package reparse

  1. Overview
  2. Docs

Overview

Parser provides functions and types to construct robust, performant and reusable parsers.

At the core is a type t which represents a constructed parser definition. A parser t is defined by composing together one or more parsers or ts via usage of parser operators.

An instance of t represents an un-evaluated parser. Use parse function to evaluate it.

input represents a generalization of data input to parse. Implement the interface to create new input types.

Parser operators - or functions - are broadly organized into following categories:

  • Pure
  • Concatentation
  • Alternation
  • Grouping
  • Repetition
  • Optional
  • Query input state
  • Boolean
  • Text
  • RFC 5234 core parsers

An Infix module contains infix and let syntax support functions.

See examples of use.

Types

type 'a t

Represents a parser which can parse value 'a.

Use parse functions to evaluate a parser.

class type input = object ... end

Represents a generalization of data input source to a parser. Implement this interface to provide new sources of input to parse.

Executing Samples

Include the reparse package in utop.

Copy and paste the sample in utop and type ;; to run it.

#require "reparse";;

Parse

Evaluate a parser.

val parse_string : ?track_lnum:bool -> 'a t -> string -> 'a

parse_string ~track_lnum p s evaluates p to value v while consuming string instance s.

If track_num is true then the parser tracks both the line and the column numbers. It is set to false by default.

Line number and column number both start count from 1 if enabled, 0 otherwise.

Also see lnum and cnum.

Examples

Track line and column number

module P = Reparse.Parser
open P.Infix

;;
let s = "hello world" in
let p = P.(take next *> map2 (fun lnum cnum -> lnum, cnum) lnum cnum) in
let v = P.parse_string ~track_lnum:true p s in
v = (1, 12)

Default behaviour - doesn't track line, column number.

module P = Reparse.Parser
open P.Infix

;;
let s = "hello world" in
let p = P.(take next *> map2 (fun lnum cnum -> lnum, cnum) lnum cnum) in
let v = P.parse_string p s in
v = (0, 0)
  • raises Parser

    when parser encounters error

val parse : ?track_lnum:bool -> 'a t -> input -> 'a

parse is a generalised version of parse_string over type input.

Use this function when you have a custom implementation of input.

Exception

exception Parser of {
  1. offset : int;
  2. line_number : int;
  3. column_number : int;
  4. msg : string;
}

Raised by parsers which are unable to parse successfully.

offset is the current index position of input at the time of failure.

line_number is line number at the time of failure.

column_number is column number at the time of failure.

msg contains an error description.

Pure

Create parsers from values.

val pure : 'a -> 'a t

pure v always parses value v.

Examples

module P = Reparse.Parser

;;
let input = new P.string_input "" in
let v1 = P.(parse input (pure 5)) in
let v2 = P.(parse input (pure "hello")) in
v1 = 5 && v2 = "hello"
val unit : unit t

unit is a convenience function to create a new parser which always parses to value ().

unit is pure ().

val fail : string -> 'a t

fail err_msg returns a parser that always fails with err_msg.

Examples

module P = Reparse.Parser

;;
let input = new P.string_input "" in
let r =
  try
    let _ = P.(parse input (fail "hello error")) in
    assert false
  with
  | e -> e
in
r = P.Parser { offset = 0; line_number = 0; column_number = 0; msg = "hello error" }

Concatenation

Define parsers by joining two or more parsers.

Bind

val bind : 'a t -> ('a -> 'b t) -> 'b t

bind p f returns a new parser b where,

  • a is the parsed value of p
  • b is f a

Examples

module P = Reparse.Parser

;;
let f a = P.pure (a ^ " world") in
let p = P.string "hello" in
let p = P.bind p f in
let input = new P.string_input "hello" in
let b = P.parse input p in
b = "hello world"

See Infix.(>>=). p >>= f is the infix equivalent of bind p f.

Map

Mappers transform from one parser value to another. map functions map2, map3, map4 are defined in terms of binds. So a given mapper function usage can be defined equivalently in terms of binds.

val map : ('a -> 'b) -> 'a t -> 'b t

map f p returns a new parser encapsulating value b where,

  • a is the parsed value of p.
  • b is f a.

Examples

module P = Reparse.Parser

;;
let f a = a ^ " world" in
let p = P.string "hello" in
let p = P.map f p in
let b = P.parse p "hello" in
b = "hello world"

Since map is defined in terms of bind, the above usage of map is equivalent to the bind usage below,

module P = Reparse.Parser

;;
let f a = P.pure (a ^ " world") in
let p = P.string "hello" in
let p = P.bind p f in
let r = P.parse_string p "hello" in
r = "hello world"

See Infix.(<$>). f <$> p is infix equivalent of map f p.

val map2 : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t

map2 f p q returns a new parser encapsulating value c where,

  • p and q are evaluated sequentially in order as given.
  • a, b are the parsed values of parsers p and q respectively.
  • c is f a b.

Examples

module P = Reparse.Parser

;;
let f a b = a + b in
let p = P.pure 1 in
let q = P.pure 2 in
let p = P.map2 f p q in
let v = P.parse_string p "" in
v = 3

The above usage of map2 is equivalent to below,

module P = Reparse.Parser
open P.Infix

;;
let p = P.pure 1 >>= fun a -> P.pure 2 >>= fun b -> P.pure (a + b) in
let v = P.parse_string p "" in
v = 3
val map3 : ('a -> 'b -> 'c -> 'd) -> 'a t -> 'b t -> 'c t -> 'd t

map3 f p q r returns a new parser encapsulating value d where,

  • p, q, r are evaluated sequentially in order as given.
  • a, b, c are the parsed values of parsers p, q and r respectively.
  • d is f a b c.

Examples

module P = Reparse.Parser

;;
let f a b c = a + b + c in
let p = P.pure 1 in
let q = P.pure 2 in
let r = P.pure 3 in
let p = P.map3 f p q r in
let v = P.parse_string p "" in
v = 6
val map4 : ('a -> 'b -> 'c -> 'd -> 'e) -> 'a t -> 'b t -> 'c t -> 'd t -> 'e t

map4 f p q r s returns a new parser encapsulating value e where,

  • p, q, r and s are evaluated sequentially in order as given.
  • a, b, c, d are the parsed values of parsers p, q, r and s respectively.
  • e is f a b c d.

Examples

module P = Reparse.Parser

;;
let f a b c d = a + b + c + d in
let p = P.pure 1 in
let q = P.pure 2 in
let r = P.pure 3 in
let s = P.pure 4 in
let p = P.map4 f p q r s in
let v = P.parse_string p "" in
v = 10
val delay : 'a t Lazy.t -> 'a t

delay p returns a parser which lazily parses p.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(delay (lazy (char 'z')) <|> delay (lazy (char 'a'))) in
let v = P.parse_string p "abc" in
v = 'a'
val named : string -> 'a t -> 'a t

named name p uses name as part of an error message when constructing exception Parser if parse of p fails.

Also see Infix.((<?>))

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(char 'a' |> named "parse_c") in
let v =
  try
    let _ = P.parse_string p "zzd" in
    assert false
  with
  | e -> e
in
v
= P.Parser
    { offset = 0
    ; line_number = 0
    ; column_number = 0
    ; msg = "[parse_c] Reparse.Parser.Parser(0, 0, 0, \"[char] expected 'a'\")"
    }

Alternation

One or the other.

val any : 'a t list -> 'a t

any l parses the value of the first successful parser in list l.

Specified parsers in l are evaluated sequentially from left to right. A failed parser doesn't consume any input, i.e. offset is unaffected.

The parser fails if none of the parsers in l are evaluated successfully.

Examples

First successful parser result is returned

module P = Reparse.Parser

;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "zabc" in
v = 'z'

;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "xabc" in
v = 'x'

;;
let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v = P.parse_string p "abc" in
v = 'a'

Parser fails when none of the parsers in l are successful.

let p = P.(any [ char 'z'; char 'x'; char 'a' ]) in
let v =
  try
    let _ = P.parse_string p "yyy" in
    false
  with
  | _ -> true
in
v = true
val alt : 'a t -> 'a t -> 'a t

alt p q is p <|> q.

See Infix.((<|>))

Grouping

Group parsers.

val all : 'a t list -> 'a list t

all l parses all parsers in l and returns the parsed values.

The parser only succeeds if and only if all of the parsers in l succeed.

Parsers in l are evaluated sequentially - from left to right.

Examples

All specified parsers succeed.

module P = Reparse.Parser

;;
let p = P.(all [ char 'a'; char 'b'; char 'c' ]) in
let v = P.parse_string p "abc" in
v = [ 'a'; 'b'; 'c' ]

One of the specified parsers - char 'c' fails.

module P = Reparse.Parser

;;
let p = P.(all [ char 'a'; char 'b'; char 'c' ]) in
let v =
  try
    let _ = P.parse_string p "abd" in
    false
  with
  | _ -> true
in
v = true
val all_unit : 'a t list -> unit t

all_unit l parses all parsers in l while discarding the parsed values.

Examples

All specified parsers succeed.

module P = Reparse.Parser

;;
let p = P.(all_unit [ char 'a'; char 'b'; char 'c' ]) in
let v = P.parse_string p "abc" in
v = ()

One of the specified parsers - char 'c' - fails.

module P = Reparse.Parser

;;
let p = P.(all_unit [ char 'a'; char 'b'; char 'c' ]) in
let v =
  try
    let _ = P.parse_string p "abd" in
    false
  with
  | _ -> true
in
v = true

Repetition

Recur

val recur : ('a t -> 'a t) -> 'a t

recur f returns a recursive parser. Function value f accepts a parser p as its argument and returns a parser q. Parser q in its definition can refer to p and p can refer to q in its own definition.

Such parsers are also known as a fixpoint or y combinator.

Skip

Discards parsed values.

val skip : ?at_least:int -> ?up_to:int -> _ t -> int t

skip ~at_least ~up_to p repeatedly parses p and discards its value.

The lower and upper bound of repetition is specified by arguments at_least and up_to respectively. The default value of at_least is 0. The default value of up_to is unspecified, i.e. there is no upper limit.

The repetition ends when one of the following occurs:

  • p evaluates to failure
  • up_to upper bound value is reached

The parser encapsulates the count of times p was evaluated successfully.

Examples

module P = Reparse.Parser

;;
let p = P.(skip space) in
let v = P.parse_string p "     " in
v = 5
val skip_while : _ t -> while_:bool t -> int t

skip_while p ~while_ repeatedly parses p and discards its value if parser while_ parses to value true.

The repetition ends when one of the following occurs:

  • p evaluates to failure
  • while_ returns false

Note while_ does not consume input.

The parser encapsulates the count of times p was evaluated successfully.

Examples

module P = Reparse.Parser

;;
let p = P.(skip_while next ~while_:(is space)) in
let v = P.parse_string p "     " in
v = 5

Take

Collects parsed values

val take : ?at_least:int -> ?up_to:int -> ?sep_by:_ t -> 'a t -> 'a list t

take ~at_least ~up_to ~sep_by p repeatedly parses p and returns the parsed values.

The lower and upper bound of repetition is specified by arguments at_least and up_to respectively. The default value of at_least is 0. The default value of up_to is unspecified, i.e. there is no upper limit.

If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.

The repetition ends when one of the following occurs:

  • p evaluates to failure
  • sep_by evaluates to failure
  • up_to upper boudn value is reached

The parser fails if the count of repetition of p does not match the value specified by at_least.

Examples

Default behaviour.

module P = Reparse.Parser

;;
let p = P.(take (char 'a')) in
let v = P.parse_string p "aaaaa" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]

Specify ~sep_by.

module P = Reparse.Parser

;;
let p = P.(take ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]

Specify lower bound argument at_least.

module P = Reparse.Parser

;;
let p = P.(take ~at_least:3 ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a'; 'a'; 'a' ]

Lower bound not met results in error.

module P = Reparse.Parser

;;
let p = P.(take ~at_least:5 ~sep_by:(char ',') (char 'a')) in
let v =
  try
    let _ = P.parse_string p "a,a,a,a" in
    false
  with
  | _ -> true
in
v = true

Specify upper bound up_to.

module P = Reparse.Parser

;;
let p = P.(take ~up_to:3 ~sep_by:(char ',') (char 'a')) in
let v = P.parse_string p "a,a,a,a,a" in
v = [ 'a'; 'a'; 'a' ]
val take_while : ?sep_by:_ t -> while_:bool t -> 'a t -> 'a list t

take_while ~sep_by p ~while_ p repeatedly parses p and returns its value.

p is evaluated if and only if while_ evaluates to true.

If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.

The repetition ends when one of the following occurs:

  • p evaluates to failure
  • while_ returns false
  • sep_by evaluates to failure

Note while_ does not consume input.

Examples

Default behaviour.

module P = Reparse.Parser

;;
let p = P.(take_while ~while_:(is_not (char 'b')) (char 'a')) in
let v = P.parse_string p "aab" in
v = [ 'a'; 'a' ]

Specify sep_by.

module P = Reparse.Parser

;;
let p = P.(take_while ~sep_by:(char ',') ~while_:(is_not (char 'b')) (char 'a')) in
let v = P.parse_string p "a,a,ab" in
v = [ 'a'; 'a'; 'a' ]
val take_between : ?sep_by:_ t -> start:_ t -> end_:_ t -> 'a t -> 'a list t

take_between ~sep_by ~start ~end_ p parses start and then repeatedly parses p while the parsed value of p doesn't equal to parsed value of end_. After the repetition end, it parses end_. The parser returns the list of parsed values of p.

Both start and end_ parser values are discarded.

If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.

The repetition ends when one of the following occurs:

  • p evaluates to failure
  • end_ parsed value matches p parsed value
  • sep_by evaluates to failure

Examples

module P = Reparse.Parser

;;
let p =
  P.(take_between ~sep_by:(char ',') ~start:(P.char '(') ~end_:(char ')') next)
in
let v = P.parse_string p "(a,a,a)" in
v = [ 'a'; 'a'; 'a' ]
val take_while_cb : ?sep_by:_ t -> while_:bool t -> on_take_cb:('a -> unit) -> 'a t -> int t

take_while_on ~sep_by ~while_ ~on_take p repeatedly parses p and calls callback on_take_cb with the parsed value.

p is evaluated if and only if while_ evaluates to true.

If sep_by is specified then the evaluation of p must be followed by a successful evaluation of sep_by. The parsed value of sep_by is discarded.

p is evaluated repeatedly. The repetition ends when one of the following occurs:

on_take_cb is the callback function that is called every time p is evaluated.

  • p evaluates to failure
  • while_ returns false
  • sep_by evaluates to failure

take_while_cb is the general version of take_while. It allows to specify how the value a is to be collected.

Note while_ does not consume input.

Examples

module P = Reparse.Parser
open P.Infix

;;
let buf = Buffer.create 0 in
let on_take_cb a = Buffer.add_char buf a in
let p = P.(take_while_cb (char 'a') ~while_:(is_not (char 'b')) ~on_take_cb) in
let v = P.parse_string p "aaab" in
let s = Buffer.contents buf in
v = 3 && s = "aaa"

Optional

Don't fail when parsing is not successful.

val optional : 'a t -> 'a option t

optional p parses Some a if successful and None otherwise. a is the parsed value of p.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(optional (char 'a')) in
let v = P.parse_string p "ab" in
v = Some 'a'

;;
let p = P.(optional (char 'z')) in
let v = P.parse_string p "ab" in
v = None

Query Input state

val is_eoi : bool t

is_eoi parses to true if parser has reached end of input, false otherwise.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string is_eoi "") in
v = true

;;
let v = P.(parse_string is_eoi "a") in
v = false
val eoi : unit t

eoi parses end of input. Fails if parser is not at end of input.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string eoi "") in
v = ()

;;
let v =
  try
    let _ = P.(parse_string eoi "a") in
    false
  with
  | _ -> true
in
v = true
val lnum : int t

lnum parses the current line number of input. line number count start form 1.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(next *> lnum) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 1
val cnum : int t

cnum parses the current column number. column number count start from 1.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(next *> cnum) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 2
val offset : int t

offset parses the current input offset. offset count start from 0.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(next *> offset) in
let v = P.parse_string ~track_lnum:true p "bcb" in
v = 1

Boolean

true, false, is, is not.

val not_ : 'a t -> unit t

not_ p parses value () if and only if p fails to parse, otherwise the parse fails.

Examples

module P = Reparse.Parser

;;
let p = P.(not_ (char 'a')) in
let v = P.parse_string p "bbb" in
v = ()
val not_followed_by : 'a t -> 'b t -> 'a t

not_followed_by p q parses value of p only if immediate and subsequent parse of q is a failure. Parser q doesn't consumes any input.

Examples

module P = Reparse.Parser

;;
let p = P.(not_followed_by (char 'a') (char 'a')) in
let v = P.parse_string p "ab" in
v = 'a'
val is_not : 'a t -> bool t

is_not p parses value true if p fails to parse and false otherwise. Note evaluating p doesn't consume any input.

Examples

module P = Reparse.Parser

;;
let p = P.(is_not (char 'a')) in
let v = P.parse_string p "bbb" in
v = true
val is : 'a t -> bool t

is p parses true if p is successful, false otherwise. Note evaluation of p doesn't consume any input.

Examples

module P = Reparse.Parser

;;
let p = P.(is (char 'b')) in
let v = P.parse_string p "bcb" in
v = true

Text

Text parsing.

val peek_char : char t

peek_char t parses the next character from input without consuming it.

Examples

module P = Reparse.Parser

;;
let p = P.peek_char in
let v = P.parse_string p "hello" in
v = 'h'

Input is not consumed.

module P = Reparse.Parser

;;
let p = P.(peek_char *> offset) in
let v = P.parse_string p "hello" in
v = 0
val peek_string : int -> string t

peek_string n parse a string of length n without consuming it.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.peek_string 5 in
let v = P.parse_string p "hello" in
v = "hello"

Input is not consumed.

module P = Reparse.Parser

;;
let p = P.(peek_string 5 *> offset) in
let v = P.parse_string p "hello" in
v = 0
val next : char t

next parses the next character from input. Fails if input has reached end of input.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string next "hello") in
v = 'h'
val char : char -> char t

char c parses character c exactly.

Examples

module P = Reparse.Parser

;;
let p = P.char 'h' in
let v = P.parse_string p "hello" in
v = 'h'
val char_if : (char -> bool) -> char t

char_if f parses a character c if f c is true.

Examples

module P = Reparse.Parser

;;
let p =
  P.char_if (function
      | 'a' -> true
      | _ -> false)
in
let v = P.parse_string p "abc" in
v = 'a'
val string : ?case_sensitive:bool -> string -> string t

string ~case_sensitive s parses a string s exactly.

If case_sensitive is false then comparison is done without character case consideration. Default value is true.

Examples

module P = Reparse.Parser

;;
let p = P.string "hello" in
let v = P.parse_string p "hello world" in
v = "hello"
val string_of_chars : char list -> string t

string_of_chars l converts char list l to string

Examples

module P = Reparse.Parser

;;
let p = P.(take ~sep_by:space next >>= string_of_chars) in
let v = P.parse_string p "h e l l o" in
v = "hello"
val line : [ `LF | `CRLF ] -> string t

line c parses a line of text from input.

Line delimiter c can be either `LF or `CRLF. This corresponds to \n or \r\n character respectively.

Examples

module P = Reparse.Parser

;;
let p = P.line `CRLF in
let v = P.parse_string p "line1\r\nline2" in
v = "line1"

RFC 5234

Parsers as defined in RFC 5234, Appendix B.1.

val alpha : char t

alpha parses a character in range A- Z or a-z.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(take alpha) in
let v = P.parse_string p "abcdABCD" in
v = [ 'a'; 'b'; 'c'; 'd'; 'A'; 'B'; 'C'; 'D' ]
val alpha_num : char t

alpha_num parses a character in range A-Z or a-z or 0-9.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(take alpha_num) in
let v = P.parse_string p "ab123ABCD" in
v = [ 'a'; 'b'; '1'; '2'; '3'; 'A'; 'B'; 'C'; 'D' ]
val lower_alpha : char t

lower_alpha parses a character in range a-z.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(take lower_alpha) in
let v = P.parse_string p "abcd" in
v = [ 'a'; 'b'; 'c'; 'd' ]
val upper_alpha : char t

upper_alpha parses a character in range A-Z.

Examples

module P = Reparse.Parser
open P.Infix

;;
let p = P.(take upper_alpha) in
let v = P.parse_string p "ABCD" in
v = [ 'A'; 'B'; 'C'; 'D' ]
val bit : char t

bit parses a character which is either '0' or '1'.

Examples

module P = Reparse.Parser

;;
let p = P.(take bit) in
let v = P.parse_string p "0110 ab" in
v = [ '0'; '1'; '1'; '0' ]
val ascii_char : char t

ascii_char parses any US-ASCII character.

Examples

module P = Reparse.Parser

;;
let p = P.(take ascii_char) in
let v = P.parse_string p "0110 abc '" in
v = [ '0'; '1'; '1'; '0'; ' '; 'a'; 'b'; 'c'; ' '; '\'' ]
val cr : char t

cr parses character '\r'.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string cr "\rab") in
v = '\r'
val crlf : string t

crlf parses string "\r\n".

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string crlf "\r\n abc") in
v = "\r\n"
val control : char t

control parses characters in range 0x00 - 0x1F or character 0x7F.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string control "\x00") in
v = '\x00'
val digit : char t

digit parses one of the digit characters, 0 .. 9.

Examples

module P = Reparse.Parser

;;
let p = P.(take digit) in
let v = P.parse_string p "0123456789a" in
v = [ '0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9' ]
val digits : string t

digits parses one or more digit characters, 0 .. 9.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string digits "1234 +") in
v = "1234"
val dquote : char t

dquote parses double quote character '"'.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string dquote "\"hello ") in
v = '"'
val hex_digit : char t

hex_digit parses any of the hexadecimal digits - 0..9, A, B, C, D, E, F.

Examples

module P = Reparse.Parser

;;
let p = P.(take hex_digit) in
let v = P.parse_string p "0ABCDEFa" in
v = [ '0'; 'A'; 'B'; 'C'; 'D'; 'E'; 'F' ]
val htab : char t

htab parses a horizontal tab character '\t'.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string htab "\t") in
v = '\t'
val lf : char t

lf parses a linefeed '\n' character.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string lf "\n") in
v = '\n'
val octet : char t

octect parses any character in the range \x00 - \xFF. Synonym for next

Examples

module P = Reparse.Parser

;;
let p = P.(take octet) in
let v = P.parse_string p "0110 abc '" in
v = [ '0'; '1'; '1'; '0'; ' '; 'a'; 'b'; 'c'; ' '; '\'' ]
val space : char t

space parses a space character.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string space " abc '") in
v = ' '
val spaces : char list t

spaces parses one or more spaces.

Examples

module P = Reparse.Parser

;;
let v = P.(parse_string spaces "   abc") in
v = [ ' '; ' '; ' ' ]
val vchar : char t

vchar parses any of the visible - printable - characters.

Examples

module P = Reparse.Parser

;;
let p = P.(take vchar) in
let v = P.parse_string p "0110abc\x00" in
v = [ '0'; '1'; '1'; '0'; 'a'; 'b'; 'c' ]
val whitespace : char t

whitespace parses a space ' ' or horizontal tab '\t' character.

Examples

module P = Reparse.Parser

;;
let p = P.(take whitespace) in
let v = P.parse_string p "\t \t " in
v = [ '\t'; ' '; '\t'; ' ' ]

Infix

module Infix : sig ... end

Provides functions to support infix and let syntax operators.

Examples

Calculator

An example calculator that supports +,-,* and / calculations.

The expression grammar is defined by the following BNF grammar:

<expr>   ::= <term>   "+" <expr> 
           | <term>
<term>   ::= <factor> "*" <term> 
           | <factor>
<factor> ::= "(" <expr> ")" 
           | integer
 module P = Reparse.Parser
 open P.Infix

 type expr =
   | Int of int
   | Add of expr * expr
   | Sub of expr * expr
   | Mult of expr * expr
   | Div of expr * expr

 let skip_spaces = P.skip P.space

 let binop : 'a P.t -> char -> 'b P.t -> ('a -> 'b -> 'c) -> 'c P.t =
  fun exp1 op exp2 f ->
   P.map3
     (fun e1 _ e2 -> f e1 e2)
     exp1
     (skip_spaces *> P.char op <* skip_spaces)
     exp2
;;

 let integer : expr P.t =
   let+ d = P.digits in
   Int (int_of_string d)
 ;;

 let factor : expr P.t -> expr P.t =
  fun expr ->
   P.any
     [ P.char '(' *> skip_spaces *> expr <* skip_spaces <* P.char ')'
     ; skip_spaces *> integer <* skip_spaces
     ]
;;

 let term : expr P.t -> expr P.t =
  fun factor ->
   P.recur (fun term ->
       let mult = binop factor '*' term (fun e1 e2 -> Mult (e1, e2)) in
       let div = binop factor '/' term (fun e1 e2 -> Div (e1, e2)) in
       mult <|> div <|> factor)
;;

 let expr : expr P.t =
   P.recur (fun expr ->
       let factor = factor expr in
       let term = term factor in
       let add = binop term '+' expr (fun e1 e2 -> Add (e1, e2)) in
       let sub = binop term '-' expr (fun e1 e2 -> Sub (e1, e2)) in
       P.any [ add; sub; term ])
 ;;

 let rec eval : expr -> int = function
   | Int i -> i
   | Add (e1, e2) -> eval e1 + eval e2
   | Sub (e1, e2) -> eval e1 - eval e2
   | Mult (e1, e2) -> eval e1 * eval e2
   | Div (e1, e2) -> eval e1 / eval e2
 ;;

 (* Test AST *)
 let r =
   let actual = P.parse_string expr "1*2-4+3" in
   let expected = Sub (Mult (Int 1, Int 2), Add (Int 4, Int 3)) in
   Bool.equal (expected = actual) true
 ;;

 (* Run the evaluator. *)
 let exp_result = eval (P.parse_string expr "12+1*10") |> Int.equal 22

Json

Implements JSON parser as defined in https://tools.ietf.org/html/rfc8259.

Assumes UTF-8 character encoding. However, it doesn't do any validation.

Sample top_level inputs;

  parse json_value "true";;
  parse json_value "false";;
  parse json_value "null";;
  parse json_value "123";;
  parse json_value "123.345";;
  parse json_value "123e123";;
  parse json_value "123.33E123";;
  parse json_value {|{"field1": 123,"field2": "value2"}|};;
  parse json_value {|{"field1":[123,"hello",-123.23], "field2":123} |};;
  parse json_value {|{"field1":123, "field2":123} |};;
  parse json_value {|[123,"hello",-123.23, 123.33e13, 123E23] |};;
module P = Reparse.Parser
open P.Infix

type value =
  | Object of (string * value) list
  | Array of value list
  | Number of
      { negative : bool
      ; int : string
      ; frac : string option
      ; exponent : string option
      }
  | String of string
  | False
  | True
  | Null

let ws =
  P.skip
    (P.char_if (function
        | ' ' | '\t' | '\n' | '\r' -> true
        | _ -> false))
;;

let implode l = List.to_seq l |> String.of_seq
let struct_char c = ws *> P.char c <* ws
let null_value = ws *> P.string "null" *> ws *> P.pure Null
let false_value = ws *> P.string "false" *> ws *> P.pure False
let true_value = ws *> P.string "true" *> ws *> P.pure True
let sprintf = Printf.sprintf

let number_value =
  let* negative =
    P.optional (P.char '-')
    >|= function
    | Some '-' -> true
    | _ -> false
  in
  let* int =
    let digits1_to_9 =
      P.char_if (function
          | '1' .. '9' -> true
          | _ -> false)
    in
    let num =
      P.map2
        (fun first_ch digits -> sprintf "%c%s" first_ch digits)
        digits1_to_9
        P.digits
    in
    P.any [ P.string "0"; num ]
  in
  let* frac = P.optional (P.char '.' *> P.digits) in
  let+ exponent =
    P.optional
      (let* e = P.char 'E' <|> P.char 'e' in
       let* sign = P.optional (P.char '-' <|> P.char '+') in
       let sign =
         match sign with
         | Some c -> sprintf "%c" c
         | None -> ""
       in
       let+ digits = P.digits in
       sprintf "%c%s%s" e sign digits)
  in
  Number { negative; int; frac; exponent }
;;

let string =
  let escaped =
    let ch =
      P.char '\\'
      *> P.char_if (function
             | '"' | '\\' | '/' | 'b' | 'f' | 'n' | 'r' | 't' -> true
             | _ -> false)
      >|= sprintf "\\%c"
    in
    let hex4digit =
      let+ hex =
        P.string "\\u" *> P.take ~at_least:4 ~up_to:4 P.hex_digit >|= implode
      in
      sprintf "\\u%s" hex
    in
    P.any [ ch; hex4digit ]
  in
  let unescaped =
    P.take_while
      ~while_:(P.is_not (P.any [ P.char '\\'; P.control; P.dquote ]))
      P.next
    >|= implode
  in
  let+ str = P.dquote *> P.take (P.any [ escaped; unescaped ]) <* P.dquote in
  String.concat "" str
;;

let string_value = string >|= fun s -> String s

let json_value =
  P.recur (fun value ->
      let value_sep = struct_char ',' in
      let object_value =
        let member =
          let* nm = string <* struct_char ':' in
          let+ v = value in
          nm, v
        in
        let+ object_value =
          struct_char '{' *> P.take member ~sep_by:value_sep <* struct_char '}'
        in
        Object object_value
      in
      let array_value =
        let+ vals =
          struct_char '[' *> P.take value ~sep_by:value_sep <* struct_char ']'
        in
        Array vals
      in
      P.any
        [ object_value
        ; array_value
        ; number_value
        ; string_value
        ; false_value
        ; true_value
        ; null_value
        ])
;;

let parse s = P.parse_string json_value s
OCaml

Innovation. Community. Security.