package rocq-runtime
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
The Rocq Prover -- Core Binaries and Tools
Install
dune-project
Dependency
Authors
Maintainers
Sources
rocq-9.1.0.tar.gz
sha256=b236dc44f92e1eeca6877c7ee188a90c2303497fe7beb99df711ed5a7ce0d824
doc/src/rocq-runtime.kernel/indTyping.ml.html
Source file indTyping.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
(************************************************************************) (* * The Rocq Prover / The Rocq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Univ open UVars open Term open Constr open Declarations open Environ open Entries open Type_errors open Context.Rel.Declaration type inductive_arity = { user_arity : Constr.types; sort : Sorts.t } (** Check name unicity. Redundant with safe_typing's add_field checks -> to remove?. *) (* [check_constructors_names id s cl] checks that all the constructors names appearing in [l] are not present in the set [s], and returns the new set of names. The name [id] is the name of the current inductive type, used when reporting the error. *) let check_constructors_names env idset ids = let rec check idset = function | [] -> idset | c::cl -> if Id.Set.mem c idset then raise (InductiveError (env, SameNamesConstructors c)) else check (Id.Set.add c idset) cl in check idset ids (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names env mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Id.Set.mem id indset then raise (InductiveError (env, SameNamesTypes id)) else let cstset' = check_constructors_names env cstset cl in check (Id.Set.add id indset) cstset' inds in check Id.Set.empty Id.Set.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (************************************************************************) (************************** Type checking *******************************) (************************************************************************) type record_arg_info = | NoRelevantArg | HasRelevantArg (** HasRelevantArg means when the record is relevant at least one arg is relevant. When the record is in a polymorphic sort this can mean one arg is in the same sort. *) type univ_info = { ind_squashed : squash_info option ; record_arg_info : record_arg_info ; ind_template : bool ; ind_univ : Sorts.t ; missing : Sorts.t list (* missing u <= ind_univ constraints *) } let add_squash q info = match info.ind_squashed with | None -> { info with ind_squashed = Some (SometimesSquashed (Sorts.Quality.Set.singleton q)) } | Some AlwaysSquashed -> info | Some (SometimesSquashed qs) -> (* XXX dedup insertion *) { info with ind_squashed = Some (SometimesSquashed (Sorts.Quality.Set.add q qs)) } let compute_elim_squash ?(is_real_arg=false) env u info = let open Sorts.Quality in let info = if not is_real_arg then info else match info.record_arg_info with | HasRelevantArg -> info | NoRelevantArg -> match u with | Sorts.SProp -> info | QSort (q,_) -> if Environ.Internal.is_above_prop env q || equal (QVar q) (Sorts.quality info.ind_univ) then { info with record_arg_info = HasRelevantArg } else info | Prop | Set | Type _ -> { info with record_arg_info = HasRelevantArg } in if (Environ.type_in_type env) then info else let indu = info.ind_univ and check_univ_consistency f induu uu = if UGraph.check_leq (universes env) uu induu then f info else { info with missing = u :: info.missing } in if Inductive.eliminates_to (Sorts.quality indu) (Sorts.quality u) then check_univ_consistency (fun x -> x) (Sorts.univ_of_sort indu) (Sorts.univ_of_sort u) else let check_univ_consistency_squash quality = check_univ_consistency (add_squash quality) in match indu, u with | QSort (_, indu), Type uu -> check_univ_consistency_squash qtype indu uu | QSort (_, indu), QSort (cq, uu) -> check_univ_consistency_squash (QVar cq) indu uu | QSort (q, indu), Set -> if Environ.Internal.is_above_prop env q then info else check_univ_consistency_squash qtype indu Universe.type0 | (SProp | Prop), QSort (q, _) -> add_squash (QVar q) info | QSort (q, _), (SProp | Prop) -> if Environ.Internal.is_above_prop env q then info else add_squash (Sorts.quality u) info | _, _ -> { info with ind_squashed = Some AlwaysSquashed } let check_context_univs ~ctor env info ctx = let check_one d (info,env) = let info = match d with | LocalAssum (_,t) -> (* could be retyping if it becomes available in the kernel *) let tj = Typeops.infer_type env t in compute_elim_squash ~is_real_arg:ctor env tj.utj_type info | LocalDef _ -> info in info, push_rel d env in fst (Context.Rel.fold_outside ~init:(info,env) check_one ctx) let check_indices_matter env_params info indices = if not (indices_matter env_params) then info else check_context_univs ~ctor:false env_params info indices (* env_ar contains the inductives before the current ones in the block, and no parameters *) let check_arity ~template env_params env_ar ind = let {utj_val=arity;utj_type=_} = Typeops.infer_type env_params ind.mind_entry_arity in let indices, ind_sort = Reduction.dest_arity env_params arity in let univ_info = { ind_squashed=None; record_arg_info=NoRelevantArg; ind_template = template; ind_univ=ind_sort; missing=[]; } in let univ_info = check_indices_matter env_params univ_info indices in (* We do not need to generate the universe of the arity with params; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let arity = it_mkProd_or_LetIn arity (Environ.rel_context env_params) in let x = Context.make_annot (Name ind.mind_entry_typename) (Sorts.relevance_of_sort ind_sort) in push_rel (LocalAssum (x, arity)) env_ar, (arity, indices, univ_info) let check_constructor_univs env_ar_par info (args,_) = (* We ignore the output, positivity will check that it's the expected inductive type *) check_context_univs ~ctor:true env_ar_par info args let check_constructors env_ar_par isrecord params lc (arity,indices,univ_info) = let lc = Array.map_of_list (fun c -> (Typeops.infer_type env_ar_par c).utj_val) lc in let splayed_lc = Array.map (Reduction.whd_decompose_prod_decls env_ar_par) lc in let univ_info = (* SProp and sort poly primitive records are OK, if we squash and become fakerecord also OK *) if isrecord then univ_info else match Array.length lc with (* Empty type: sort poly must squash *) | 0 -> compute_elim_squash env_ar_par Sorts.sprop univ_info | 1 -> (* 1 constructor with no arguments also OK in SProp (to make things easier on ourselves when reducing we forbid letins) unless ind_univ is sort polymorphic (for ease of implementation) *) if (Environ.typing_flags env_ar_par).allow_uip && fst (splayed_lc.(0)) = [] && List.for_all Context.Rel.Declaration.is_local_assum params && Sorts.is_sprop univ_info.ind_univ then univ_info (* 1 constructor with arguments must squash if SProp / sort poly (we could allow arguments in SProp but the reduction rule is a pain) *) else compute_elim_squash env_ar_par Sorts.prop univ_info (* More than 1 constructor: must squash if Prop/SProp *) | _ -> compute_elim_squash env_ar_par Sorts.set univ_info in let univ_info = Array.fold_left (check_constructor_univs env_ar_par) univ_info splayed_lc in let () = if univ_info.ind_template then match univ_info.ind_squashed with | None | Some AlwaysSquashed -> () | Some (SometimesSquashed _) -> CErrors.user_err Pp.(str "Cannot handle sometimes squashed template polymorphic type.") in (* generalize the constructors over the parameters *) let lc = Array.map (fun c -> Term.it_mkProd_or_LetIn c params) lc in (arity, lc), (indices, splayed_lc), univ_info module NotPrimRecordReason = struct type t = | MustNotBeSquashed | MustHaveRelevantProj | MustHaveProj | MustNotHaveAnonProj end let check_record data = let open NotPrimRecordReason in List.find_map (fun (_,(_,splayed_lc),info) -> if Option.has_some info.ind_squashed (* records must have all projections definable -> equivalent to not being squashed *) then Some MustNotBeSquashed else let res = match splayed_lc with (* records must have 1 constructor with at least 1 argument, and no anonymous fields *) (* XXX MustHaveProj is redundant with MustHaveRelevantProj except for SProp records, but the condition does not seem useful for SProp records. Should we allow 0-projection SProp records? *) (* XXX if we stop needing compatibility constants we could allow anonymous projections *) | [|ctx,_|] -> let module D = Context.Rel.Declaration in if not @@ List.exists D.is_local_assum ctx then Some MustHaveProj else if List.exists (fun d -> D.is_local_assum d && Name.is_anonymous (D.get_name d)) ctx then Some MustNotHaveAnonProj else None | _ -> CErrors.anomaly ~label:"Indtyping.check_record" Pp.(str "not 1 constructor") in if Option.has_some res then res else (* relevant records must have at least 1 relevant argument *) if (match info.record_arg_info with | HasRelevantArg -> false | NoRelevantArg -> not @@ Sorts.is_sprop info.ind_univ) then Some MustHaveRelevantProj else None) data (* Template univs must be unbounded from below for subject reduction (with partially applied template poly, cf RFC 90). We also forbid strict bounds from above because they lead to problems when instantiated with algebraic universes (template_u < v can become w+1 < v which we cannot yet handle). *) let check_unbounded_from_below (univs,csts) = Univ.Constraints.iter (fun (l,d,r) -> let bad = match d with | Eq | Lt -> if Level.Set.mem l univs then Some l else if Level.Set.mem r univs then Some r else None | Le -> if Level.Set.mem r univs then Some r else None in bad |> Option.iter (fun bad -> CErrors.user_err Pp.(str "Universe level " ++ Level.raw_pr bad ++ str " cannot be template because it appears in constraint " ++ Level.raw_pr l ++ pr_constraint_type d ++ Level.raw_pr r))) csts let check_not_appearing_univs ~template_univs univs = let univs = Level.Set.inter template_univs univs in if Level.Set.is_empty univs then () else CErrors.user_err Pp.(str "Template " ++ str (CString.plural (Level.Set.cardinal univs) "universe") ++ spc() ++ Level.Set.pr Level.raw_pr univs ++ spc() ++ str "appear in illegal positions.") let get_template_binding_arity ~template_univs c = let decls, c = Term.decompose_prod_decls c in let check_level u = match Universe.level u with | None -> let () = check_not_appearing_univs ~template_univs (Universe.levels u) in None | Some l -> if Level.Set.mem l template_univs then Some l else None in match kind c with | Sort (Type u as s) -> Some (decls, None, check_level u, s) | Sort (QSort (q, u) as s) -> (* XXX check if q is a template qvar in anticipation of global qvars existing *) Some (decls, Some q, check_level u, s) | _ -> None let check_no_increment ~template_univs u = (* forbid template poly with an increment on a template univ in the conclusion otherwise repeatedly applying it can generate universes with +2 which we cannot yet handle. *) let has_increment = Universe.exists (fun (u,n) -> if Level.Set.mem u template_univs then not (Int.equal n 0) else false) u in if has_increment then CErrors.user_err Pp.(str "Template polymorphism with conclusion strictly larger than a bound universe not supported.") let make_template_univ_names (u:UVars.Instance.t) : UVars.bound_names = let qlen, ulen = UVars.Instance.length u in {quals = Array.make qlen Anonymous; univs = Array.make ulen Anonymous} let get_template (mie:mutual_inductive_entry) = match mie.mind_entry_universes with | Monomorphic_ind_entry | Polymorphic_ind_entry _ -> mie, None, None | Template_ind_entry {uctx; default_univs} -> let template_qvars, (template_univs, _ as template_context) = UVars.UContext.to_context_set uctx in let params = mie.mind_entry_params in let ind = match mie.mind_entry_inds with | [ind] -> ind | _ -> CErrors.user_err Pp.(str "Template-polymorphism not allowed with mutual inductives.") in let () = check_unbounded_from_below template_context in let template_context = UVars.UContext.of_context_set make_template_univ_names template_qvars template_context in let template_abstract, template_context = let inst, ctx = UVars.abstract_universes template_context in UVars.make_instance_subst inst, ctx in (* Template univs must only appear in the conclusion of the inductive and linearly in the conclusion of parameters. This makes them Irrelevant for conversion and also makes them easy to substitute. The inductive and binding parameter types must be syntactically arities. *) let check_not_appearing c = let qs, us = Vars.sort_and_universes_of_constr c in let qappearing = Sorts.QVar.Set.inter qs template_qvars in if not (Sorts.QVar.Set.is_empty qappearing) then CErrors.user_err Pp.(str "Template " ++ str (if Int.equal 1 (Sorts.QVar.Set.cardinal qappearing) then "quality" else "qualities") ++ spc() ++ prlist_with_sep spc Sorts.QVar.raw_pr (Sorts.QVar.Set.elements qappearing) ++ spc() ++ str "appear in illegal positions.") else check_not_appearing_univs ~template_univs us in let check_not_appearing_rel_ctx ctx = List.iter (Context.Rel.Declaration.iter_constr check_not_appearing) ctx in (** params *) (* for each non-letin param, find whether it binds a template univ or qvar *) let template_params = CList.map (fun param -> match param with | LocalDef (_,b,t) -> check_not_appearing b; check_not_appearing t; None | LocalAssum (_,t) -> match get_template_binding_arity ~template_univs t with | None | Some (_, None, None, _) -> check_not_appearing t; Some None | Some (decls, qopt, lopt, s) -> let () = check_not_appearing_rel_ctx decls in Some (Some (qopt, lopt, s))) params in let qbound, ubound = List.fold_left (fun (qbound, ubound as bound_in_params) -> function | None | Some None -> bound_in_params | Some (Some (qopt,lopt,_)) -> let ubound = match lopt with | None -> ubound | Some l -> if Level.Set.mem l ubound then CErrors.user_err Pp.(str "Non-linear template level " ++ Level.raw_pr l) else Level.Set.add l ubound in let qbound = Option.fold_right Sorts.QVar.Set.add qopt qbound in qbound, ubound) (Sorts.QVar.Set.empty,Level.Set.empty) template_params in let q_unbound = Sorts.QVar.Set.diff template_qvars qbound in let () = if not (Sorts.QVar.Set.is_empty q_unbound) then CErrors.user_err Pp.(str "Template " ++ str (if Int.equal 1 (Sorts.QVar.Set.cardinal q_unbound) then "quality" else "qualities") ++ spc() ++ prlist_with_sep spc Sorts.QVar.raw_pr (Sorts.QVar.Set.elements q_unbound) ++ spc() ++ str "not bound by parameters.") in let u_unbound = Level.Set.diff template_univs ubound in let () = if not (Level.Set.is_empty u_unbound) then CErrors.user_err Pp.(str "Template " ++ str (CString.plural (Level.Set.cardinal u_unbound) "universe") ++ spc() ++ Level.Set.pr Level.raw_pr u_unbound ++ spc() ++ str "not bound by parameters.") in (** arity *) let template_concl = (* don't use get_template_binding_arity, we allow constant template poly (eg eq) *) let (decls, s) = Term.decompose_prod_decls ind.mind_entry_arity in let () = if not (isSort s) then CErrors.user_err Pp.(str "Template polymorphic inductive's type must be a syntactic arity.") in check_not_appearing_rel_ctx decls; let s = destSort s in let () = match s with | SProp | Prop | Set -> () | QSort (_, u) -> (* typechecking will fail with "unbound qvar" if the quality isn't in template_qvars *) check_no_increment ~template_univs u; () | Type u -> check_no_increment ~template_univs u; () in UVars.subst_sort_level_sort template_abstract s in (** ctors *) let () = List.iter check_not_appearing ind.mind_entry_lc in let template_param_arguments = let assums = CList.filter_map (fun x -> x) template_params in List.rev_map (Option.map (fun (_, _, s) -> UVars.subst_sort_level_sort template_abstract s)) assums in (* Substitution from the template binders to the default univs (and qtype for the qvars) XXX can this be simplified by composing template_abstract and default_univs? don't forget to check the default_univs qualities are all QType if so *) let template_usubst : UVars.sort_level_subst = let bind_instance = UVars.UContext.instance uctx in let () = if not UVars.(eq_sizes (Instance.length bind_instance) (Instance.length default_univs)) then CErrors.anomaly Pp.(str "Inorrect default template universes declaration.") in let bind_qs, bind_us = UVars.Instance.to_array bind_instance in let default_qs, default_us = UVars.Instance.to_array default_univs in let qsubst = Array.fold_left2 (fun qsubst bind_q default_q -> let open Sorts.Quality in match bind_q, default_q with | QConstant _, _ -> assert false | QVar bind_q, QConstant QType -> Sorts.QVar.Map.add bind_q default_q qsubst | QVar _, _ -> CErrors.anomaly Pp.(str "Default template quality must be QType.")) Sorts.QVar.Map.empty bind_qs default_qs in let usubst = Array.fold_left2 (fun usubst bind_u default_u -> assert (not @@ Level.is_set bind_u); Level.Map.add bind_u default_u usubst) Level.Map.empty bind_us default_us in qsubst, usubst in mie, Some template_usubst, Some { template_param_arguments; template_context; template_concl; template_defaults = default_univs; } let abstract_packets env usubst ((arity,lc),(indices,splayed_lc),univ_info) = if not (List.is_empty univ_info.missing) then raise (InductiveError (env, MissingConstraints (univ_info.missing,univ_info.ind_univ))); let arity = Vars.subst_univs_level_constr usubst arity in let lc = Array.map (Vars.subst_univs_level_constr usubst) lc in let indices = Vars.subst_univs_level_context usubst indices in let splayed_lc = Array.map (fun (args,out) -> let args = Vars.subst_univs_level_context usubst args in let out = Vars.subst_univs_level_constr usubst out in args,out) splayed_lc in let ind_univ = UVars.subst_sort_level_sort usubst univ_info.ind_univ in let arity = {user_arity = arity; sort = ind_univ} in let squashed = Option.map (function | AlwaysSquashed -> AlwaysSquashed | SometimesSquashed qs -> let qs = Sorts.Quality.Set.fold (fun q qs -> Sorts.Quality.Set.add (UVars.subst_sort_level_quality usubst q) qs) qs Sorts.Quality.Set.empty in SometimesSquashed qs) univ_info.ind_squashed in (arity,lc), (indices,splayed_lc), squashed let typecheck_inductive env ~sec_univs (mie:mutual_inductive_entry) = let () = match mie.mind_entry_inds with | [] -> CErrors.anomaly Pp.(str "empty inductive types declaration.") | _ -> () in (* Check unicity of names (redundant with safe_typing's add_field checks) *) mind_check_names env mie; assert (List.is_empty (Environ.rel_context env)); (* universes *) let mie, template_usubst, template = get_template mie in let env_univs = match mie.mind_entry_universes with | Template_ind_entry {uctx; default_univs=_} -> Environ.Internal.push_template_context uctx env | Monomorphic_ind_entry -> env | Polymorphic_ind_entry ctx -> push_context ctx env in let has_template_poly = match mie.mind_entry_universes with | Template_ind_entry _ -> true | Monomorphic_ind_entry | Polymorphic_ind_entry _ -> false in (* Params *) let env_params, params = Typeops.check_context env_univs mie.mind_entry_params in (* Arities *) let env_ar, data = List.fold_left_map (check_arity ~template:has_template_poly env_params) env_univs mie.mind_entry_inds in let env_ar_par = push_rel_context params env_ar in (* Constructors *) let isrecord = match mie.mind_entry_record with | Some (Some _) -> true | Some None | None -> false in let data = List.map2 (fun ind data -> check_constructors env_ar_par isrecord params ind.mind_entry_lc data) mie.mind_entry_inds data in let record = mie.mind_entry_record in let data, record, why_not_prim_record = match record with | None | Some None -> data, record, None | Some (Some _) -> match check_record data with | None -> data, record, None | Some _ as reason -> (* if someone tried to declare a record as SProp but it can't be primitive we must squash. *) let data = List.map (fun (a,b,univs) -> a,b,compute_elim_squash env_ar_par Sorts.prop univs) data in data, Some None, reason in let variance = match mie.mind_entry_variance with | None -> None | Some variances -> match mie.mind_entry_universes with | Monomorphic_ind_entry | Template_ind_entry _ -> CErrors.user_err Pp.(str "Inductive cannot be both monomorphic and universe cumulative.") | Polymorphic_ind_entry uctx -> (* no variance for qualities *) let _qualities, univs = Instance.to_array @@ UContext.instance uctx in let univs = Array.map2 (fun a b -> a,b) univs variances in let univs = match sec_univs with | None -> univs | Some sec_univs -> (* no variance for qualities *) let _, sec_univs = UVars.Instance.to_array sec_univs in let sec_univs = Array.map (fun u -> u, None) sec_univs in Array.append sec_univs univs in let variances = InferCumulativity.infer_inductive ~env_params ~env_ar_par ~arities:(List.map (fun e -> e.mind_entry_arity) mie.mind_entry_inds) ~ctors:(List.map (fun e -> e.mind_entry_lc) mie.mind_entry_inds) univs in Some variances in (* Abstract universes *) let usubst, univs = match mie.mind_entry_universes with | Monomorphic_ind_entry -> UVars.empty_sort_subst, Monomorphic | Template_ind_entry _ -> let usubst = Option.get template_usubst in usubst, Monomorphic | Polymorphic_ind_entry uctx -> let (inst, auctx) = UVars.abstract_universes uctx in let inst = UVars.make_instance_subst inst in (inst, Polymorphic auctx) in let params = Vars.subst_univs_level_context usubst params in let data = List.map (abstract_packets env usubst) data in let env_ar_par = let ctx = Environ.rel_context env_ar_par in let ctx = Vars.subst_univs_level_context usubst ctx in let env = Environ.pop_rel_context (Environ.nb_rel env_ar_par) env_ar_par in Environ.push_rel_context ctx env in env_ar_par, univs, template, variance, record, why_not_prim_record, params, Array.of_list data
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>