package rfsm
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
A toolset for describing and simulating StateChart-like state diagrams
Install
dune-project
Dependency
Authors
Maintainers
Sources
2.2.tar.gz
md5=ea1b496f0aa758933ae23921ee55a531
sha512=4fa72747bb2e32f91d64e4b8c24f60d6f0bdad297cc40f36d5c687ed1de900ab8441fa8a12aecf2523928833cddd5391fa87c11a1af2162ac8001467e8f485a5
doc/src/rfsm/dynamic.ml.html
Source file dynamic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320(**********************************************************************) (* *) (* This file is part of the RFSM package *) (* *) (* Copyright (c) 2018-present, Jocelyn SEROT. All rights reserved. *) (* *) (* This source code is licensed under the license found in the *) (* LICENSE file in the root directory of this source tree. *) (* *) (**********************************************************************) (**{1 Dynamic semantics. Used for simulating programs} *) (** This is a direct translation of the formal semantics described in the reference manual *) type cfg = { mutable act_semantics: Misc.act_semantics; mutable verbose_level: int; } let cfg = { act_semantics = Misc.Sequential; verbose_level = 0; } module type DYNAMIC = sig module Syntax: Syntax.SYNTAX module Static: Static.T module Eval: Guest.EVAL module EvSeq: Evseq.EVSEQ exception Illegal_stimulus_value of Location.t exception Non_deterministic_transition of string * int * Syntax.transition list (** FSM name, date, transitions *) val run: Syntax.program -> Static.t -> EvSeq.t end module Make (Syntax: Syntax.SYNTAX) (Static: Static.T with module Syntax = Syntax) (Eval: Guest.EVAL with module Syntax = Syntax.Guest and module Value = Static.Value) : DYNAMIC with module Syntax = Syntax and module Static = Static and module Eval = Eval = struct module Syntax = Syntax module Static = Static module Types = Syntax.Guest.Types module Eval = Eval module Event = Event.Make(Syntax.Guest)(Static.Value) module Evset = Evset.Make(Event) module EvSeq = Evseq.Make(Evset) module Trace = struct (* Execution traces *) type t = { mutable contents: EvSeq.t } let create () = { contents = [] } let reset t = t.contents <- [] let add e t = if not (Evset.is_empty e) then t.contents <- e::t.contents let events t = List.rev t.contents end exception Illegal_stimulus_value of Location.t exception Non_deterministic_transition of string * int * Syntax.transition list let trace = Trace.create () (* Global trace *) let var_name m x = Ident.to_string m.Static.name ^ "." ^ x (* TO FIX ? Prefix should already be in the ident *) let state_name m = var_name m "state" let mk_event t e = Evset.mk t [e] let is_fireable env m e = (* \Delta(M,q,e) *) let open Static in List.filter (fun {Annot.desc=(q,{Annot.desc=e',gs; _},_,_,_); _} -> q = m.Static.q && e = Event.Ev e' && List.for_all (fun g -> Eval.eval_bool env g = true) gs) m.model.desc.trans let fireable env m evs = (* \Delta(M,q,{e1,...,en} *) List.map (is_fireable env m) evs |> List.concat let choose_transition (f,t,trs) = (* Function CHOICE *) match trs |> Ext.List.scatter (function { Annot.desc = _,_,_,_,p; _ } -> p) (* Transitions, scattered by priority levels ... *) |> List.sort (fun (p1,_) (p2,_) -> Stdlib.compare p1 p2) (* ... then sorted by descending order of priority level ...*) |> List.hd |> snd (* ... gives all transitions with the highest priority level *) with | [] -> Misc.fatal_error "Dynamic.choose_transition" (* Should not happen *) | [tr] -> tr | trs' -> raise (Non_deterministic_transition (f,t,trs')) let r_act ~f sd (vars,env) ({Annot.desc=act; _},t) = (* Rules ActUpdL, ActUpdG, ActEmitL and ActEmitG *) (* \Nu, \Gamma -- act,t | \rho_e --> \Nu', \Gamma' *) match act with | Syntax.Emit e -> Trace.add (Evset.mk t [Event.Ev e]) trace; if List.mem_assoc e sd.Static.shared then (* ActEmitL *) (vars, env), (Evset.mk t [Ev e]) else (* ActEmitG *) (vars, env), (Evset.empty t) | Syntax.Assign (lval,expr) -> let genv = Env.union vars env in let x = Syntax.Guest.lval_base_name lval in let pfx p lval = if p = "" then lval else Syntax.Guest.lval_prefix p lval in let upd ?(prefix="") env = let v = Eval.eval_expr genv expr in Trace.add (mk_event t (Event.Upd (pfx prefix lval, v))) trace; (* Using prefixes in traces allow VCD scoping *) Eval.upd_env lval v env in if Env.mem x vars then (* ActUpdL *) (upd ~prefix:(Ident.to_string f) vars, env), (* For local updates, prefix target variable *) Evset.empty t else if Env.mem x env then (* ActUpdG *) (vars, upd env), (* No prefix for updates of globals *) Evset.empty t else (* Should not happen *) Misc.fatal_error "Dynamic.r_act" let r_acts ~f sd (vars,env) (acts,t) = (* Rule ACTS *) (* \Nu, \Gamma -- <acts,t> | \rho_e --> \Nu', \Gamma' *) let (vars',env'), rs = List.fold_left_map (r_act ~f sd) (vars,env) (List.map (fun act -> (act,t)) acts) in vars', env', Evset.union_all t rs let r_trans sd (m,env) ({Annot.desc=q,_,acts,q',_; _},t) = (* Rule TRANS *) (* \mu, \Gamma -- \tau,t | \rho_e --> \mu', \Gamma' *) let vars', env', r_e = r_acts ~f:m.Static.name sd (m.Static.vars,env) (acts,t) in let m' = { m with q=q'; vars = vars' } in Trace.add (mk_event t (Event.StateMove (state_name m,Ident.to_string q'))) trace; m', env', r_e let r_reaction sd (m,env) s_e = (* Rules React1, React0 and ReactN *) (* \mu, \Gamma -- \sigma_e | \rho_e --> \mu', \Gamma' *) let t = Evset.date s_e in (* let env' = List.fold_left Env.union Env.empty [m.Static.vars; m.Static.params; env] in *) let env' = List.fold_left Env.union Env.empty [m.Static.vars; env] in (* The folding order in the previous defn forces the _local_ definitions (vars and params) to shadow the global ones. *) match fireable env' m (Evset.events s_e) with | [tr] -> r_trans sd (m,env) (tr,t) (* REACT_1 *) | [] -> m, env, Evset.empty t (* REACT_0 *) | trs -> r_trans sd (m,env) (choose_transition (Ident.to_string m.name,t,trs), t) (* REACT_N *) let r_react_upd sd (m,env) evs = (* Rule ReactUpd *) (* M, \Gamma -- \sigma_v --> M', \Gamma' *) (* TODO: use a GADT to remove dynamic checking of event kind ? *) let upd env e = match e with | Event.Upd (l,v') -> Eval.upd_env l v' env | _ -> Misc.fatal_error "Simul.r_react_upd" (* Should not happen *) in Trace.add evs trace; let env' = List.fold_left upd env (Evset.events evs) in m, env' let dump1 level fmt f arg = if cfg.verbose_level >= level then Format.fprintf Format.std_formatter fmt f arg let dump2 level fmt f1 arg1 f2 arg2 = if cfg.verbose_level >= level then Format.fprintf Format.std_formatter fmt f1 arg1 f2 arg2 let dump3 level fmt f1 arg1 f2 arg2 f3 arg3 = if cfg.verbose_level >= level then Format.fprintf Format.std_formatter fmt f1 arg1 f2 arg2 f3 arg3 let dump4 level fmt f1 arg1 f2 arg2 f3 arg3 f4 arg4 = if cfg.verbose_level >= level then Format.fprintf Format.std_formatter fmt f1 arg1 f2 arg2 f3 arg3 f4 arg4 module FsmNode = struct type t = Static.fsm type context = unit let name_of f = f.Static.name let depends_on _ m m' = (* Return true if FSM m' (in state q') depends on FSM m (in state q), i.e. if - at least one transition starting from q' is triggered by a (shared) event emitted by at least one transition starting from q - at least one transition starting from q' is guarded by a condition refering to a (shared) variable modified by an action of a transition starting from q In other words, if we write - [evs'] the set of triggering (shared) events associated to state q' in m' - [rvs'] the set of (shared variables) used by the conditions associated to state q' - [evs] the set (shared) events emitted from state q in m - [wvs] the set of (shared variables) modified by the actions modified from state q then m' depends on m iff [evs' \inter \evs] or [rvs' \inter wvs] is not empty *) let module S = Set.Make(Ident) in let inter l1 l2 = not (S.is_empty (S.inter (S.of_list l1) (S.of_list l2))) in let evs', rvs', _, _ = Syntax.state_ios m'.Static.model m'.q in let _, _, evs, wvs = Syntax.state_ios m.Static.model m.q in (* TODO ? Filter out non shared events / vars ? *) let r = inter evs' evs || inter rvs' wvs in (* let open Format in * fprintf std_formatter "*** *** *** depends_on %s %s: evs'=[%a] rvs'=[%a] evs=[%a] wvs=[%a] r=%b\n" * m.name m'.name * (Misc.pp_list pp_print_string) evs' * (Misc.pp_list pp_print_string) rvs' * (Misc.pp_list pp_print_string) evs * (Misc.pp_list pp_print_string) wvs * r; *) r end let dep_sort fsms = (* Sort FSMs using the ($\leq$) relation of the dynamic semantics. The resulting order is used by [r_react_ev] to sequence the reactions of FSMs at a given instant. *) (* TODO ?: this could be pre-computed statically for each ((M,q),(M',q')) pair ? *) let module D = Depg.Make(FsmNode) in D.dep_sort () fsms let r_react_ev sd (m,env) s_e = (* Rule ReactEv *) (* M, \Gamma -- \sigma_e | \rho --> M', \Gamma' *) let ms = dep_sort m in dump1 2 ">> >> REACT_EV: using order: %a\n" (Ext.List.pp_h ~sep:"; " (Static.pp_fsm ~verbose_level:0)) ms; Trace.add s_e trace; let (env',_,rho), ms' = List.fold_left_map (fun (env,s,r) mu -> let mu', env', r' = r_reaction sd (mu,env) s in ((env',Evset.union s r',Evset.union r r'), mu')) (env,s_e,Evset.empty (Evset.date s_e)) ms in ms', env', rho let r_react sd (m,env) st = (* Rule REACT *) let pp_env = Env.pp Eval.Value.pp in let pp_fsms = Ext.List.pp_v (Static.pp_fsm ~verbose_level:1) in let t = Evset.date st in (* M, \Gamma -- \sigma | \rho_e --> M', \Gamma' *) dump4 1 ">> REACT t=%a@. M=%a@. G=%a@, -- %a --> ...@." Format.pp_print_int t pp_fsms m pp_env env Evset.pp st; let st_e, st_v = Evset.partition ~f:Event.is_pure_event st in let _, env_v = r_react_upd sd (m,env) st_v in dump1 2 ">> >> REACT_UPD: G_v=%a\n" pp_env env_v; let m', env', r_e = r_react_ev sd (m,env_v) st_e in dump3 2 ">> >> REACT_EV:@. M'=%a@. G'=%a@. r_e=%a@." pp_fsms m' pp_env env' Evset.pp r_e; dump3 1 ">> REACT ... -- [%a] ->@. M'=%a@. G'=%a@." Evset.pp r_e pp_fsms m' pp_env env'; (m',env'), r_e let default_value (ty: Types.typ) = Static.Value.default_value ty let r_init sd m = (* Rule INIT *) (* M --> M_0, \Gamma_0 *) let env0 = List.fold_left (fun env (v,cc) -> let ty = cc.Static.ct_typ in if not (Types.is_event_type ty) then Env.add v (Static.Value.default_value ty) env else env) Env.empty (sd.Static.inputs @ sd.Static.outputs @ sd.Static.shared) in let env', m' = List.fold_left_map (fun env mu -> let nu = mu.Static.vars in let { Annot.desc=q0,acts; _ } = mu.Static.model.Annot.desc.itrans in let nu',env', r_e = r_acts ~f:mu.name sd (nu, env) (acts,0) in Trace.add (mk_event 0 (Event.StateMove (state_name mu,Ident.to_string q0))) trace; Trace.add r_e trace; env', { mu with Static.q=q0 ; Static.vars = nu' }) env0 m in m', env' let is_input ctx evs = let check ev = match ev with | Event.Ev x -> if List.mem_assoc x ctx.Static.inputs && Types.is_event_type ((List.assoc x ctx.Static.inputs).ct_typ) then () else Misc.fatal_error ("Dynamic.is_input: " ^ Ident.to_string x ^ " is not an event typed input") | Event.Upd (l,_) -> let x = Syntax.Guest.lval_base_name l in if List.mem_assoc x ctx.Static.inputs && not (Types.is_event_type ((List.assoc x ctx.Static.inputs).ct_typ)) then () else Misc.fatal_error ("Dynamic.is_input: " ^ Ident.to_string x ^ " is an event typed input") | Event.StateMove _ -> () in List.iter check (Evset.events evs) let r_exec (h: Static.t) (sts: Evset.t list) = (* Rule EXEC *) (* H=<M,C> -- \sigma_1, ..., \sigma_n | \rho_1, ..., \rho_n --> M_n, \Gamma_n *) (* First check that all stimuli refer to input signals listed in H *) List.iter (is_input h.Static.ctx) sts; Trace.reset trace; let m0, env0 = r_init h.ctx h.fsms in let env1 = Env.union env0 h.globals in let _, _ = List.fold_left_map (r_react h.ctx) (m0,env1) sts in Trace.events trace let extract_stimuli p = let eval (t,expr) = try t, Eval.eval_expr Env.empty expr with _ -> raise (Illegal_stimulus_value expr.Annot.loc) in let expand id st = match st.Annot.desc with | Syntax.Periodic (p,t1,t2) -> EvSeq.mk_periodic id p t1 t2 | Syntax.Sporadic ts -> EvSeq.mk_sporadic id ts | Syntax.Value_change vcs -> EvSeq.mk_changes id (List.map eval vcs) in let sts = List.fold_left (fun acc io -> match io.Annot.desc with | id, Syntax.Input, _, Some st -> expand id st :: acc | _ -> acc) [] p.Syntax.globals in EvSeq.merge_all sts let run (p: Syntax.program) (s: Static.t) = let sts = extract_stimuli p in match cfg.act_semantics with | Misc.Sequential -> r_exec s sts | Misc.Synchronous -> Misc.not_implemented "Dynamic.run with synchronous semantics for actions" end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>