package reparse
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=93cee3d9f8842e85af5cb772f2586dccf1821f29959ee7f8effde1081cf650e7
sha512=69ee814e31af9a660a860b7768587a88e6fec4c918c05f237b3f665d67991a29cc8d8c2d55848b1cc38e75b712303cf225b66990cb80dbafce569e7e7b2166dd
doc/reparse/Reparse/Parser/index.html
Module Reparse.ParserSource
Overview
Parser provides functions and types to construct robust, performant and reusable parsers.
At the core is a type t which represents a constructed parser definition. A parser t is defined by composing together one or more parsers or ts via usage of parser operators.
An instance of t represents an un-evaluated parser. Use parse function to evaluate it.
input represents a generalization of data input to parse. Implement the interface to create new input types.
Parser operators - or functions - are broadly organized into following categories:
- Pure
- Concatentation
- Alternation
- Grouping
- Repetition
- Optional
- Query input state
- Boolean
- Text
- RFC 5234 core parsers
An Infix module contains infix and let syntax support functions.
See examples of use.
Types
Represents a parser which can parse value 'a.
Use parse functions to evaluate a parser.
Represents a generalization of data input source to a parser. Implement this interface to provide new sources of input to parse.
Executing Samples
Include the reparse package in utop.
Copy and paste the sample in utop and type ;; to run it.
#require "reparse";;
Parse
Evaluate a parser.
parse_string ~track_lnum p s evaluates p to value v while consuming string instance s.
If track_num is true then the parser tracks both the line and the column numbers. It is set to false by default.
Line number and column number both start count from 1 if enabled, 0 otherwise.
Examples
Track line and column number
module P = Reparse.Parser
open P.Infix
;;
let s = "hello world" in
let p = P.(take next *> map2 (fun lnum cnum -> lnum, cnum) lnum cnum) in
let v = P.parse_string ~track_lnum:true p s in
v = (1, 12)Default behaviour - doesn't track line, column number.
module P = Reparse.Parser
open P.Infix
;;
let s = "hello world" in
let p = P.(take next *> map2 (fun lnum cnum -> lnum, cnum) lnum cnum) in
let v = P.parse_string p s in
v = (0, 0)parse is a generalised version of parse_string over type input.
Use this function when you have a custom implementation of input.
Exception
Raised by parsers which are unable to parse successfully.
offset is the current index position of input at the time of failure.
line_number is line number at the time of failure.
column_number is column number at the time of failure.
msg contains an error description.
Pure
Create parsers from values.
pure v always parses value v.
Examples
module P = Reparse.Parser
;;
let input = new P.string_input "" in
let v1 = P.(parse input (pure 5)) in
let v2 = P.(parse input (pure "hello")) in
v1 = 5 && v2 = "hello"unit is a convenience function to create a new parser which always parses to value ().
unit is pure ().
fail err_msg returns a parser that always fails with err_msg.
Examples
module P = Reparse.Parser
;;
let input = new P.string_input "" in
let r =
try
let _ = P.(parse input (fail "hello error")) in
assert false
with
| e -> e
in
r = P.Parser { offset = 0; line_number = 0; column_number = 0; msg = "hello error" }Concatenation
Define parsers by joining two or more parsers.
Bind
bind p f returns a new parser b where,
ais the parsed value ofpbisf a
Examples
module P = Reparse.Parser
;;
let f a = P.pure (a ^ " world") in
let p = P.string "hello" in
let p = P.bind p f in
let input = new P.string_input "hello" in
let b = P.parse input p in
b = "hello world"See Infix.(>>=). p >>= f is the infix equivalent of bind p f.
Map
Mappers transform from one parser value to another. map functions map2, map3, map4 are defined in terms of binds. So a given mapper function usage can be defined equivalently in terms of binds.
map f p returns a new parser encapsulating value b where,
ais the parsed value ofp.bisf a.
Examples
module P = Reparse.Parser
;;
let f a = a ^ " world" in
let p = P.string "hello" in
let p = P.map f p in
let b = P.parse p "hello" in
b = "hello world"Since map is defined in terms of bind, the above usage of map is equivalent to the bind usage below,
module P = Reparse.Parser
;;
let f a = P.pure (a ^ " world") in
let p = P.string "hello" in
let p = P.bind p f in
let r = P.parse_string p "hello" in
r = "hello world"See Infix.(<$>). f <$> p is infix equivalent of map f p.
map2 f p q returns a new parser encapsulating value c where,
pandqare evaluated sequentially in order as given.a, bare the parsed values of parserspandqrespectively.cisf a b.
Examples
module P = Reparse.Parser
;;
let f a b = a + b in
let p = P.pure 1 in
let q = P.pure 2 in
let p = P.map2 f p q in
let v = P.parse_string p "" in
v = 3The above usage of map2 is equivalent to below,
module P = Reparse.Parser
open P.Infix
;;
let p = P.pure 1 >>= fun a -> P.pure 2 >>= fun b -> P.pure (a + b) in
let v = P.parse_string p "" in
v = 3map3 f p q r returns a new parser encapsulating value d where,
p,q,rare evaluated sequentially in order as given.a, b, care the parsed values of parsersp,qandrrespectively.disf a b c.
Examples
module P = Reparse.Parser
;;
let f a b c = a + b + c in
let p = P.pure 1 in
let q = P.pure 2 in
let r = P.pure 3 in
let p = P.map3 f p q r in
let v = P.parse_string p "" in
v = 6map4 f p q r s returns a new parser encapsulating value e where,
p,q,randsare evaluated sequentially in order as given.a, b, c, dare the parsed values of parsersp,q,randsrespectively.eisf a b c d.
Examples
module P = Reparse.Parser
;;
let f a b c d = a + b + c + d in
let p = P.pure 1 in
let q = P.pure 2 in
let r = P.pure 3 in
let s = P.pure 4 in
let p = P.map4 f p q r s in
let v = P.parse_string p "" in
v = 10delay p returns a parser which lazily parses p.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(delay (lazy (char 'z')) <|> delay (lazy (char 'a'))) in
let v = P.parse_string p "abc" in
v = 'a'named name p uses name as part of an error message when constructing exception Parser if parse of p fails.
Also see Infix.((<?>))
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(char 'a' |> named "parse_c") in
let v =
try
let _ = P.parse_string p "zzd" in
assert false
with
| e -> e
in
v
= P.Parser
{ offset = 0
; line_number = 0
; column_number = 0
; msg = "[parse_c] Reparse.Parser.Parser(0, 0, 0, \"[char] expected 'a'\")"
}Alternation
One or the other.
any l parses the value of the first successful parser in list l.
Specified parsers in l are evaluated sequentially from left to right. A failed parser doesn't consume any input, i.e. offset is unaffected.
The parser fails if none of the parsers in l are evaluated successfully.
Examples
First successful parser result is returned
module P = Reparse.Parser
;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "zabc" in
v = 'z'
;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "xabc" in
v = 'x'
;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "abc" in
v = 'a'Parser fails when none of the parsers in l are successful.
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v =
try
let _ = P.parse_string p "yyy" in
false
with
| _ -> true
in
v = trueGrouping
Group parsers.
all l parses all parsers in l and returns the parsed values.
The parser only succeeds if and only if all of the parsers in l succeed.
Parsers in l are evaluated sequentially - from left to right.
Examples
All specified parsers succeed.
module P = Reparse.Parser
;;
let p = P.(all [ char 'a'; char 'b'; char 'c' ]) in
let v = P.parse_string p "abc" in
v = [ 'a'; 'b'; 'c' ]One of the specified parsers - char 'c' fails.
module P = Reparse.Parser
;;
let p = P.(all [ char 'a'; char 'b'; char 'c' ]) in
let v =
try
let _ = P.parse_string p "abd" in
false
with
| _ -> true
in
v = trueall_unit l parses all parsers in l while discarding the parsed values.
Examples
All specified parsers succeed.
module P = Reparse.Parser
;;
let p = P.(all_unit [ char 'a'; char 'b'; char 'c' ]) in
let v = P.parse_string p "abc" in
v = ()One of the specified parsers - char 'c' - fails.
module P = Reparse.Parser
;;
let p = P.(all_unit [ char 'a'; char 'b'; char 'c' ]) in
let v =
try
let _ = P.parse_string p "abd" in
false
with
| _ -> true
in
v = trueRepetition
Recur
recur f returns a recursive parser. Function value f accepts a parser p as its argument and returns a parser q. Parser q in its definition can refer to p and p can refer to q in its own definition.
Such parsers are also known as a fixpoint or y combinator.
Skip
Discards parsed values.
skip ~at_least ~up_to p repeatedly parses p and discards its value.
The lower and upper bound of repetition is specified by arguments at_least and up_to respectively. The default value of at_least is 0. The default value of up_to is unspecified, i.e. there is no upper limit.
The repetition ends when one of the following occurs:
pevaluates to failureup_toupper bound value is reached
The parser encapsulates the count of times p was evaluated successfully.
Examples
module P = Reparse.Parser
;;
let p = P.(skip space) in
let v = P.parse_string p " " in
v = 5skip_while p ~while_ repeatedly parses p and discards its value if parser while_ parses to value true.
The repetition ends when one of the following occurs:
pevaluates to failurewhile_returnsfalse
Note while_ does not consume input.
The parser encapsulates the count of times p was evaluated successfully.
Examples
module P = Reparse.Parser
;;
let p = P.(skip_while next ~while_:(is space)) in
let v = P.parse_string p " " in
v = 5Take
Collects parsed values
take ~at_least ~up_to ~sep_by p repeatedly parses p and returns the parsed values.
The lower and upper bound of repetition is specified by arguments at_least and up_to respectively. The default value of at_least is 0. The default value of up_to is unspecified, i.e. there is no upper limit.
If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.
The repetition ends when one of the following occurs:
pevaluates to failuresep_byevaluates to failureup_toupper boudn value is reached
The parser fails if the count of repetition of p does not match the value specified by at_least.
Examples
Default behaviour.
module P = Reparse.Parser
;;
let p = P.(take (char 'a')) in
let v = P.parse_string p "aaaaa" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]Specify ~sep_by.
module P = Reparse.Parser
;;
let p = P.(take ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]Specify lower bound argument at_least.
module P = Reparse.Parser
;;
let p = P.(take ~at_least:3 ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]Lower bound not met results in error.
module P = Reparse.Parser
;;
let p = P.(take ~at_least:5 ~sep_by:(char ',') (char 'a')) in
let v =
try
let _ = P.parse_string p "a,a,a,a" in
false
with
| _ -> true
in
v = trueSpecify upper bound up_to.
module P = Reparse.Parser
;;
let p = P.(take ~up_to:3 ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a' ]take_while ~sep_by p ~while_ p repeatedly parses p and returns its value.
p is evaluated if and only if while_ evaluates to true.
If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.
The repetition ends when one of the following occurs:
pevaluates to failurewhile_returnsfalsesep_byevaluates to failure
Note while_ does not consume input.
Examples
Default behaviour.
module P = Reparse.Parser
;;
let p = P.(take_while ~while_:(is_not (char 'b')) (char 'a')) in
let v = P.parse_string p "aab" in
v = [ 'a'; 'a' ]Specify sep_by.
module P = Reparse.Parser
;;
let p = P.(take_while ~sep_by:(char ',') ~while_:(is_not (char 'b')) (char 'a')) in
let v = P.parse_string p "a,a,ab" in
v = [ 'a'; 'a'; 'a' ]take_between ~sep_by ~start ~end_ p parses start and then repeatedly parses p while the parsed value of p doesn't equal to parsed value of end_. After the repetition end, it parses end_. The parser returns the list of parsed values of p.
Both start and end_ parser values are discarded.
If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.
The repetition ends when one of the following occurs:
pevaluates to failureend_parsed value matchespparsed valuesep_byevaluates to failure
Examples
module P = Reparse.Parser
;;
let p =
P.(take_between ~sep_by:(char ',') ~start:(P.char '(') ~end_:(char ')') next)
in
let v = P.parse_string p "(a,a,a)" in
v = [ 'a'; 'a'; 'a' ]take_while_on ~sep_by ~while_ ~on_take p repeatedly parses p and calls callback on_take_cb with the parsed value.
p is evaluated if and only if while_ evaluates to true.
If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.
p is evaluated repeatedly. The repetition ends when one of the following occurs:
on_take_cb is the callback function that is called every time p is evaluated.
pevaluates to failurewhile_returnsfalsesep_byevaluates to failure
take_while_cb is the general version of take_while. It allows to specify how the value a is to be collected.
Note while_ does not consume input.
Examples
module P = Reparse.Parser
open P.Infix
;;
let buf = Buffer.create 0 in
let on_take_cb a = Buffer.add_char buf a in
let p = P.(take_while_cb (char 'a') ~while_:(is_not (char 'b')) ~on_take_cb) in
let v = P.parse_string p "aaab" in
let s = Buffer.contents buf in
v = 3 && s = "aaa"Optional
Don't fail when parsing is not successful.
optional p parses Some a if successful and None otherwise. a is the parsed value of p.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(optional (char 'a')) in
let v = P.parse_string p "ab" in
v = Some 'a'
;;
let p = P.(optional (char 'z')) in
let v = P.parse_string p "ab" in
v = NoneQuery Input state
is_eoi parses to true if parser has reached end of input, false otherwise.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string is_eoi "") in
v = true
;;
let v = P.(parse_string is_eoi "a") in
v = falseeoi parses end of input. Fails if parser is not at end of input.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string eoi "") in
v = ()
;;
let v =
try
let _ = P.(parse_string eoi "a") in
false
with
| _ -> true
in
v = truelnum parses the current line number of input. line number count start form 1.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(next *> lnum) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 1cnum parses the current column number. column number count start from 1.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(next *> cnum) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 2offset parses the current input offset. offset count start from 0.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(next *> offset) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 1Boolean
true, false, is, is not.
not_ p parses value () if and only if p fails to parse, otherwise the parse fails.
Examples
module P = Reparse.Parser
;;
let p = P.(not_ (char 'a')) in
let v = P.parse_string p "bbb" in
v = ()not_followed_by p q parses value of p only if immediate and subsequent parse of q is a failure. Parser q doesn't consumes any input.
Examples
module P = Reparse.Parser
;;
let p = P.(not_followed_by (char 'a') (char 'a')) in
let v = P.parse_string p "ab" in
v = 'a'is_not p parses value true if p fails to parse and false otherwise. Note evaluating p doesn't consume any input.
Examples
module P = Reparse.Parser
;;
let p = P.(is_not (char 'a')) in
let v = P.parse_string p "bbb" in
v = trueis p parses true if p is successful, false otherwise. Note evaluation of p doesn't consume any input.
Examples
module P = Reparse.Parser
;;
let p = P.(is (char 'b')) in
let v = P.parse_string p "bcb" in
v = trueText
Text parsing.
peek_char t parses the next character from input without consuming it.
Examples
module P = Reparse.Parser
;;
let p = P.peek_char in
let v = P.parse_string p "hello" in
v = 'h'Input is not consumed.
module P = Reparse.Parser
;;
let p = P.(peek_char *> offset) in
let v = P.parse_string p "hello" in
v = 0peek_string n parse a string of length n without consuming it.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.peek_string 5 in
let v = P.parse_string p "hello" in
v = "hello"Input is not consumed.
module P = Reparse.Parser
;;
let p = P.(peek_string 5 *> offset) in
let v = P.parse_string p "hello" in
v = 0next parses the next character from input. Fails if input has reached end of input.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string next "hello") in
v = 'h'char c parses character c exactly.
Examples
module P = Reparse.Parser
;;
let p = P.char 'h' in
let v = P.parse_string p "hello" in
v = 'h'char_if f parses a character c if f c is true.
Examples
module P = Reparse.Parser
;;
let p =
P.char_if (function
| 'a' -> true
| _ -> false)
in
let v = P.parse_string p "abc" in
v = 'a'string ~case_sensitive s parses a string s exactly.
If case_sensitive is false then comparison is done without character case consideration. Default value is true.
Examples
module P = Reparse.Parser
;;
let p = P.string "hello" in
let v = P.parse_string p "hello world" in
v = "hello"string_of_chars l converts char list l to string
Examples
module P = Reparse.Parser
;;
let p = P.(take ~sep_by:space next >>= string_of_chars) in
let v = P.parse_string p "h e l l o" in
v = "hello"line c parses a line of text from input.
Line delimiter c can be either `LF or `CRLF. This corresponds to \n or \r\n character respectively.
Examples
module P = Reparse.Parser
;;
let p = P.line `CRLF in
let v = P.parse_string p "line1\r\nline2" in
v = "line1"RFC 5234
Parsers as defined in RFC 5234, Appendix B.1.
alpha parses a character in range A- Z or a-z.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(take alpha) in
let v = P.parse_string p "abcdABCD" in
v = [ 'a'; 'b'; 'c'; 'd'; 'A'; 'B'; 'C'; 'D' ]alpha_num parses a character in range A-Z or a-z or 0-9.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(take alpha_num) in
let v = P.parse_string p "ab123ABCD" in
v = [ 'a'; 'b'; '1'; '2'; '3'; 'A'; 'B'; 'C'; 'D' ]lower_alpha parses a character in range a-z.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(take lower_alpha) in
let v = P.parse_string p "abcd" in
v = [ 'a'; 'b'; 'c'; 'd' ]upper_alpha parses a character in range A-Z.
Examples
module P = Reparse.Parser
open P.Infix
;;
let p = P.(take upper_alpha) in
let v = P.parse_string p "ABCD" in
v = [ 'A'; 'B'; 'C'; 'D' ]bit parses a character which is either '0' or '1'.
Examples
module P = Reparse.Parser
;;
let p = P.(take bit) in
let v = P.parse_string p "0110 ab" in
v = [ '0'; '1'; '1'; '0' ]ascii_char parses any US-ASCII character.
Examples
module P = Reparse.Parser
;;
let p = P.(take ascii_char) in
let v = P.parse_string p "0110 abc '" in
v = [ '0'; '1'; '1'; '0'; ' '; 'a'; 'b'; 'c'; ' '; '\'' ]cr parses character '\r'.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string cr "\rab") in
v = '\r'crlf parses string "\r\n".
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string crlf "\r\n abc") in
v = "\r\n"control parses characters in range 0x00 - 0x1F or character 0x7F.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string control "\x00") in
v = '\x00'digit parses one of the digit characters, 0 .. 9.
Examples
module P = Reparse.Parser
;;
let p = P.(take digit) in
let v = P.parse_string p "0123456789a" in
v = [ '0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9' ]digits parses one or more digit characters, 0 .. 9.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string digits "1234 +") in
v = "1234"dquote parses double quote character '"'.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string dquote "\"hello ") in
v = '"'hex_digit parses any of the hexadecimal digits - 0..9, A, B, C, D, E, F.
Examples
module P = Reparse.Parser
;;
let p = P.(take hex_digit) in
let v = P.parse_string p "0ABCDEFa" in
v = [ '0'; 'A'; 'B'; 'C'; 'D'; 'E'; 'F' ]htab parses a horizontal tab character '\t'.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string htab "\t") in
v = '\t'lf parses a linefeed '\n' character.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string lf "\n") in
v = '\n'octect parses any character in the range \x00 - \xFF. Synonym for next
Examples
module P = Reparse.Parser
;;
let p = P.(take octet) in
let v = P.parse_string p "0110 abc '" in
v = [ '0'; '1'; '1'; '0'; ' '; 'a'; 'b'; 'c'; ' '; '\'' ]space parses a space character.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string space " abc '") in
v = ' 'spaces parses one or more spaces.
Examples
module P = Reparse.Parser
;;
let v = P.(parse_string spaces " abc") in
v = [ ' '; ' '; ' ' ]vchar parses any of the visible - printable - characters.
Examples
module P = Reparse.Parser
;;
let p = P.(take vchar) in
let v = P.parse_string p "0110abc\x00" in
v = [ '0'; '1'; '1'; '0'; 'a'; 'b'; 'c' ]whitespace parses a space ' ' or horizontal tab '\t' character.
Examples
module P = Reparse.Parser
;;
let p = P.(take whitespace) in
let v = P.parse_string p "\t \t " in
v = [ '\t'; ' '; '\t'; ' ' ]Infix
Examples
Calculator
An example calculator that supports +,-,* and / calculations.
The expression grammar is defined by the following BNF grammar:
<expr> ::= <term> "+" <expr>
| <term>
<term> ::= <factor> "*" <term>
| <factor>
<factor> ::= "(" <expr> ")"
| integer module P = Reparse.Parser
open P.Infix
type expr =
| Int of int
| Add of expr * expr
| Sub of expr * expr
| Mult of expr * expr
| Div of expr * expr
let skip_spaces = P.skip P.space
let binop : 'a P.t -> char -> 'b P.t -> ('a -> 'b -> 'c) -> 'c P.t =
fun exp1 op exp2 f ->
P.map3
(fun e1 _ e2 -> f e1 e2)
exp1
(skip_spaces *> P.char op <* skip_spaces)
exp2
;;
let integer : expr P.t =
let+ d = P.digits in
Int (int_of_string d)
;;
let factor : expr P.t -> expr P.t =
fun expr ->
P.any
[ P.char '(' *> skip_spaces *> expr <* skip_spaces <* P.char ')'
; skip_spaces *> integer <* skip_spaces
]
;;
let term : expr P.t -> expr P.t =
fun factor ->
P.recur (fun term ->
let mult = binop factor '*' term (fun e1 e2 -> Mult (e1, e2)) in
let div = binop factor '/' term (fun e1 e2 -> Div (e1, e2)) in
mult <|> div <|> factor)
;;
let expr : expr P.t =
P.recur (fun expr ->
let factor = factor expr in
let term = term factor in
let add = binop term '+' expr (fun e1 e2 -> Add (e1, e2)) in
let sub = binop term '-' expr (fun e1 e2 -> Sub (e1, e2)) in
P.any [ add; sub; term ])
;;
let rec eval : expr -> int = function
| Int i -> i
| Add (e1, e2) -> eval e1 + eval e2
| Sub (e1, e2) -> eval e1 - eval e2
| Mult (e1, e2) -> eval e1 * eval e2
| Div (e1, e2) -> eval e1 / eval e2
;;
(* Test AST *)
let r =
let actual = P.parse_string expr "1*2-4+3" in
let expected = Sub (Mult (Int 1, Int 2), Add (Int 4, Int 3)) in
Bool.equal (expected = actual) true
;;
(* Run the evaluator. *)
let exp_result = eval (P.parse_string expr "12+1*10") |> Int.equal 22Json
Implements JSON parser as defined in https://tools.ietf.org/html/rfc8259.
Assumes UTF-8 character encoding. However, it doesn't do any validation.
Sample top_level inputs;
parse json_value "true";;
parse json_value "false";;
parse json_value "null";;
parse json_value "123";;
parse json_value "123.345";;
parse json_value "123e123";;
parse json_value "123.33E123";;
parse json_value {|{"field1": 123,"field2": "value2"}|};;
parse json_value {|{"field1":[123,"hello",-123.23], "field2":123} |};;
parse json_value {|{"field1":123, "field2":123} |};;
parse json_value {|[123,"hello",-123.23, 123.33e13, 123E23] |};; module P = Reparse.Parser
open P.Infix
type value =
| Object of (string * value) list
| Array of value list
| Number of
{ negative : bool
; int : string
; frac : string option
; exponent : string option
}
| String of string
| False
| True
| Null
let ws =
P.skip
(P.char_if (function
| ' ' | '\t' | '\n' | '\r' -> true
| _ -> false))
;;
let implode l = List.to_seq l |> String.of_seq
let struct_char c = ws *> P.char c <* ws
let null_value = ws *> P.string "null" *> ws *> P.pure Null
let false_value = ws *> P.string "false" *> ws *> P.pure False
let true_value = ws *> P.string "true" *> ws *> P.pure True
let sprintf = Printf.sprintf
let number_value =
let* negative =
P.optional (P.char '-')
>|= function
| Some '-' -> true
| _ -> false
in
let* int =
let digits1_to_9 =
P.char_if (function
| '1' .. '9' -> true
| _ -> false)
in
let num =
P.map2
(fun first_ch digits -> sprintf "%c%s" first_ch digits)
digits1_to_9
P.digits
in
P.any [ P.string "0"; num ]
in
let* frac = P.optional (P.char '.' *> P.digits) in
let+ exponent =
P.optional
(let* e = P.char 'E' <|> P.char 'e' in
let* sign = P.optional (P.char '-' <|> P.char '+') in
let sign =
match sign with
| Some c -> sprintf "%c" c
| None -> ""
in
let+ digits = P.digits in
sprintf "%c%s%s" e sign digits)
in
Number { negative; int; frac; exponent }
;;
let string =
let escaped =
let ch =
P.char '\\'
*> P.char_if (function
| '"' | '\\' | '/' | 'b' | 'f' | 'n' | 'r' | 't' -> true
| _ -> false)
>|= sprintf "\\%c"
in
let hex4digit =
let+ hex =
P.string "\\u" *> P.take ~at_least:4 ~up_to:4 P.hex_digit >|= implode
in
sprintf "\\u%s" hex
in
P.any [ ch; hex4digit ]
in
let unescaped =
P.take_while
~while_:(P.is_not (P.any [ P.char '\\'; P.control; P.dquote ]))
P.next
>|= implode
in
let+ str = P.dquote *> P.take (P.any [ escaped; unescaped ]) <* P.dquote in
String.concat "" str
;;
let string_value = string >|= fun s -> String s
let json_value =
P.recur (fun value ->
let value_sep = struct_char ',' in
let object_value =
let member =
let* nm = string <* struct_char ':' in
let+ v = value in
nm, v
in
let+ object_value =
struct_char '{' *> P.take member ~sep_by:value_sep <* struct_char '}'
in
Object object_value
in
let array_value =
let+ vals =
struct_char '[' *> P.take value ~sep_by:value_sep <* struct_char ']'
in
Array vals
in
P.any
[ object_value
; array_value
; number_value
; string_value
; false_value
; true_value
; null_value
])
;;
let parse s = P.parse_string json_value s