then mb else { mod_expr = expr'; mod_type = type'; mod_type_alg = type_alg'; mod_delta = delta'; mod_retroknowledge = retroknowledge'; } let hcons_module_body = hcons_generic_module_body let hcons_module_type = hcons_generic_module_body (** Operators *) let rec functor_smart_map fty f0 funct = match funct with | MoreFunctor (mbid,ty,e) -> let ty' = fty mbid ty in let e' = functor_smart_map fty f0 e in if ty==ty' && e==e' then funct else MoreFunctor (mbid,ty',e') | NoFunctor a -> let a' = f0 a in if a==a' then funct else NoFunctor a' let implem_smart_map (type a) fs fa (expr : (a, _) when_mod_body) : (a, _) when_mod_body = match expr with | ModTypeNul -> ModTypeNul | ModBodyVal impl -> match impl with | Struct e -> let e' = fs e in if e==e' then expr else ModBodyVal (Struct e') | Algebraic a -> let a' = fa a in if a==a' then expr else ModBodyVal (Algebraic a') | Abstract | FullStruct -> expr let functorize params init = List.fold_left (fun e (mbid,mt) -> MoreFunctor(mbid,mt,e)) init params let functorize_module params mb = let f x = functorize params x in let fe x = iterate (fun e -> MEMoreFunctor e) (List.length params) x in { mb with mod_expr = implem_smart_map (fun x -> x) fe mb.mod_expr; mod_type = f mb.mod_type; mod_type_alg = Option.map fe mb.mod_type_alg } (** Substitutions of modular structures *) type subst_kind = Dom | Codom | Both | Neither | Shallow of Mod_subst.substitution let subst_dom = Dom let subst_codom = Codom let subst_dom_codom = Both let subst_shallow_dom_codom s = Shallow s let apply_subst skind subst delta = match skind with | Dom -> subst_dom_delta_resolver subst delta | Codom -> subst_codom_delta_resolver subst delta | Both -> subst_dom_codom_delta_resolver subst delta | Neither -> delta | Shallow subst' -> subst_dom_codom_delta_resolver subst' delta (* ignore subst *) let is_functor = function | NoFunctor _ -> false | MoreFunctor _ -> true let subst_with_body subst = function | WithMod(id,mp) as orig -> let mp' = subst_mp subst mp in if mp==mp' then orig else WithMod(id,mp') | WithDef(id,(c,ctx)) as orig -> let c' = subst_mps subst c in if c==c' then orig else WithDef(id,(c',ctx)) let subst_retro : type a. Mod_subst.substitution -> a module_retroknowledge -> a module_retroknowledge = fun subst retro -> match retro with | ModTypeNul as r -> r | ModBodyVal l as r -> let l' = List.Smart.map (subst_retro_action subst) l in if l == l' then r else ModBodyVal l let rec subst_structure skind subst mp sign = let subst_field ((l,body) as orig) = match body with | SFBconst cb -> let cb' = subst_const_body subst cb in if cb==cb' then orig else (l,SFBconst cb') | SFBmind mib -> let mib' = subst_mind_body subst mib in if mib==mib' then orig else (l,SFBmind mib') | SFBrules rrb -> let rrb' = subst_rewrite_rules subst rrb in if rrb==rrb' then orig else (l,SFBrules rrb') | SFBmodule mb -> let mb' = subst_module skind subst (MPdot (mp, l)) mb in if mb==mb' then orig else (l,SFBmodule mb') | SFBmodtype mtb -> let mtb' = subst_modtype skind subst (MPdot (mp, l)) mtb in if mtb==mtb' then orig else (l,SFBmodtype mtb') in List.Smart.map subst_field sign and subst_module_body : type a. _ -> _ -> _ -> _ -> a generic_module_body -> a generic_module_body = fun is_mod skind subst mp mb -> let { mod_expr=me; mod_type=ty; mod_type_alg=aty; mod_retroknowledge=retro; _ } = mb in let mp' = subst_mp subst mp in let subst = if ModPath.equal mp mp' then subst else if is_mod && not (is_functor ty) then subst else add_mp mp mp' (empty_delta_resolver mp') subst in let ty' = subst_signature skind subst mp ty in let me' = subst_impl subst mp me in let aty' = Option.Smart.map (subst_expression subst) aty in let retro' = subst_retro subst retro in let delta' = apply_subst skind subst mb.mod_delta in if mp==mp' && me==me' && ty==ty' && aty==aty' && retro==retro' && delta'==mb.mod_delta then mb else { mod_expr = me'; mod_type = ty'; mod_type_alg = aty'; mod_retroknowledge = retro'; mod_delta = delta'; } and subst_module skind subst mp mb = subst_module_body true skind subst mp mb and subst_impl : type a. _ -> _ -> (a, _) when_mod_body -> (a, _) when_mod_body = fun subst mp me -> implem_smart_map (fun sign -> subst_structure Neither subst mp sign) (subst_expression subst) me and subst_modtype skind subst mp mtb = subst_module_body false skind subst mp mtb and subst_expr subst seb = match seb with | MEident mp -> let mp' = subst_mp subst mp in if mp==mp' then seb else MEident mp' | MEapply (meb1,mp2) -> let meb1' = subst_expr subst meb1 in let mp2' = subst_mp subst mp2 in if meb1==meb1' && mp2==mp2' then seb else MEapply(meb1',mp2') | MEwith (meb,wdb) -> let meb' = subst_expr subst meb in let wdb' = subst_with_body subst wdb in if meb==meb' && wdb==wdb' then seb else MEwith(meb',wdb') and subst_expression subst me = match me with | MENoFunctor malg -> let malg' = subst_expr subst malg in if malg == malg' then me else MENoFunctor malg' | MEMoreFunctor mf -> let mf' = subst_expression subst mf in if mf == mf' then me else MEMoreFunctor mf' and subst_signature skind subst mp = functor_smart_map (fun mbid mtb -> subst_modtype skind subst (MPbound mbid) mtb) (fun sign -> subst_structure skind subst mp sign) (** Cleaning a module expression from bounded parts For instance: functor(X:T)->struct module M:=X end) becomes: functor(X:T)->struct module M:=<content of T> end) *) type 'a mod_expr = ('a, module_implementation) when_mod_body let rec is_bounded_expr l = function | MEident (MPbound mbid) -> MBIset.mem mbid l | MEapply (fexpr,mp) -> is_bounded_expr l (MEident mp) || is_bounded_expr l fexpr | _ -> false let rec clean_module_body : type a. _ -> a generic_module_body -> a generic_module_body = fun l mb -> let typ = mb.mod_type in let typ' = clean_signature l typ in let expr' = clean_mod_expr l mb.mod_expr in if typ==typ' && mb.mod_expr==expr' then mb else { mb with mod_type=typ'; mod_expr = expr' } and clean_field l field = match field with | (lab,SFBmodule mb) -> let mb' = clean_module_body l mb in if mb==mb' then field else (lab,SFBmodule mb') | _ -> field and clean_structure l = List.Smart.map (clean_field l) and clean_signature l = functor_smart_map (fun _ mb -> clean_module_body l mb) (clean_structure l) and clean_expression _ me = me and clean_mod_expr : type a. _ -> a mod_expr -> a mod_expr = fun l me -> match me with | ModBodyVal (Algebraic (MENoFunctor m)) when is_bounded_expr l m -> ModBodyVal FullStruct | _ -> let me' = implem_smart_map (clean_structure l) (clean_expression l) me in if me == me' then me else me'
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>