package rocq-runtime

  1. Overview
  2. Docs
The Rocq Prover -- Core Binaries and Tools

Install

dune-project
 Dependency

Authors

Maintainers

Sources

rocq-9.1.0.tar.gz
sha256=b236dc44f92e1eeca6877c7ee188a90c2303497fe7beb99df711ed5a7ce0d824

doc/src/rocq-runtime.kernel/mod_declarations.ml.html

Source file mod_declarations.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Declarations
open Declareops
open Mod_subst

type (_, 'v) when_mod_body =
| ModBodyVal : 'v -> (mod_body, 'v) when_mod_body
| ModTypeNul : (mod_type, 'v) when_mod_body

type structure_field_body =
  (module_body, module_type_body) Declarations.structure_field_body

and structure_body =
  (module_body, module_type_body) Declarations.structure_body

(** A module signature is a structure, with possibly functors on top of it *)

and module_signature = (module_type_body,structure_body) functorize

and module_implementation =
  | Abstract (** no accessible implementation *)
  | Algebraic of module_expression (** non-interactive algebraic expression *)
  | Struct of structure_body (** interactive body living in the parameter context of [mod_type] *)
  | FullStruct (** special case of [Struct] : the body is exactly [mod_type] *)

and 'a generic_module_body =
  { mod_expr : ('a, module_implementation) when_mod_body; (** implementation *)
    mod_type : module_signature; (** expanded type *)
    mod_type_alg : module_expression option; (** algebraic type *)
    mod_delta : Mod_subst.delta_resolver; (**
      quotiented set of equivalent constants and inductive names *)
    mod_retroknowledge : ('a, Retroknowledge.action list) when_mod_body }

(** For a module, there are five possible situations:
    - [Declare Module M : T] then [mod_expr = Abstract; mod_type_alg = Some T]
    - [Module M := E] then [mod_expr = Algebraic E; mod_type_alg = None]
    - [Module M : T := E] then [mod_expr = Algebraic E; mod_type_alg = Some T]
    - [Module M. ... End M] then [mod_expr = FullStruct; mod_type_alg = None]
    - [Module M : T. ... End M] then [mod_expr = Struct; mod_type_alg = Some T]
    And of course, all these situations may be functors or not. *)

and module_body = mod_body generic_module_body

(** A [module_type_body] is just a [module_body] with no implementation and
    also an empty [mod_retroknowledge]. Its [mod_type_alg] contains
    the algebraic definition of this module type, or [None]
    if it has been built interactively. *)

and module_type_body = mod_type generic_module_body

type 'a module_retroknowledge = ('a, Retroknowledge.action list) when_mod_body

(** Extra invariants :

    - No [MEwith] inside a [mod_expr] implementation : the 'with' syntax
      is only supported for module types

    - A module application is atomic, for instance ((M N) P) :
      * the head of [MEapply] can only be another [MEapply] or a [MEident]
      * the argument of [MEapply] is now directly forced to be a [ModPath.t].
*)

(** Builders *)

let make_module_body typ delta retro = {
  mod_expr = ModBodyVal FullStruct;
  mod_type = typ;
  mod_type_alg = None;
  mod_delta = delta;
  mod_retroknowledge = ModBodyVal retro;
}

let make_module_type typ delta = {
  mod_expr = ModTypeNul;
  mod_type = typ;
  mod_type_alg = None;
  mod_delta = delta;
  mod_retroknowledge = ModTypeNul;
}

let strengthen_module_body ~src typ delta mb =
  { mb with
    mod_expr = ModBodyVal (Algebraic (MENoFunctor (MEident src)));
    mod_type = typ;
    mod_delta = delta; }

let strengthen_module_type struc delta mtb =
  { mtb with
    mod_type = NoFunctor struc;
    mod_delta = delta }

let replace_module_body struc delta mb =
  (* This is only used by "with Module", we should try to inherit the algebraic type *)
  let () = match mb.mod_expr with ModBodyVal Abstract -> () | _ -> assert false in
  let () = match mb.mod_type with NoFunctor _ -> () | MoreFunctor _ -> assert false in
  { mb with
    mod_type = NoFunctor struc;
    mod_type_alg = None;
    mod_delta = delta }

let module_type_of_module mb =
  { mb with mod_expr = ModTypeNul; mod_type_alg = None;
    mod_retroknowledge = ModTypeNul; }

let module_body_of_type mtb =
  { mtb with mod_expr = ModBodyVal Abstract;
      mod_retroknowledge = ModBodyVal []; }

(** Setters *)

let set_implementation e mb =
  { mb with mod_expr = ModBodyVal e }

let set_algebraic_type mb alg =
  { mb with mod_type_alg = Some alg }

let set_retroknowledge mb rk =
  { mb with mod_retroknowledge = ModBodyVal rk }

(** Accessors *)

let mod_expr { mod_expr = ModBodyVal v; _ } = v
let mod_type m = m.mod_type
let mod_type_alg m = m.mod_type_alg
let mod_delta m = m.mod_delta
let mod_retroknowledge { mod_retroknowledge = ModBodyVal rk; _ } = rk

let mod_global_delta m = match m.mod_type with
| MoreFunctor _ -> None
| NoFunctor _ -> Some m.mod_delta

(** Hashconsing of modules *)

let hcons_when_mod_body (type a b) (f : b -> b) : (a, b) when_mod_body -> (a, b) when_mod_body = function
| ModBodyVal v as arg ->
  let v' = f v in
  if v == v' then arg else ModBodyVal v'
| ModTypeNul -> ModTypeNul

let hcons_functorize hty he hself f = match f with
| NoFunctor e ->
  let e' = he e in
  if e == e' then f else NoFunctor e'
| MoreFunctor (mid, ty, nf) ->
  (** FIXME *)
  let mid' = mid in
  let ty' = hty ty in
  let nf' = hself nf in
  if mid == mid' && ty == ty' && nf == nf' then f
  else MoreFunctor (mid, ty', nf')

let hcons_module_alg_expr me = me

let rec hcons_module_expression me = match me with
| MENoFunctor malg ->
  let malg' = hcons_module_alg_expr malg in
  if malg == malg' then me else MENoFunctor malg'
| MEMoreFunctor mf ->
  let mf' = hcons_module_expression mf in
  if mf' == mf then me else MEMoreFunctor mf'

let rec hcons_structure_field_body sb = match sb with
| SFBconst cb ->
  let cb' = hcons_const_body cb in
  if cb == cb' then sb else SFBconst cb'
| SFBmind mib ->
  let mib' = hcons_mind mib in
  if mib == mib' then sb else SFBmind mib'
| SFBmodule mb ->
  let mb' = hcons_generic_module_body mb in
  if mb == mb' then sb else SFBmodule mb'
| SFBmodtype mb ->
  let mb' = hcons_generic_module_body mb in
  if mb == mb' then sb else SFBmodtype mb'
| SFBrules _ -> sb (* TODO? *)

and hcons_structure_body sb =
  (** FIXME *)
  let map (l, sfb as fb) =
    let _, l' = Names.Label.hcons l in
    let sfb' = hcons_structure_field_body sfb in
    if l == l' && sfb == sfb' then fb else (l', sfb')
  in
  List.Smart.map map sb

and hcons_module_signature ms =
  hcons_functorize hcons_generic_module_body hcons_structure_body hcons_module_signature ms

and hcons_module_implementation mip = match mip with
| Abstract -> Abstract
| Algebraic me ->
  let me' = hcons_module_expression me in
  if me == me' then mip else Algebraic me'
| Struct ms ->
  let ms' = hcons_structure_body ms in
  if ms == ms' then mip else Struct ms
| FullStruct -> FullStruct

and hcons_generic_module_body :
  'a. 'a generic_module_body -> 'a generic_module_body =
  fun mb ->
  let expr' = hcons_when_mod_body hcons_module_implementation mb.mod_expr in
  let type' = hcons_module_signature mb.mod_type in
  let type_alg' = mb.mod_type_alg in
  let delta' = mb.mod_delta in
  let retroknowledge' = mb.mod_retroknowledge in

  if
    mb.mod_expr == expr' &&
    mb.mod_type == type' &&
    mb.mod_type_alg == type_alg' &&
    mb.mod_delta == delta' &&
    mb.mod_retroknowledge == retroknowledge'
  then mb
  else {
    mod_expr = expr';
    mod_type = type';
    mod_type_alg = type_alg';
    mod_delta = delta';
    mod_retroknowledge = retroknowledge';
  }

let hcons_module_body =
  hcons_generic_module_body

let hcons_module_type =
  hcons_generic_module_body

(** Operators *)

let rec functor_smart_map fty f0 funct = match funct with
  | MoreFunctor (mbid,ty,e) ->
    let ty' = fty mbid ty in
    let e' = functor_smart_map fty f0 e in
    if ty==ty' && e==e' then funct else MoreFunctor (mbid,ty',e')
  | NoFunctor a ->
    let a' = f0 a in if a==a' then funct else NoFunctor a'

let implem_smart_map (type a) fs fa (expr : (a, _) when_mod_body) : (a, _) when_mod_body =
  match expr with
  | ModTypeNul -> ModTypeNul
  | ModBodyVal impl ->
    match impl with
    | Struct e -> let e' = fs e in if e==e' then expr else ModBodyVal (Struct e')
    | Algebraic a -> let a' = fa a in if a==a' then expr else ModBodyVal (Algebraic a')
    | Abstract | FullStruct -> expr

let functorize params init =
  List.fold_left (fun e (mbid,mt) -> MoreFunctor(mbid,mt,e)) init params

let functorize_module params mb =
  let f x = functorize params x in
  let fe x = iterate (fun e -> MEMoreFunctor e) (List.length params) x in
  { mb with
    mod_expr = implem_smart_map (fun x -> x) fe mb.mod_expr;
    mod_type = f mb.mod_type;
    mod_type_alg = Option.map fe mb.mod_type_alg }

(** Substitutions of modular structures *)

type subst_kind = Dom | Codom | Both | Neither | Shallow of Mod_subst.substitution

let subst_dom = Dom
let subst_codom = Codom
let subst_dom_codom = Both
let subst_shallow_dom_codom s = Shallow s

let apply_subst skind subst delta = match skind with
| Dom -> subst_dom_delta_resolver subst delta
| Codom -> subst_codom_delta_resolver subst delta
| Both -> subst_dom_codom_delta_resolver subst delta
| Neither -> delta
| Shallow subst' -> subst_dom_codom_delta_resolver subst' delta (* ignore subst *)

let is_functor = function
  | NoFunctor _ -> false
  | MoreFunctor _ -> true

let subst_with_body subst = function
  | WithMod(id,mp) as orig ->
    let mp' = subst_mp subst mp in
    if mp==mp' then orig else WithMod(id,mp')
  | WithDef(id,(c,ctx)) as orig ->
    let c' = subst_mps subst c in
    if c==c' then orig else WithDef(id,(c',ctx))

let subst_retro : type a. Mod_subst.substitution -> a module_retroknowledge -> a module_retroknowledge =
  fun subst retro ->
    match retro with
    | ModTypeNul as r -> r
    | ModBodyVal l as r ->
      let l' = List.Smart.map (subst_retro_action subst) l in
      if l == l' then r else ModBodyVal l

let rec subst_structure skind subst mp sign =
  let subst_field ((l,body) as orig) = match body with
    | SFBconst cb ->
      let cb' = subst_const_body subst cb in
      if cb==cb' then orig else (l,SFBconst cb')
    | SFBmind mib ->
      let mib' = subst_mind_body subst mib in
      if mib==mib' then orig else (l,SFBmind mib')
    | SFBrules rrb ->
      let rrb' = subst_rewrite_rules subst rrb in
      if rrb==rrb' then orig else (l,SFBrules rrb')
    | SFBmodule mb ->
      let mb' = subst_module skind subst (MPdot (mp, l)) mb in
      if mb==mb' then orig else (l,SFBmodule mb')
    | SFBmodtype mtb ->
      let mtb' = subst_modtype skind subst (MPdot (mp, l)) mtb in
      if mtb==mtb' then orig else (l,SFBmodtype mtb')
  in
  List.Smart.map subst_field sign

and subst_module_body : type a. _ -> _ -> _ -> _ -> a generic_module_body -> a generic_module_body =
  fun is_mod skind subst mp mb ->
    let { mod_expr=me; mod_type=ty; mod_type_alg=aty;
          mod_retroknowledge=retro; _ } = mb in
  let mp' = subst_mp subst mp in
  let subst =
    if ModPath.equal mp mp' then subst
    else if is_mod && not (is_functor ty) then subst
    else add_mp mp mp' (empty_delta_resolver mp') subst
  in
  let ty' = subst_signature skind subst mp ty in
  let me' = subst_impl subst mp me in
  let aty' = Option.Smart.map (subst_expression subst) aty in
  let retro' = subst_retro subst retro in
  let delta' = apply_subst skind subst mb.mod_delta in
  if mp==mp' && me==me' && ty==ty' && aty==aty'
     && retro==retro' && delta'==mb.mod_delta
  then mb
  else
    { mod_expr = me';
      mod_type = ty';
      mod_type_alg = aty';
      mod_retroknowledge = retro';
      mod_delta = delta';
    }

and subst_module skind subst mp mb =
  subst_module_body true skind subst mp mb

and subst_impl : type a. _ -> _ -> (a, _) when_mod_body -> (a, _) when_mod_body =
  fun subst mp me ->
  implem_smart_map
    (fun sign -> subst_structure Neither subst mp sign) (subst_expression subst) me

and subst_modtype skind subst mp mtb = subst_module_body false skind subst mp mtb

and subst_expr subst seb = match seb with
  | MEident mp ->
    let mp' = subst_mp subst mp in
    if mp==mp' then seb else MEident mp'
  | MEapply (meb1,mp2) ->
    let meb1' = subst_expr subst meb1 in
    let mp2' = subst_mp subst mp2 in
    if meb1==meb1' && mp2==mp2' then seb else MEapply(meb1',mp2')
  | MEwith (meb,wdb) ->
    let meb' = subst_expr subst meb in
    let wdb' = subst_with_body subst wdb in
    if meb==meb' && wdb==wdb' then seb else MEwith(meb',wdb')

and subst_expression subst me = match me with
| MENoFunctor malg ->
  let malg' = subst_expr subst malg in
  if malg == malg' then me else MENoFunctor malg'
| MEMoreFunctor mf ->
  let mf' = subst_expression subst mf in
  if mf == mf' then me else MEMoreFunctor mf'

and subst_signature skind subst mp =
  functor_smart_map
    (fun mbid mtb -> subst_modtype skind subst (MPbound mbid) mtb)
    (fun sign -> subst_structure skind subst mp sign)

(** Cleaning a module expression from bounded parts

     For instance:
       functor(X:T)->struct module M:=X end)
     becomes:
       functor(X:T)->struct module M:=<content of T> end)
*)

type 'a mod_expr = ('a, module_implementation) when_mod_body

let rec is_bounded_expr l = function
  | MEident (MPbound mbid) -> MBIset.mem mbid l
  | MEapply (fexpr,mp) ->
      is_bounded_expr l (MEident mp) || is_bounded_expr l fexpr
  | _ -> false

let rec clean_module_body : type a. _ -> a generic_module_body -> a generic_module_body =
  fun l mb ->
  let typ = mb.mod_type in
  let typ' = clean_signature l typ in
  let expr' = clean_mod_expr l mb.mod_expr in
  if typ==typ' && mb.mod_expr==expr' then mb
  else { mb with mod_type=typ'; mod_expr = expr' }

and clean_field l field = match field with
  | (lab,SFBmodule mb) ->
    let mb' = clean_module_body l mb in
    if mb==mb' then field else (lab,SFBmodule mb')
  | _ -> field

and clean_structure l = List.Smart.map (clean_field l)

and clean_signature l =
  functor_smart_map (fun _ mb -> clean_module_body l mb) (clean_structure l)

and clean_expression _ me = me

and clean_mod_expr : type a. _ -> a mod_expr -> a mod_expr =
  fun l me -> match me with
  | ModBodyVal (Algebraic (MENoFunctor m)) when is_bounded_expr l m ->
    ModBodyVal FullStruct
  | _ ->
    let me' = implem_smart_map (clean_structure l) (clean_expression l) me in
    if me == me' then me else me'