package reason
Reason: Syntax & Toolchain for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
reason-3.17.0.tbz
sha256=82c8819ce9fd215b7e7e2c6501e638e7a904ebe13ab5a1d8eac2679d8cf8a5eb
sha512=64f525d795501602d92174a35232c0791a0d77322c48397497c9ac3c1e0b76b86a89c3c50e057e52a8727d37b579720a0d48fb9fab3835193bb3a4668ded79cd
doc/src/reason/reason_pprint_ast.ml.html
Source file reason_pprint_ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067
(* Copyright (c) 2015-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * Forked from OCaml, which is provided under the license below: * * Xavier Leroy, projet Cristal, INRIA Rocquencourt * * Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Inria * * Permission is hereby granted, free of charge, to the Licensee obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense * under any license of the Licensee's choice, and/or sell copies of the * Software, subject to the following conditions: * * 1. Redistributions of source code must retain the above copyright notice * and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, the following disclaimer in the documentation and/or other * materials provided with the distribution. * 3. All advertising materials mentioning features or use of the Software * must display the following acknowledgement: This product includes all or * parts of the Caml system developed by Inria and its contributors. * 4. Other than specified in clause 3, neither the name of Inria nor the * names of its contributors may be used to endorse or promote products * derived from the Software without specific prior written permission. * * Disclaimer * * This software is provided by Inria and contributors “as is” and any express * or implied warranties, including, but not limited to, the implied * warranties of merchantability and fitness for a particular purpose are * disclaimed. in no event shall Inria or its contributors be liable for any * direct, indirect, incidental, special, exemplary, or consequential damages * (including, but not limited to, procurement of substitute goods or * services; loss of use, data, or profits; or business interruption) however * caused and on any theory of liability, whether in contract, strict * liability, or tort (including negligence or otherwise) arising in any way * out of the use of this software, even if advised of the possibility of such * damage. * *) (* TODO more fine-grained precedence pretty-printing *) module Easy_format = Reason_easy_format open Ppxlib open Easy_format module Comment = Reason_comment module Layout = Reason_layout module WhitespaceRegion = Layout.WhitespaceRegion module Range = Reason_location.Range let source_map = Layout.source_map exception NotPossible of string let commaTrail = Layout.SepFinal (",", Reason_syntax_util.TrailingCommaMarker.string) let commaSep = Layout.Sep "," type ruleInfoData = { reducePrecedence : precedence ; shiftPrecedence : precedence } and ruleCategory = (* Printing will be parsed with very high precedence, so not much need to worry about ensuring it will reduce correctly. In short, you can put `FunctionApplication` content anywhere around an infix identifier without wrapping in parens. For example `myFunc x y z` or `if x {y} else {z}` The layout is kept in list form only to allow for elegant wrapping rules to take into consideration the *number* of high precedence parsed items. *) | FunctionApplication of Layout.t list (* Care should be taken to ensure the rule that caused it to be parsed will reduce again on the printed output - context should carefully consider wrapping in parens according to the ruleInfoData. *) | SpecificInfixPrecedence of ruleInfoData * resolvedRule (* Not safe to include anywhere between infix operators without wrapping in parens. This describes expressions like `fun x => x` which doesn't fit into our simplistic algorithm for printing function applications separated by infix. It might be possible to include these in between infix, but there are tricky rules to determining when these must be guarded by parens (it depends highly on context that is hard to reason about). It's so nuanced that it's easier just to always wrap them in parens. *) | PotentiallyLowPrecedence of Layout.t (* Simple means it is clearly one token (such as (anything) or [anything] or identifier *) | Simple of Layout.t (* Represents a ruleCategory where the precedence has been resolved. * The precedence of a ruleCategory gets resolved in `ensureExpression` or * `ensureContainingRule`. The result is either a plain Layout.t (where * parens probably have been applied) or an InfixTree containing the operator and * a left & right resolvedRule. The latter indicates that the precedence has been resolved, * but the actual formatting is deferred to a later stadium. * Think `let x = foo |> f |> z |>`, which requires a certain formatting style when * things break over multiple lines. *) and resolvedRule = | LayoutNode of Layout.t | InfixTree of string * resolvedRule * resolvedRule and associativity = | Right | Nonassoc | Left and precedenceEntryType = | TokenPrecedence | CustomPrecedence and precedence = | Token of string | Custom of string (* Describes the "fixity" of a token, and stores its *printed* representation should it be rendered as infix/prefix (This rendering may be different than how it is stored in the AST). *) and tokenFixity = (* Such as !simple_expr and ~!simple_expr. These function applications are considered *almost* "simple" because they may be allowed anywhere a simple expression is accepted, except for when on the left hand side of a dot/send. *) | AlmostSimplePrefix of string | UnaryPlusPrefix of string | UnaryMinusPrefix of string | UnaryNotPrefix of string | UnaryPostfix of string | Infix of string | Letop of string | Andop of string | Normal (* Type which represents a resolvedRule's InfixTree flattened *) type infixChain = | InfixToken of string | Layout of Layout.t (* Helpers for dealing with extension nodes (%expr) *) let expression_extension_sugar x = if x.pexp_attributes != [] then None else match x.pexp_desc with | Pexp_extension (name, PStr [ { pstr_desc = Pstr_eval (expr, []); _ } ]) when name.txt <> "mel.obj" -> Some (name, expr) | _ -> None let expression_immediate_extension_sugar x = match expression_extension_sugar x with | None -> None, x | Some (name, expr) -> (match expr.pexp_desc with | Pexp_for _ | Pexp_while _ | Pexp_ifthenelse _ | Pexp_function (_, _, Pfunction_cases _) | Pexp_newtype _ | Pexp_try _ | Pexp_match _ -> Some name, expr | _ -> None, x) let expression_not_immediate_extension_sugar x = match expression_immediate_extension_sugar x with | Some _, _ -> None | None, _ -> expression_extension_sugar x let add_extension_sugar keyword = function | None -> keyword | Some str -> keyword ^ "%" ^ str.txt let override = function Override -> "!" | Fresh -> "" let add_open_extension_sugar ~override:open_override extension = let base = "open" in match extension, open_override with | extension, Fresh -> add_extension_sugar base extension | None, Override -> base ^ override open_override | Some _, Override -> (* need to add a space between `!` and `%foo` otherwise it can't be parsed back *) add_extension_sugar (base ^ override open_override ^ " ") extension let string_equal : string -> string -> bool = ( = ) let string_loc_equal : string Asttypes.loc -> string Asttypes.loc -> bool = fun l1 l2 -> l1.txt = l2.txt let longident_same l1 l2 = let rec equal l1 l2 = match l1, l2 with | Lident l1, Lident l2 -> string_equal l1 l2 | Ldot (path1, l1), Ldot (path2, l2) -> equal path1 path2 && string_equal l1 l2 | Lapply (l11, l12), Lapply (l21, l22) -> equal l11 l21 && equal l12 l22 | _ -> false in equal l1.txt l2.txt (* A variant of List.for_all2 that returns false instead of failing on lists of different size *) let for_all2' pred l1 l2 = try List.for_all2 pred l1 l2 with _ -> false (* Checks to see if two types are the same modulo the process of varification which turns abstract types into type variables of the same name. For example, [same_ast_modulo_varification] would consider (a => b) and ('a => 'b) to have the same ast. This is useful in recovering syntactic sugar for explicit polymorphic types with locally abstract types. Does not compare attributes, or extensions intentionally. TODO: This has one more issue: We need to compare only accepting t1's type variables, to be considered compatible with t2's type constructors - not the other way around. *) let same_ast_modulo_varification_and_extensions t1 t2 = let rec loop t1 t2 = match t1.ptyp_desc, t2.ptyp_desc with (* Importantly, cover the case where type constructors (of the form [a]) are converted to type vars of the form ['a]. *) | Ptyp_constr ({ txt = Lident s1; _ }, []), Ptyp_var s2 -> string_equal s1 s2 (* Now cover the case where type variables (of the form ['a]) are converted to type constructors of the form [a]. *) | Ptyp_var s1, Ptyp_constr ({ txt = Lident s2; _ }, []) -> string_equal s1 s2 (* Now cover the typical case *) | Ptyp_constr (longident1, lst1), Ptyp_constr (longident2, lst2) -> longident_same longident1 longident2 && for_all2' loop lst1 lst2 | Ptyp_any, Ptyp_any -> true | Ptyp_var x1, Ptyp_var x2 -> string_equal x1 x2 | ( Ptyp_arrow (label1, core_type1, core_type1') , Ptyp_arrow (label2, core_type2, core_type2') ) -> (match label1, label2 with | Nolabel, Nolabel -> true | Labelled s1, Labelled s2 -> string_equal s1 s2 | Optional s1, Optional s2 -> string_equal s1 s2 | _ -> false) && loop core_type1 core_type2 && loop core_type1' core_type2' | Ptyp_tuple lst1, Ptyp_tuple lst2 -> for_all2' loop lst1 lst2 | Ptyp_object (lst1, o1), Ptyp_object (lst2, o2) -> let tester t1 t2 = match t1.pof_desc, t2.pof_desc with | Otag (s1, t1), Otag (s2, t2) -> string_equal s1.txt s2.txt && loop t1 t2 | Oinherit t1, Oinherit t2 -> loop t1 t2 | _ -> false in for_all2' tester lst1 lst2 && o1 = o2 | Ptyp_class (longident1, lst1), Ptyp_class (longident2, lst2) -> longident_same longident1 longident2 && for_all2' loop lst1 lst2 | Ptyp_alias (core_type1, string1), Ptyp_alias (core_type2, string2) -> loop core_type1 core_type2 && string_equal string1.txt string2.txt | ( Ptyp_variant (row_field_list1, flag1, lbl_lst_option1) , Ptyp_variant (row_field_list2, flag2, lbl_lst_option2) ) -> for_all2' rowFieldEqual row_field_list1 row_field_list2 && flag1 = flag2 && lbl_lst_option1 = lbl_lst_option2 | Ptyp_poly (string_lst1, core_type1), Ptyp_poly (string_lst2, core_type2) -> for_all2' string_loc_equal string_lst1 string_lst2 && loop core_type1 core_type2 | Ptyp_package (longident1, lst1), Ptyp_package (longident2, lst2) -> longident_same longident1 longident2 && for_all2' testPackageType lst1 lst2 | Ptyp_extension (s1, _), Ptyp_extension (s2, _) -> string_equal s1.txt s2.txt | _ -> false and testPackageType (lblLongIdent1, ct1) (lblLongIdent2, ct2) = longident_same lblLongIdent1 lblLongIdent2 && loop ct1 ct2 and rowFieldEqual f1 f2 = match f1.prf_desc, f2.prf_desc with | Rtag (label1, flag1, lst1), Rtag (label2, flag2, lst2) -> string_equal label1.txt label2.txt && flag1 = flag2 && for_all2' loop lst1 lst2 | Rinherit t1, Rinherit t2 -> loop t1 t2 | _ -> false in loop t1 t2 let expandLocation pos ~expand:(startPos, endPos) = { pos with loc_start = { pos.loc_start with Lexing.pos_cnum = pos.loc_start.Lexing.pos_cnum + startPos } ; loc_end = { pos.loc_end with Lexing.pos_cnum = pos.loc_end.Lexing.pos_cnum + endPos } } (* Computes the location of the attribute with the lowest line number * that isn't ghost. Useful to determine the start location of an item * in the parsetree that has attributes. * If there are no valid attributes, defaults to the passed location. * 1| [@attr] --> notice how the "start" is determined * 2| let f = ... by the attr on line 1, not the lnum of the `let` *) let rec firstAttrLoc loc = function | ({ attr_name = attrLoc; _ } : Parsetree.attribute) :: attrs -> if attrLoc.loc.loc_start.pos_lnum < loc.loc_start.pos_lnum && not attrLoc.loc.loc_ghost then firstAttrLoc attrLoc.loc attrs else firstAttrLoc loc attrs | [] -> loc let extractLocationFromValBindList expr vbs = let rec extract loc = function | x :: xs -> let { pvb_expr; _ } = x in let loc = { loc with loc_end = pvb_expr.pexp_loc.loc_end } in extract loc xs | [] -> loc in let loc = match vbs with | x :: xs -> let { pvb_pat; pvb_expr; _ } = x in let loc = { pvb_pat.ppat_loc with loc_end = pvb_expr.pexp_loc.loc_end } in extract loc xs | [] -> expr.pexp_loc in { loc with loc_start = expr.pexp_loc.loc_start } let extractLocValBinding { pvb_pat; pvb_expr; pvb_attributes; _ } = let estimatedLoc = firstAttrLoc pvb_pat.ppat_loc pvb_attributes in { estimatedLoc with loc_end = pvb_expr.pexp_loc.loc_end } let extractLocBindingOp { pbop_pat; pbop_exp; _ } = let estimatedLoc = firstAttrLoc pbop_pat.ppat_loc [] in { estimatedLoc with loc_end = pbop_exp.pexp_loc.loc_end } let extractLocModuleBinding { pmb_expr; pmb_attributes; _ } = let estimatedLoc = firstAttrLoc pmb_expr.pmod_loc pmb_attributes in { estimatedLoc with loc_end = pmb_expr.pmod_loc.loc_end } let extractLocModDecl { pmd_type; pmd_attributes; _ } = let estimatedLoc = firstAttrLoc pmd_type.pmty_loc pmd_attributes in { estimatedLoc with loc_end = pmd_type.pmty_loc.loc_end } let rec sequentialIfBlocks x = match x with | Some { pexp_desc = Pexp_ifthenelse (e1, e2, els); _ } -> let nestedIfs, finalExpression = sequentialIfBlocks els in (e1, e2) :: nestedIfs, finalExpression | Some e -> [], Some e | None -> [], None (* TODO: IDE integration beginning with Vim: * * - Create recovering version of parser that creates regions of "unknown" * content in between let sequence bindings (anything between semicolons, * really). * - Use Easy_format's "style" features to tag each known node. * - Turn those style annotations into editor highlight commands. * - Editors have a set of keys that retrigger the parsing/rehighlighting * process (typically newline/semi/close-brace). * \- On every parsing/rehighlighting, this pretty printer can be used to * determine the highlighting of recovered regions, and the editor plugin can * relegate highlighting of malformed regions to the editor which mostly does * so based on token patterns. * *) (* @avoidSingleTokenWrapping * * +-----------------------------+ * |+------+ | Another label * || let ( \ | * || a | Label | * || o | | The thing to the right of any label must be a * || p _+ label RHS | list in order for it to wrap correctly. Lists * || ): / v | will wrap if they need to/can. NON-lists will * |+--+ sixteenTuple = echoTuple|( wrap (indented) even though they're no lists! * +---/ 0,\---------------------+ To prevent a single item from wrapping, make * 0, an unbreakable list via ensureSingleTokenSticksToLabel. * 0 * ); * In general, the best approach for indenting * let bindings is to keep building up labels from * the "let", always ensuring things that you want * to wrap will either be lists or guarded in * [ensureSingleTokenSticksToLabel]. * If you must join several lists together (via =) * (or colon), ensure that joining is done via * [makeList] (which won't break), and that new * list is always appended to the left * hand side of the label. (So that the right hand * side may always be the untouched list that you want * to wrap with aligned closing). * Always make sure rhs of the label are the * * Creating nested labels will preserve the original * indent location ("let" in this * case) as long as that nesting is * done on the left hand side of the labels. * *) (* Table 2.1. Precedence and associativity. * Precedence from highest to lowest: From RWOC, modified to include != * --------------------------------------- * * Operator prefix Associativity * !..., ?..., ~... Prefix * ., .(, .[ - * function application, constructor, assert, lazy Left associative * -, -. Prefix * **..., lsl, lsr, asr Right associative * *..., /..., %..., mod, land, lor, lxor Left associative * +..., -... Left associative * :: Right associative * @..., ^... Right associative * * != Left associative (INFIXOP0 listed first in lexer) * =..., <..., >..., |..., &..., $... Left associative (INFIXOP0) * =, <, > Left associative (IN SAME row as INFIXOP0 listed after) * * &, && Right associative * or, || Right associative * , - * :=, = Right associative * if - * ; Right associative * * * Note: It would be much better if &... and |... were in separate precedence * groups just as & and | are. This way, we could encourage custom infix * operators to use one of the two precedences and no one would be confused as * to precedence (leading &, | are intuitive). Two precedence classes for the * majority of infix operators is totally sufficient. * * TODO: Free up the (&) operator from pervasives so it can be reused for * something very common such as string concatenation or list appending. * * let x = tail & head; *) (* "Almost Simple Prefix" function applications parse with the rule: `PREFIXOP simple_expr %prec below_DOT_AND_SHARP`, which in turn is almost considered a "simple expression" (it's acceptable anywhere a simple expression is except in a couple of edge cases. "Unary Prefix" function applications parse with the rule: `MINUS epxr %prec prec_unary_minus`, which in turn is considered an "expression" (not simple). All unary operators are mapped into an identifier beginning with "~". TODO: Migrate all "almost simple prefix" to "unsary prefix". When `!` becomes "not", then it will make more sense that !myFunc (arg) is parsed as !(myFunc arg) instead of (!myFunc) arg. *) let almost_simple_prefix_symbols = [ '!'; '?'; '~' ] (* Subset of prefix symbols that have special "unary precedence" *) let unary_minus_prefix_symbols = [ "~-"; "~-." ] let unary_plus_prefix_symbols = [ "~+"; "~+." ] let infix_symbols = [ '='; '<'; '>'; '@'; '^'; '|'; '&'; '+'; '-'; '*'; '/'; '$'; '%'; '\\'; '#' ] (* this should match "kwdopchar" from reason_declarative_lexer.mll *) let special_infix_strings = [ "asr"; "land"; "lor"; "lsl"; "lsr"; "lxor"; "mod"; "or"; ":="; "!="; "!==" ] let updateToken = "=" let sharpOpEqualToken = "#=" let pipeFirstToken = "->" let requireIndentFor = [ updateToken; ":=" ] let namedArgSym = "~" let requireNoSpaceFor tok = tok = pipeFirstToken || (tok.[0] = '#' && tok <> "#=") let funToken = "fun" let getPrintableUnaryIdent s = if List.mem s unary_minus_prefix_symbols || List.mem s unary_plus_prefix_symbols then String.sub s 1 (String.length s - 1) else s (* determines if the string is an infix string. checks backwards, first allowing a renaming postfix ("_102") which may have resulted from Pexp -> Texp -> Pexp translation, then checking if all the characters in the beginning of the string are valid infix characters. *) let printedStringAndFixity = function | s when List.mem s special_infix_strings -> Infix s | "^" -> UnaryPostfix "^" | s when List.mem s.[0] infix_symbols -> Infix s (* Correctness under assumption that unary operators are stored in AST with leading "~" *) | s when List.mem s.[0] almost_simple_prefix_symbols && (not (List.mem s special_infix_strings)) && not (s = "?") -> if (* What *kind* of prefix fixity? *) List.mem s unary_plus_prefix_symbols then UnaryPlusPrefix (getPrintableUnaryIdent s) else if List.mem s unary_minus_prefix_symbols then UnaryMinusPrefix (getPrintableUnaryIdent s) else if s = "!" then UnaryNotPrefix s else AlmostSimplePrefix s | s when Reason_syntax_util.is_letop s -> Letop s | s when Reason_syntax_util.is_andop s -> Andop s | _ -> Normal (* Also, this doesn't account for != and !== being infixop!!! *) let isSimplePrefixToken s = match printedStringAndFixity s with | AlmostSimplePrefix _ | UnaryPostfix "^" -> true | _ -> false (* Convenient bank of information that represents the parser's precedence rankings. Each instance describes a precedence table entry. The function tests either a token string encountered by the parser, or (in the case of `CustomPrecedence`) the string name of a custom rule precedence declared using %prec *) let rules = [ [ (TokenPrecedence, fun s -> Left, s = pipeFirstToken) ; ( TokenPrecedence , fun s -> Left, s.[0] = '#' && s <> sharpOpEqualToken && s <> "#" ) ; (TokenPrecedence, fun s -> Left, s = ".") ; (CustomPrecedence, fun s -> Left, s = "prec_lbracket") ] ; [ (CustomPrecedence, fun s -> Nonassoc, s = "prec_functionAppl") ] ; [ (TokenPrecedence, fun s -> Right, isSimplePrefixToken s) ] ; [ (TokenPrecedence, fun s -> Left, s = sharpOpEqualToken) ] ; [ (CustomPrecedence, fun s -> Nonassoc, s = "prec_unary") ] ; (* Note the special case for "*\*", BARBAR, and LESSMINUS, AMPERSAND(s) *) [ (TokenPrecedence, fun s -> Right, s = "**") ; ( TokenPrecedence , fun s -> ( Right , String.length s > 1 && s.[0] == '*' && s.[1] == '\\' && s.[2] == '*' ) ) ; (TokenPrecedence, fun s -> Right, s = "lsl") ; (TokenPrecedence, fun s -> Right, s = "lsr") ; (TokenPrecedence, fun s -> Right, s = "asr") ] ; [ ( TokenPrecedence , fun s -> Left, s.[0] == '*' && (String.length s == 1 || s != "*\\*") ) ; (TokenPrecedence, fun s -> Left, s.[0] == '/') ; (TokenPrecedence, fun s -> Left, s.[0] == '%') ; (TokenPrecedence, fun s -> Left, s = "mod") ; (TokenPrecedence, fun s -> Left, s = "land") ; (TokenPrecedence, fun s -> Left, s = "lor") ; (TokenPrecedence, fun s -> Left, s = "lxor") ] ; [ (* Even though these use the same *tokens* as unary plus/minus at parse time, when unparsing infix -/+, the CustomPrecedence rule would be incorrect to use, and instead we need a rule that models what infix parsing would use - just the regular token precedence without a custom precedence. *) ( TokenPrecedence , fun s -> ( Left , if String.length s > 1 && s.[0] == '+' && s.[1] == '+' then (* Explicitly call this out as false because the other ++ case below should have higher *lexing* priority. ++operator_chars* is considered an entirely different token than +(non_plus_operator_chars)* *) false else s.[0] == '+' ) ) ; (TokenPrecedence, fun s -> Left, s.[0] == '-' && s <> pipeFirstToken) ; (TokenPrecedence, fun s -> Left, s = "!") ] ; [ (TokenPrecedence, fun s -> Right, s = "::") ] ; [ (TokenPrecedence, fun s -> Right, s.[0] == '@') ; (TokenPrecedence, fun s -> Right, s.[0] == '^') ; ( TokenPrecedence , fun s -> Right, String.length s > 1 && s.[0] == '+' && s.[1] == '+' ) ] ; [ ( TokenPrecedence , fun s -> Left, s.[0] == '=' && (not (s = "=")) && not (s = "=>") ) ; (TokenPrecedence, fun s -> Left, s.[0] == '<' && not (s = "<")) ; (TokenPrecedence, fun s -> Left, s.[0] == '>' && not (s = ">")) ; (TokenPrecedence, fun s -> Left, s = "!=") ; (* Not preset in the RWO table! *) (TokenPrecedence, fun s -> Left, s = "!==") ; (* Not preset in the RWO table! *) (TokenPrecedence, fun s -> Left, s = "==") ; (TokenPrecedence, fun s -> Left, s = "===") ; (TokenPrecedence, fun s -> Left, s = "<") ; (TokenPrecedence, fun s -> Left, s = ">") ; (TokenPrecedence, fun s -> Left, s.[0] == '|' && not (s = "||")) ; ( TokenPrecedence , fun s -> Left, s.[0] == '&' && (not (s = "&")) && not (s = "&&") ) ; (TokenPrecedence, fun s -> Left, s.[0] == '$') ] ; [ (CustomPrecedence, fun s -> Left, s = funToken) ] ; [ (TokenPrecedence, fun s -> Right, s = "&") ; (TokenPrecedence, fun s -> Right, s = "&&") ] ; [ (TokenPrecedence, fun s -> Right, s = "or") ; (TokenPrecedence, fun s -> Right, s = "||") ] ; [ (* The Left shouldn't ever matter in practice. Should never get in a situation with two consecutive infix ? - the colon saves us. *) (TokenPrecedence, fun s -> Left, s = "?") ] ; [ (TokenPrecedence, fun s -> Right, s = ":=") ] ; [ (TokenPrecedence, fun s -> Right, s = updateToken) ] ; (* It's important to account for ternary ":" being lower precedence than "?" *) [ (TokenPrecedence, fun s -> Right, s = ":") ] ; [ (TokenPrecedence, fun s -> Nonassoc, s = "=>") ] ] (* remove all prefixing backslashes, e.g. \=== becomes === *) let without_prefixed_backslashes str = if str = "" then str else if String.get str 0 = '\\' then String.sub str 1 (String.length str - 1) else str let indexOfFirstMatch ~prec lst = let rec aux n = function | [] -> None | [] :: tl -> aux (n + 1) tl | ((kind, tester) :: hdTl) :: tl -> (match prec, kind with | Token str, TokenPrecedence | Custom str, CustomPrecedence -> let associativity, foundMatch = tester str in if foundMatch then Some (associativity, n) else aux n (hdTl :: tl) | _ -> aux n (hdTl :: tl)) in aux 0 lst (* Assuming it's an infix function application. *) let precedenceInfo ~prec = (* Removes prefixed backslashes in order to do proper conversion *) let prec = match prec with | Token str -> Token (without_prefixed_backslashes str) | Custom _ -> prec in indexOfFirstMatch ~prec rules let isLeftAssociative ~prec = match precedenceInfo ~prec with | None -> false | Some (Left, _) -> true | Some (Right, _) -> false | Some (Nonassoc, _) -> false let isRightAssociative ~prec = match precedenceInfo ~prec with | None -> false | Some (Right, _) -> true | Some (Left, _) -> false | Some (Nonassoc, _) -> false let higherPrecedenceThan c1 c2 = match precedenceInfo ~prec:c1, precedenceInfo ~prec:c2 with | _, None | None, _ -> let str1, str2 = match c1, c2 with | Token s1, Token s2 -> "Token " ^ s1, "Token " ^ s2 | Token s1, Custom s2 -> "Token " ^ s1, "Custom " ^ s2 | Custom s1, Token s2 -> "Custom " ^ s1, "Token " ^ s2 | Custom s1, Custom s2 -> "Custom " ^ s1, "Custom " ^ s2 in raise (NotPossible ("Cannot determine precedence of two checks " ^ str1 ^ " vs. " ^ str2)) | Some (_, p1), Some (_, p2) -> p1 < p2 let printedStringAndFixityExpr = function | { pexp_desc = Pexp_ident { txt = Lident l; _ }; _ } -> printedStringAndFixity l | _ -> Normal (* which identifiers are in fact operators needing parentheses *) let needs_parens txt = match printedStringAndFixity txt with | Infix _ -> true | UnaryPostfix _ -> true | UnaryPlusPrefix _ -> true | UnaryMinusPrefix _ -> true | UnaryNotPrefix _ -> true | AlmostSimplePrefix _ -> true | Letop _ -> true | Andop _ -> true | Normal -> false (* some infixes need spaces around parens to avoid clashes with comment syntax. This isn't needed for comment syntax /* */ *) let needs_spaces txt = txt.[0] = '*' || txt.[String.length txt - 1] = '*' let rec orList = function (* only consider ((A|B)|C)*) | { ppat_desc = Ppat_or (p1, p2); _ } -> orList p1 @ orList p2 | x -> [ x ] (* variance encoding: need to sync up with the [parser.mly] *) let type_variance = function | NoVariance -> "" | Covariant -> "+" | Contravariant -> "-" let moduleIdent ident = match ident.txt with None -> "_" | Some name -> name type construct = [ `cons of expression list | `list of expression list | `nil | `normal | `simple of Longident.t | `tuple | `btrue | `bfalse ] let view_expr x = match x.pexp_desc with | Pexp_construct ({ txt = Lident "()"; _ }, _) -> `tuple | Pexp_construct ({ txt = Lident "true"; _ }, _) -> `btrue | Pexp_construct ({ txt = Lident "false"; _ }, _) -> `bfalse | Pexp_construct ({ txt = Lident "[]"; _ }, _) -> `nil | Pexp_construct ({ txt = Lident "::"; _ }, Some _) -> let rec loop exp acc = match exp with | { pexp_desc = Pexp_construct ({ txt = Lident "[]"; _ }, _); _ } -> List.rev acc, true | { pexp_desc = Pexp_construct ( { txt = Lident "::"; _ } , Some { pexp_desc = Pexp_tuple [ e1; e2 ]; _ } ) ; _ } -> loop e2 (e1 :: acc) | e -> List.rev (e :: acc), false in let ls, b = loop x [] in if b then `list ls else `cons ls | Pexp_construct (x, None) -> `simple x.txt | _ -> `normal let is_simple_list_expr x = match view_expr x with `list _ | `cons _ -> true | _ -> false let is_simple_construct : construct -> bool = function | `nil | `tuple | `list _ | `simple _ | `btrue | `bfalse | `cons _ -> true | `normal -> false let uncurriedTable = Hashtbl.create 42 (* Determines if a list of expressions contains a single unit construct * e.g. used to check: MyConstructor() -> exprList == [()] * useful to determine if MyConstructor(()) should be printed as MyConstructor() * *) let is_single_unit_construct exprList = match exprList with | x :: [] -> let view = view_expr x in (match view with `tuple -> true | _ -> false) | _ -> false let detectTernary l = match l with | [ { pc_lhs = { ppat_desc = Ppat_construct ({ txt = Lident "true"; _ }, _); _ } ; pc_guard = None ; pc_rhs = ifTrue } ; { pc_lhs = { ppat_desc = Ppat_construct ({ txt = Lident "false"; _ }, _); _ } ; pc_guard = None ; pc_rhs = ifFalse } ] -> Some (ifTrue, ifFalse) | _ -> None type funcApplicationLabelStyle = (* No attaching to the label, but if the entire application fits on one line, the entire application will appear next to the label as you 'd expect. *) | NeverWrapFinalItem (* Attach the first term if there are exactly two terms involved in the application. let x = firstTerm (secondTerm_1 secondTerm_2) thirdTerm; Ideally, we'd be able to attach all but the last argument into the label any time all but the last term will fit - and *not* when (attaching all but the last term isn't enough to prevent a wrap) - But there's no way to tell ahead of time if it would prevent a wrap. However, the number two is somewhat convenient. This models the indentation that you'd prefer in non-curried syntax languages like JavaScript, where application only ever has two terms. *) | WrapFinalListyItemIfFewerThan of int type formatSettings = { space : int ; (* For curried arguments in function *definitions* only: Number of [space]s to offset beyond the [let] keyword. Default 1. *) listsRecordsIndent : int ; indentWrappedPatternArgs : int ; (* Amount to indent in label-like constructs such as wrapped function applications, etc - or even record fields. This is not the same concept as an indented curried argument list. *) indentAfterLabels : int ; (* Amount to indent after the opening brace of switch/try. * Here's an example of what it would look like w/ [trySwitchIndent = 2]: * Sticks the expression to the last item in a sequence in several [X | Y | Z * => expr], and forces X, Y, Z to be split onto several lines. (Otherwise, * sticking to Z would result in hanging expressions). TODO: In the first case, * it's clear that we want patterns to have an "extra" indentation with matching * in a "match". Create extra config param to pass to [self#pattern] for extra * indentation in this one case. * * switch x { * | TwoCombos * (HeresTwoConstructorArguments x y) * (HeresTwoConstructorArguments a b) => * ((a + b) + x) + y; * | Short * | AlsoHasARecord a b {x, y} => ( * retOne, * retTwo * ) * | AlsoHasARecord a b {x, y} => * callMyFunction * withArg * withArg * withArg * withArg; * } *) trySwitchIndent : int ; (* In the case of two term function application (when flattened), the first * term should become part of the label, and the second term should be able to wrap * This doesn't effect n != 2. * * [true] * let x = reallyShort allFitsOnOneLine; * let x = someFunction { * reallyLongObject: true, * thatWouldntFitOnThe: true, * firstLine: true * }; * * [false] * let x = reallyShort allFitsOnOneLine; * let x = * someFunction * { * reallyLongObject: true, * thatWouldntFitOnThe: true, * firstLine: true * }; *) funcApplicationLabelStyle : funcApplicationLabelStyle ; funcCurriedPatternStyle : funcApplicationLabelStyle ; width : int ; assumeExplicitArity : bool ; constructorLists : string list } let defaultSettings = { space = 1 ; listsRecordsIndent = 2 ; indentWrappedPatternArgs = 2 ; indentAfterLabels = 2 ; trySwitchIndent = 0 ; funcApplicationLabelStyle = WrapFinalListyItemIfFewerThan 3 ; (* WrapFinalListyItemIfFewerThan is currently a bad idea for curried * arguments: It looks great in some cases: * * let myFun (a:int) :( * int, * string * ) => (a, "this is a"); * * But horrible in others: * * let myFun * { * myField, * yourField * } :someReturnType => myField + yourField; * * let myFun * { // Curried arg wraps * myField, * yourField * } : ( // But the last is "listy" so it docks * int, // To the [let]. * int, * int * ) => myField + yourField; * * We probably want some special listy label docking/wrapping mode for * curried function bindings. * *) funcCurriedPatternStyle = NeverWrapFinalItem ; width = 80 ; assumeExplicitArity = false ; constructorLists = [] } let configuredSettings = ref defaultSettings let configure ~width ~assumeExplicitArity ~constructorLists = configuredSettings := { defaultSettings with width; assumeExplicitArity; constructorLists } let createFormatter () = let module Formatter = struct let settings = !configuredSettings (* How do we make * this a label? * * /---------------------\ * let myVal = (oneThing, { * field: [], * anotherField: blah * }); * * But in this case, this wider region a label? * /------------------------------------------------------\ * let myVal = callSomeFunc (oneThing, {field: [], anotherField: blah}, { * boo: 'hi' * }); * * This is difficult. You must form a label from the preorder traversal of every * node - except the last encountered in the traversal. An easier heuristic is: * * - The last argument to a functor application is expanded. * * React.CreateClass SomeThing { * let render {props} => { * }; * } * * - The last argument to a function application is expanded on the same line. * - Only if it's not curried with another invocation. * -- Optionally: "only if everything else is an atom" * -- Optionally: "only if there are no other args" * * React.createClass someThing { * render: fn x => y, * } * * !!! NOT THIS * React.createClass someThing { * render: fn x => y, * } * somethingElse *) let isArityClear attrs = !configuredSettings.assumeExplicitArity || List.exists (function | { attr_name = { txt = "explicit_arity"; _ }; _ } -> true | _ -> false) attrs let default_indent_body = settings.listsRecordsIndent * settings.space let makeList ?listConfigIfCommentsInterleaved ?listConfigIfEolCommentsInterleaved ?(break = Layout.Never) ?(wrap = "", "") ?(inline = true, false) ?(sep = Layout.NoSep) ?(indent = default_indent_body) ?(sepLeft = true) ?(preSpace = false) ?(postSpace = false) ?(pad = false, false) lst = let config = { Layout.listConfigIfCommentsInterleaved ; listConfigIfEolCommentsInterleaved ; break = (if lst = [] then Layout.IfNeed else break) ; wrap ; inline ; sep ; indent ; sepLeft ; preSpace ; postSpace ; pad } in Layout.Sequence (config, lst) let makeAppList = function | [ hd ] -> hd | l -> makeList ~inline:(true, true) ~postSpace:true ~break:IfNeed l let makeTup ?(wrap = "", "") ?(trailComma = true) ?(uncurried = false) l = let lwrap, rwrap = wrap in let lparen = lwrap ^ if uncurried then "(. " else "(" in makeList ~wrap:(lparen, ")" ^ rwrap) ~sep:(if trailComma then commaTrail else commaSep) ~postSpace:true ~break:IfNeed l let ensureSingleTokenSticksToLabel x = let listConfigIfCommentsInterleaved cfg = let inline = true, true and postSpace = true and indent = 0 in { cfg with Layout.break = Always_rec; postSpace; indent; inline } in makeList ~listConfigIfCommentsInterleaved [ x ] let unbreakLabelFormatter formatter = let newFormatter labelTerm term = match formatter labelTerm term with | Easy_format.Label ((labelTerm, settings), term) -> Easy_format.Label ((labelTerm, { settings with label_break = `Never }), term) | _ -> failwith "not a label" in newFormatter let inlineLabel labelTerm term = let settings = { label_break = `Never ; space_after_label = true ; indent_after_label = 0 ; label_style = Some "inlineLabel" } in Easy_format.Label ((labelTerm, settings), term) (* Just for debugging: Set debugWithHtml = true *) let debugWithHtml = ref false let html_escape_string s = let buf = Buffer.create (2 * String.length s) in for i = 0 to String.length s - 1 do match s.[i] with | '&' -> Buffer.add_string buf "&" | '<' -> Buffer.add_string buf "<" | '>' -> Buffer.add_string buf ">" | c -> Buffer.add_char buf c done; Buffer.contents buf let html_escape = `Escape_string html_escape_string let html_style = [ "atom", { Easy_format.tag_open = "<a>"; tag_close = "</a>" } ; "body", { tag_open = "<lb>"; tag_close = "</lb>" } ; "list", { tag_open = "<l>"; tag_close = "</l>" } ; "op", { tag_open = "<op>"; tag_close = "</op>" } ; "cl", { tag_open = "<cl>"; tag_close = "</cl>" } ; "sep", { tag_open = "<sep>"; tag_close = "</sep>" } ; "label", { tag_open = "<la>"; tag_close = "</la>" } ] let easyLabel ?(break = `Auto) ?(space = false) ?(indent = settings.indentAfterLabels) labelTerm term = let settings = { label_break = break ; space_after_label = space ; indent_after_label = indent ; label_style = Some "label" } in Easy_format.Label ((labelTerm, settings), term) let label ?break ?space ?indent (labelTerm : Layout.t) (term : Layout.t) = Layout.Label (easyLabel ?break ?indent ?space, labelTerm, term) let atom ?loc str = let style = { Easy_format.atom_style = Some "atomClss" } in source_map ?loc (Layout.Easy (Easy_format.Atom (str, style))) (** Take x,y,z and n and generate [x, y, z, ...n] *) let makeES6List ?wrap:(lwrap, rwrap = "", "") lst last = makeList ~wrap:(lwrap ^ "[", "]" ^ rwrap) ~break:IfNeed ~postSpace:true ~sep:commaTrail (lst @ [ makeList [ atom "..."; last ] ]) let makeNonIndentedBreakingList lst = (* No align closing: So that semis stick to the ends of every break *) makeList ~break:Always_rec ~indent:0 ~inline:(true, true) lst (* Like a <span> could place with other breakableInline lists without upsetting final semicolons *) let makeSpacedBreakableInlineList lst = makeList ~break:IfNeed ~inline:(true, true) ~postSpace:true lst let makeCommaBreakableListSurround opn cls lst = makeList ~break:IfNeed ~postSpace:true ~sep:(Sep ",") ~wrap:(opn, cls) lst (* TODO: Allow configuration of spacing around colon symbol *) let formatPrecedence ?(inline = false) ?(wrap = "(", ")") ?loc formattedTerm = source_map ?loc (makeList ~inline:(true, inline) ~wrap ~break:IfNeed [ formattedTerm ]) let wrap fn term = ignore (Format.flush_str_formatter ()); fn Format.str_formatter term; atom (Format.flush_str_formatter ()) let quoted_ext ?(pct = "%") extension i delim = wrap (fun ppf () -> Format.fprintf ppf "{%s%s%s%s|%s|%s}" pct extension.txt (if delim != "" then " " else "") delim i delim) () (* Don't use `trim` since it kills line return too? *) let rec beginsWithStar_ line length idx = if idx = length then false else match String.get line idx with | '*' -> true | '\t' | ' ' -> beginsWithStar_ line length (idx + 1) | _ -> false let beginsWithStar line = beginsWithStar_ line (String.length line) 0 let rec numLeadingSpace_ line length idx accum = if idx = length then accum else match String.get line idx with | '\t' | ' ' -> numLeadingSpace_ line length (idx + 1) (accum + 1) | _ -> accum let numLeadingSpace line = numLeadingSpace_ line (String.length line) 0 0 (* Computes the smallest leading spaces for non-empty lines *) let smallestLeadingSpaces strs = let rec smallestLeadingSpaces curMin strs = match strs with | [] -> curMin | "" :: tl -> smallestLeadingSpaces curMin tl | hd :: tl -> let leadingSpace = numLeadingSpace hd in let nextMin = min curMin leadingSpace in smallestLeadingSpaces nextMin tl in smallestLeadingSpaces 99999 strs let rec isSequencey = function | Layout.SourceMap (_, sub) -> isSequencey sub | Layout.Sequence _ -> true | Layout.Label (_, _, _) -> false | Layout.Easy (Easy_format.List _) -> true | Layout.Easy _ -> false | Layout.Whitespace (_, sub) -> isSequencey sub let inline ?(preSpace = false) ?(postSpace = false) labelTerm term = makeList [ labelTerm; term ] ~inline:(true, true) ~postSpace ~preSpace ~indent:0 ~break:Layout.Never let breakline labelTerm term = makeList [ labelTerm; term ] ~inline:(true, true) ~indent:0 ~break:Always_rec let insertBlankLines n term = if n = 0 then term else makeList ~inline:(true, true) ~indent:0 ~break:Always_rec (Array.to_list (Array.make n (atom "")) @ [ term ]) let string_after s n = String.sub s n (String.length s - n) (* This is a special-purpose functions only used by `formatComment_`. Notice we skip a char below during usage because we know the comment starts with `/*` *) let rec lineZeroMeaningfulContent_ line length idx accum = if idx = length then None else let ch = String.get line idx in if ch = '\t' || ch = ' ' || ch = '*' then lineZeroMeaningfulContent_ line length (idx + 1) (accum + 1) else Some accum let lineZeroMeaningfulContent line = lineZeroMeaningfulContent_ line (String.length line) 1 0 let formatComment_ txt = let commLines = Reason_syntax_util.split_by ~keep_empty:true (fun x -> x = '\n') (Comment.wrap txt) in match commLines with | [] -> atom "" | [ hd ] -> atom hd | zero :: one :: tl -> let attemptRemoveCount = smallestLeadingSpaces (one :: tl) in let leftPad = if beginsWithStar one then 1 else match lineZeroMeaningfulContent zero with | None -> 1 | Some num -> num + 1 in let padNonOpeningLine s = let numLeadingSpaceForThisLine = numLeadingSpace s in if String.length s == 0 then "" else String.make leftPad ' ' ^ string_after s (min attemptRemoveCount numLeadingSpaceForThisLine) in let lines = zero :: List.map padNonOpeningLine (one :: tl) in makeList ~inline:(true, true) ~indent:0 ~break:Always_rec (List.map atom lines) let formatComment comment = source_map ~loc:(Comment.location comment) (formatComment_ comment) let[@tail_mod_cons] rec append ?(space = false) txt = function | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, append ~space txt sub) | Sequence (config, l) when snd config.wrap <> "" -> let sep = if space then " " else "" in Sequence ( { config with wrap = fst config.wrap, snd config.wrap ^ sep ^ txt } , l ) | Sequence (config, []) -> Sequence (config, [ atom txt ]) | Sequence (({ sep = NoSep; _ } as config), l) | Sequence (({ sep = Sep ""; _ } as config), l) -> let sub = appendSub txt ~space l in Sequence (config, sub) | Label (formatter, left, right) -> Label (formatter, left, append ~space txt right) | Whitespace (info, sub) -> Whitespace (info, append ~space txt sub) | layout -> (inline [@tailcall false]) ~postSpace:space layout (atom txt) and[@tail_mod_cons] appendSub txt ~space layouts = match layouts with | [] -> [] | [ layout ] -> [ append ~space txt layout ] | layout :: xs -> layout :: appendSub txt ~space xs let appendSep spaceBeforeSep sep layout = append (if spaceBeforeSep then " " ^ sep else sep) layout let rec flattenCommentAndSep ?(spaceBeforeSep = false) ?sepStr = function | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, flattenCommentAndSep ~spaceBeforeSep ?sepStr sub) | Layout.Whitespace (info, sub) -> Layout.Whitespace (info, flattenCommentAndSep ~spaceBeforeSep ?sepStr sub) | layout -> (match sepStr with | None -> layout | Some sep -> appendSep spaceBeforeSep sep layout) let rec preOrderWalk f layout = match f layout with | Layout.Sequence (listConfig, sublayouts) -> let newSublayouts = List.map (preOrderWalk f) sublayouts in Layout.Sequence (listConfig, newSublayouts) | Layout.Label (formatter, left, right) -> let newLeftLayout = preOrderWalk f left in let newRightLayout = preOrderWalk f right in Layout.Label (formatter, newLeftLayout, newRightLayout) | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, preOrderWalk f sub) | Layout.Easy _ as layout -> layout | Layout.Whitespace (info, sub) -> Layout.Whitespace (info, preOrderWalk f sub) (** Recursively unbreaks a layout to make sure they stay within the same line *) let unbreaklayout = preOrderWalk (function | Layout.Sequence (listConfig, sublayouts) -> Layout.Sequence ({ listConfig with break = Layout.Never }, sublayouts) | Layout.Label (formatter, left, right) -> Layout.Label (unbreakLabelFormatter formatter, left, right) | layout -> layout) (** [consolidateSeparator layout] walks the [layout], extract separators out of each * list and insert them into PrintTree as separated items *) let consolidateSeparator l = preOrderWalk (function | Sequence (listConfig, sublayouts) when listConfig.sep != NoSep && listConfig.sepLeft -> (* TODO: Support !sepLeft, and this should apply to the *first* separator if !sepLeft. *) let[@tail_mod_cons] rec mapSublayout layouts = match listConfig.sep, layouts with | NoSep, _ -> raise (NotPossible "We already covered this case. This shouldn't happen.") | Sep _, [ layout ] -> [ layout ] | (SepFinal (sepStr, _) | Sep sepStr), layout :: l2 :: xs -> flattenCommentAndSep ~spaceBeforeSep:listConfig.preSpace ~sepStr layout :: mapSublayout (l2 :: xs) | SepFinal (_, finalSepStr), [ layout ] -> [ flattenCommentAndSep ~spaceBeforeSep:listConfig.preSpace ~sepStr:finalSepStr layout ] | _, [] -> [] in let layoutsWithSepAndComment = mapSublayout sublayouts in let sep = Layout.NoSep in let preSpace = false in Sequence ({ listConfig with sep; preSpace }, layoutsWithSepAndComment) | layout -> layout) l (** [insertLinesAboveItems layout] walks the [layout] and insert empty lines *) let insertLinesAboveItems items = preOrderWalk (function | Whitespace (region, sub) -> insertBlankLines (WhitespaceRegion.newlines region) sub | layout -> layout) items let insertCommentIntoWhitespaceRegion comment region subLayout = let cl = Comment.location comment in let range = WhitespaceRegion.range region in (* append the comment to the list of inserted comments in the whitespace region *) let nextRegion = WhitespaceRegion.addComment region comment in let formattedComment = formatComment comment in match WhitespaceRegion.comments region with (* the comment inserted into the whitespace region is the first in the region *) | [] -> (* 1| let a = 1; * 2| * 3| /* comment at end of whitespace region */ * 4| let b = 2; *) if range.lnum_end = cl.loc_end.pos_lnum then let subLayout = breakline formattedComment subLayout in Layout.Whitespace (nextRegion, subLayout) (* 1| let a = 1; * 2| /* comment at start of whitespace region */ * 3| * 4| let b = 2; *) else if range.lnum_start = cl.loc_start.pos_lnum then let subLayout = breakline formattedComment (insertBlankLines 1 subLayout) in let nextRegion = WhitespaceRegion.modifyNewlines nextRegion 0 in Whitespace (nextRegion, subLayout) (* 1| let a = 1; * 2| * 3| /* comment floats in whitespace region */ * 4| * 5| let b = 2; *) else let subLayout = breakline formattedComment (insertBlankLines 1 subLayout) in Whitespace (nextRegion, subLayout) (* The whitespace region contains already inserted comments *) | prevComment :: _cs -> let pcl = Comment.location prevComment in (* check if the comment is attached to the start of the region *) let attachedToStartRegion = cl.loc_start.pos_lnum = range.lnum_start in let nextRegion = (* 1| let a = 1; * 2| /* comment sits on the beginning of the region */ * 3| /* previous comment */ * 4| * 5| let b = 2; *) if attachedToStartRegion then (* we don't want a newline between `let a = 1` and the `comment sits * on the beginning of the region` comment*) WhitespaceRegion.modifyNewlines nextRegion 0 (* 1| let a = 1; * 2| * 3| /* comment isn't located at the beginnin of a region*/ * 4| /* previous comment */ * 5| * 6| let b = 2; *) else nextRegion in (* 1| let a = 1; * 2| /* comment */ * 3| --> whitespace between * 4| /* previous comment */ * 5| let b = 1; *) if Reason_location.hasSpaceBetween pcl cl then (* pcl.loc_start.pos_lnum - cl.loc_end.pos_lnum > 1 then *) let subLayout = breakline formattedComment (insertBlankLines 1 subLayout) in let withComment = Layout.Whitespace (nextRegion, subLayout) in withComment (* 1| let a = 1; * 2| * 3| /* comment */ | no whitespace between `comment` * 4| /* previous comment */ | and `previous comment` * 5| let b = 1; *) else let subLayout = breakline formattedComment subLayout in let withComment = Layout.Whitespace (nextRegion, subLayout) in withComment (** * prependSingleLineComment inserts a single line comment right above layout *) let rec prependSingleLineComment comment layout = match layout with | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, prependSingleLineComment comment sub) | Sequence (config, hd :: tl) when config.break = Always_rec -> Sequence (config, prependSingleLineComment comment hd :: tl) | Whitespace (info, sub) -> insertCommentIntoWhitespaceRegion comment info sub | layout -> breakline (formatComment comment) layout (* breakAncestors break ancestors above node, but not comment attachment itself.*) let appendComment ~breakAncestors layout comment = let text = Comment.wrap comment in let layout = match layout with | Layout.Whitespace (info, sublayout) -> Layout.Whitespace ( info , makeList ~break:Layout.Never ~postSpace:true [ sublayout; atom text ] ) | layout -> makeList ~break:Layout.Never ~postSpace:true [ layout; atom text ] in if breakAncestors then makeList ~inline:(true, true) ~postSpace:false ~preSpace:true ~indent:0 ~break:Always_rec [ layout ] else layout (** * [looselyAttachComment layout comment] preorderly walks the layout and * find a place where the comment can be loosely attached to *) let rec looselyAttachComment ~breakAncestors layout comment = let location = Comment.location comment in match layout with | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, looselyAttachComment ~breakAncestors sub comment) | Layout.Whitespace (info, sub) -> Layout.Whitespace (info, looselyAttachComment ~breakAncestors sub comment) | Easy _ -> inline ~postSpace:true layout (formatComment comment) | Sequence (listConfig, subLayouts) when List.exists (Layout.contains_location ~location) subLayouts -> (* If any of the subLayout strictly contains this comment, recurse into to it *) let recurse_sublayout layout = if Layout.contains_location layout ~location then looselyAttachComment ~breakAncestors layout comment else layout in Sequence (listConfig, List.map recurse_sublayout subLayouts) | Sequence (listConfig, subLayouts) when subLayouts == [] -> (* If there are no subLayouts (empty body), create a Sequence of just the comment *) Sequence (listConfig, [ formatComment comment ]) | Sequence (listConfig, subLayouts) -> let beforeComment, afterComment = Reason_syntax_util.pick_while (Layout.is_before ~location) subLayouts in let newSubLayout = match List.rev beforeComment with | [] -> Reason_syntax_util.map_first (prependSingleLineComment comment) afterComment | hd :: tl -> List.rev_append (appendComment ~breakAncestors hd comment :: tl) afterComment in Sequence (listConfig, newSubLayout) | Label (formatter, left, right) -> let newLeft, newRight = match Layout.get_location left, Layout.get_location right with | None, None -> left, looselyAttachComment ~breakAncestors right comment | _, Some loc2 when Reason_syntax_util.location_contains loc2 location -> left, looselyAttachComment ~breakAncestors right comment | Some loc1, _ when Reason_syntax_util.location_contains loc1 location -> looselyAttachComment ~breakAncestors left comment, right | Some loc1, Some _ when Reason_syntax_util.location_is_before location loc1 -> prependSingleLineComment comment left, right | Some _, Some loc2 when Reason_syntax_util.location_is_before location loc2 -> left, prependSingleLineComment comment right | _ -> left, appendComment ~breakAncestors right comment in Label (formatter, newLeft, newRight) (** * [insertSingleLineComment layout comment] preorderly walks the layout and * find a place where the SingleLineComment can be fit into *) let rec insertSingleLineComment layout comment = let location = Comment.location comment in match layout with | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, insertSingleLineComment sub comment) | Layout.Whitespace (info, sub) -> let range = WhitespaceRegion.range info in if Range.containsLoc range location then insertCommentIntoWhitespaceRegion comment info sub else Layout.Whitespace (info, insertSingleLineComment sub comment) | Easy _ -> prependSingleLineComment comment layout | Sequence (listConfig, subLayouts) when subLayouts == [] -> (* If there are no subLayouts (empty body), create a Sequence of just the * comment. We need to be careful when the empty body contains a //-style * comment. Example: * let make = () => { * // * }; * It is clear that the sequence needs to always break here, otherwise * we get a parse error: let make = () => { // }; * The closing brace and semicolon `};` would become part of the comment… *) let listConfig = if Reason_comment.isLineComment comment then { listConfig with break = Always_rec } else listConfig in Sequence (listConfig, [ formatComment comment ]) | Sequence (listConfig, subLayouts) -> let beforeComment, afterComment = Reason_syntax_util.pick_while (Layout.is_before ~location) subLayouts in (match afterComment with (* Nothing in the list is after comment, attach comment to the statement before the comment *) | [] -> let break sublayout = breakline sublayout (formatComment comment) in Sequence (listConfig, Reason_syntax_util.map_last break beforeComment) | hd :: tl -> let afterComment = match Layout.get_location hd with | Some loc when Reason_syntax_util.location_contains loc location -> insertSingleLineComment hd comment :: tl | Some loc -> Layout.SourceMap (loc, prependSingleLineComment comment hd) :: tl | _ -> prependSingleLineComment comment hd :: tl in Sequence (listConfig, beforeComment @ afterComment)) | Label (formatter, left, right) -> let leftLoc = Layout.get_location left in let rightLoc = Layout.get_location right in let newLeft, newRight = match leftLoc, rightLoc with | None, None -> left, insertSingleLineComment right comment | _, Some loc2 when Reason_syntax_util.location_contains loc2 location -> left, insertSingleLineComment right comment | Some loc1, _ when Reason_syntax_util.location_contains loc1 location -> insertSingleLineComment left comment, right | Some loc1, Some _ when Reason_syntax_util.location_is_before location loc1 -> prependSingleLineComment comment left, right | Some _, Some loc2 when Reason_syntax_util.location_is_before location loc2 -> left, prependSingleLineComment comment right | _ -> left, breakline right (formatComment comment) in Label (formatter, newLeft, newRight) let rec attachCommentToNodeRight layout comment = match layout with | Layout.Sequence (config, sub) when snd config.wrap <> "" -> (* jwalke: This is quite the abuse of the "wrap" config *) let lwrap, rwrap = config.wrap in let rwrap = rwrap ^ " " ^ Comment.wrap comment in Layout.Sequence ({ config with wrap = lwrap, rwrap }, sub) | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, attachCommentToNodeRight sub comment) | layout -> inline ~postSpace:true layout (formatComment comment) let rec attachCommentToNodeLeft comment layout = match layout with | Layout.Sequence (config, sub) when snd config.wrap <> "" -> let lwrap, rwrap = config.wrap in let lwrap = Comment.wrap comment ^ " " ^ lwrap in Layout.Sequence ({ config with wrap = lwrap, rwrap }, sub) | Layout.SourceMap (loc, sub) -> Layout.SourceMap (loc, attachCommentToNodeLeft comment sub) | layout -> Layout.Label (inlineLabel, formatComment comment, layout) (* [tryPerfectlyAttachComment layout comment] postorderly walk the [layout] and tries * to perfectly attach a comment with a layout node. * * Perfectly attach here means a comment's start location is equal to the node's end location * and vice versa. * * If the comment can be perfectly attached to any layout node, returns (newLayout, None), * meaning the comment is consumed. Otherwise returns the (unchangedLayout, Some comment), * meaning the comment is not consumed. * * "perfect attachment" doesn't make sense for end of line comments: * * { * x: 0, * y: 0 * } * * One of these will be "perfectly attached" to the zero and the other won't. * Why should the comma have such an influence? Trailing commas and semicolons * may be inserted or removed, an we need end-of-line comments to never be * impacted by that. Therefore, never try to "perfectly" attach EOL comments. *) let rec tryPerfectlyAttachComment layout = function | None -> layout, None | Some comment -> perfectlyAttachComment comment layout and perfectlyAttachComment comment = function | Layout.Sequence (listConfig, subLayouts) -> let distributeCommentIntoSubLayouts (i, processed, newComment) layout = let layout, newComment = tryPerfectlyAttachComment layout newComment in i + 1, layout :: processed, newComment in let _, processed, consumed = List.fold_left distributeCommentIntoSubLayouts (0, [], Some comment) (List.rev subLayouts) in Layout.Sequence (listConfig, processed), consumed | Layout.Label (labelFormatter, left, right) -> let newRight, comment = perfectlyAttachComment comment right in let newLeft, comment = tryPerfectlyAttachComment left comment in Layout.Label (labelFormatter, newLeft, newRight), comment | Layout.SourceMap (loc, subLayout) -> let commloc = Comment.location comment in if loc.loc_end.Lexing.pos_lnum = loc.loc_start.Lexing.pos_lnum && commloc.loc_start.Lexing.pos_cnum = loc.loc_end.Lexing.pos_cnum then ( Layout.SourceMap ( loc , makeList ~inline:(true, true) ~break:Always [ unbreaklayout (attachCommentToNodeRight subLayout comment) ] ) , None ) else let layout, comment = perfectlyAttachComment comment subLayout in (match comment with | None -> Layout.SourceMap (loc, layout), None | Some comment -> if commloc.loc_end.Lexing.pos_cnum = loc.loc_start.Lexing.pos_cnum then ( Layout.SourceMap (loc, attachCommentToNodeLeft comment layout) , None ) else if commloc.loc_start.Lexing.pos_cnum = loc.loc_end.Lexing.pos_cnum then ( Layout.SourceMap (loc, attachCommentToNodeRight layout comment) , None ) else Layout.SourceMap (loc, layout), Some comment) | Whitespace (info, subLayout) -> (match perfectlyAttachComment comment subLayout with | newLayout, None -> Whitespace (info, newLayout), None | newLayout, Some c -> Whitespace (info, newLayout), Some c) | layout -> layout, Some comment let insertRegularComment layout comment = match perfectlyAttachComment comment layout with | layout, None -> layout | layout, Some _ -> looselyAttachComment ~breakAncestors:false layout comment let insertEndOfLineComment layout comment = looselyAttachComment ~breakAncestors:true layout comment let rec partitionComments_ ((singleLines, endOfLines, regulars) as soFar) = function | [] -> soFar | com :: tl -> (match Comment.category com with | Comment.EndOfLine -> partitionComments_ (singleLines, com :: endOfLines, regulars) tl | Comment.SingleLine -> partitionComments_ (com :: singleLines, endOfLines, regulars) tl | Comment.Regular -> partitionComments_ (singleLines, endOfLines, com :: regulars) tl) let partitionComments comments = let singleLines, endOfLines, regulars = partitionComments_ ([], [], []) comments in singleLines, List.rev endOfLines, regulars (* * Partition single line comments based on a location into two lists: * - one contains the comments before/same height of that location * - the other contains the comments after the location *) let partitionSingleLineComments loc singleLineComments = let before, after = List.fold_left (fun (before, after) comment -> let cl = Comment.location comment in let isAfter = loc.loc_end.pos_lnum < cl.loc_start.pos_lnum in if isAfter then before, comment :: after else comment :: before, after) ([], []) singleLineComments in List.rev before, after (* * appends all [singleLineComments] after the [layout]. * [loc] marks the end of [layout] *) let appendSingleLineCommentsToEnd loc layout singleLineComments = let rec aux prevLoc layout i = function | comment :: cs -> let loc = Comment.location comment in let formattedComment = formatComment comment in let commentLayout = if Reason_location.hasSpaceBetween loc prevLoc then insertBlankLines 1 formattedComment else formattedComment in (* The initial layout breaks ugly with `breakline`, * an inline list (that never breaks) fixes this *) let newLayout = if i == 0 then makeList ~inline:(true, true) ~break:Never [ layout; commentLayout ] else breakline layout commentLayout in aux loc newLayout (i + 1) cs | [] -> layout in aux loc layout 0 singleLineComments (* * For simplicity, the formatting of comments happens in two parts in context of a source map: * 1) insert the singleLineComments with the interleaving algorithm contained in * `insertSingleLineComment` for all comments overlapping with the sourcemap. * A `Layout.Whitespace` node signals an intent to preserve whitespace here. * 2) SingleLineComments after the sourcemap, e.g. at the end of .re/.rei file, * get attached with `appendSingleLineCommentsToEnd`. Due to the fact there * aren't any real ocaml ast nodes anymore after the sourcemap (end of a * file), the printing of the comments can be done in one pass with * `appendSingleLineCommentsToEnd`. This is more performant and * simplifies the implementation of comment attachment. *) let attachSingleLineComments singleLineComments = function | Layout.SourceMap (loc, subLayout) -> let before, after = partitionSingleLineComments loc singleLineComments in let layout = List.fold_left insertSingleLineComment subLayout before in appendSingleLineCommentsToEnd loc layout after | layout -> List.fold_left insertSingleLineComment layout singleLineComments let format_layout ?comments ppf layout = let easy = match comments with | None -> Layout.to_easy_format layout | Some comments -> let singleLines, endOfLines, regulars = partitionComments comments in (* TODO: Stop generating multiple versions of the tree, and instead generate one new tree. *) (* Layout.dump Format.std_formatter layout; *) let layout = List.fold_left insertRegularComment layout regulars in let layout = consolidateSeparator layout in let layout = List.fold_left insertEndOfLineComment layout endOfLines in (* Layout.dump Format.std_formatter layout; *) let layout = attachSingleLineComments singleLines layout in (* Layout.dump Format.std_formatter layout; *) let layout = insertLinesAboveItems layout in let layout = Layout.to_easy_format layout in (* Layout.dump_easy Format.std_formatter layout; *) layout in let buf = Buffer.create 1000 in let fauxmatter = Format.formatter_of_buffer buf in let _ = Format.pp_set_margin fauxmatter settings.width in if debugWithHtml.contents then Easy_format.Pretty.define_styles fauxmatter html_escape html_style; let _ = Easy_format.Pretty.to_formatter fauxmatter easy in let trimmed = Reason_syntax_util.processLineEndingsAndStarts (Buffer.contents buf) in Format.fprintf ppf "%s\n" trimmed; Format.pp_print_flush ppf () let rev_and_len xs = let rec rev_and_len acc len xs = match xs with | [] -> acc, len | x :: xs -> rev_and_len (x :: acc) (len + 1) xs in rev_and_len [] 0 xs let partitionFinalWrapping listTester wrapFinalItemSetting x = let rev, len = rev_and_len x in match rev, wrapFinalItemSetting with | [], _ -> raise (NotPossible "shouldnt be partitioning 0 label attachments") | _, NeverWrapFinalItem -> None | last :: revEverythingButLast, WrapFinalListyItemIfFewerThan max -> if (not (listTester last)) || len >= max then None else Some (List.rev revEverythingButLast, last) let semiTerminated term = makeList [ term; atom ";" ] (* postSpace is so that when comments are interleaved, we still use spacing rules. *) let makeLetSequence ?(wrap = "{", "}") letItems = makeList ~break:Always_rec ~inline:(true, false) ~wrap ~postSpace:true ~sep:(SepFinal (";", ";")) letItems let makeLetSequenceSingleLine ?(wrap = "{", "}") letItems = makeList ~break:IfNeed ~inline:(true, false) ~wrap ~preSpace:true ~postSpace:true ~sep:(Sep ";") letItems (* postSpace is so that when comments are interleaved, we still use spacing rules. *) let makeUnguardedLetSequence ?(sep = Layout.SepFinal (";", ";")) letItems = makeList ~break:Always_rec ~inline:(true, true) ~wrap:("", "") ~indent:0 ~postSpace:true ~sep letItems let formatSimpleAttributed x y = makeList ~wrap:("(", ")") ~break:IfNeed ~indent:0 ~postSpace:true (List.concat [ y; [ x ] ]) let formatAttributed ?(labelBreak = `Auto) x y = label ~break:labelBreak ~indent:0 ~space:true (makeList ~inline:(true, true) ~postSpace:true y) x (* For when the type constraint should be treated as a separate breakable line item itself not docked to some value/pattern label. fun x y : retType => blah; *) let formatJustTheTypeConstraint typ = makeList ~postSpace:false ~sep:(Sep " ") [ atom ":"; typ ] let formatTypeConstraint one two = label ~space:true (makeList ~postSpace:false [ one; atom ":" ]) two let formatJustCoerce optType coerced = match optType with | None -> makeList ~postSpace:false ~sep:(Sep " ") [ atom ":>"; coerced ] | Some typ -> label ~space:true (makeList ~postSpace:true [ typ; atom ":>" ]) coerced let formatCoerce expr optType coerced = match optType with | None -> label ~space:true (makeList ~postSpace:true [ expr; atom ":>" ]) coerced | Some typ -> label ~space:true (makeList ~postSpace:true [ formatTypeConstraint expr typ; atom ":>" ]) coerced (* Standard function application style indentation - no special wrapping * behavior. * * Formats like this: * * let result = * someFunc * (10, 20); * * * Instead of this: * * let result = * someFunc ( * 10, * 20 * ); * * The outer list wrapping fixes #566: format should break the whole * application before breaking arguments. *) let formatIndentedApplication headApplicationItem argApplicationItems = makeList ~inline:(true, true) ~postSpace:true ~break:IfNeed [ label ~space:true headApplicationItem (makeAppList argApplicationItems) ] (* The loc, is an optional location or the returned app terms *) let formatAttachmentApplication finalWrapping (attachTo : (bool * Layout.t) option) (appTermItems, loc) = let partitioning = finalWrapping appTermItems in match partitioning with | None -> (match appTermItems, attachTo with | [], _ -> raise (NotPossible "No app terms") | [ hd ], None -> source_map ?loc hd | [ hd ], Some (useSpace, toThis) -> label ~space:useSpace toThis (source_map ?loc hd) | hd :: tl, None -> source_map ?loc (formatIndentedApplication hd tl) | hd :: tl, Some (useSpace, toThis) -> label ~space:useSpace toThis (source_map ?loc (formatIndentedApplication hd tl))) | Some (attachedList, wrappedListy) -> (match attachedList, attachTo with | [], Some (useSpace, toThis) -> label ~space:useSpace toThis (source_map ?loc wrappedListy) | [], None -> (* Not Sure when this would happen *) source_map ?loc wrappedListy | _ :: _, Some (useSpace, toThis) -> (* TODO: Can't attach location to this - maybe rewrite anyways *) let attachedArgs = makeAppList attachedList in label ~space:useSpace toThis (label ~space:true attachedArgs wrappedListy) | _ :: _, None -> (* Args that are "attached to nothing" *) let appList = makeAppList attachedList in source_map ?loc (label ~space:true appList wrappedListy)) (* Preprocesses an expression term for the sake of label attachments ([letx = expr]or record [field: expr]). Function application should have special treatment when placed next to a label. (The invoked function term should "stick" to the label in some cases). In others, the invoked function term should become a new label for the remaining items to be indented under. *) let applicationFinalWrapping x = partitionFinalWrapping isSequencey settings.funcApplicationLabelStyle x let curriedFunctionFinalWrapping x = partitionFinalWrapping isSequencey settings.funcCurriedPatternStyle x let typeApplicationFinalWrapping typeApplicationItems = partitionFinalWrapping isSequencey settings.funcApplicationLabelStyle typeApplicationItems let add_raw_identifier_prefix txt = let prefix = match Hashtbl.find Reason_declarative_lexer.keyword_table txt with | _ -> "\\#" | exception Not_found -> "" in prefix ^ txt (* add parentheses to binders when they are in fact infix or prefix operators *) let protectIdentifier txt = let needs_parens = needs_parens txt in let txt = if Reason_syntax_util.is_andop txt || Reason_syntax_util.is_letop txt then Reason_syntax_util.compress_letop_identifier txt else txt |> add_raw_identifier_prefix in if not needs_parens then atom txt else if needs_spaces txt then makeList ~wrap:("(", ")") ~pad:(true, true) [ atom txt ] else atom ("(" ^ txt ^ ")") let protectLongIdentifier longPrefix txt = makeList [ longPrefix; atom "."; protectIdentifier txt ] let paren b fu ppf x = if b then Format.fprintf ppf "(%a)" fu x else fu ppf x let constant_string_for_primitive ppf s = let hasQuote = try String.index s '"' with Not_found -> -1 in let hasNewline = try String.index s '\n' with Not_found -> -1 in if hasQuote > -1 || hasNewline > -1 then Format.fprintf ppf "{|%s|}" s else Format.fprintf ppf "%S" s let tyvar ppf str = Format.fprintf ppf "'%s" str (* In some places parens shouldn't be printed for readability: * e.g. Some((-1)) should be printed as Some(-1) * In `1 + (-1)` -1 should be wrapped in parens for readability *) let constant ?raw_literal ?(parens = true) ppf = function | Pconst_char i -> Format.fprintf ppf "%C" i | Pconst_string (i, _, None) -> (match raw_literal with | Some text -> Format.fprintf ppf "\"%s\"" text | None -> Format.fprintf ppf "\"%s\"" (Reason_syntax_util.escape_string i)) | Pconst_string (i, _, Some delim) -> Format.fprintf ppf "{%s|%s|%s}" delim i delim | Pconst_integer (i, None) -> paren (parens && i.[0] = '-') (fun ppf -> Format.fprintf ppf "%s") ppf i | Pconst_integer (i, Some m) -> paren (parens && i.[0] = '-') (fun ppf (i, m) -> Format.fprintf ppf "%s%c" i m) ppf (i, m) | Pconst_float (i, None) -> paren (parens && i.[0] = '-') (fun ppf -> Format.fprintf ppf "%s") ppf i | Pconst_float (i, Some m) -> paren (parens && i.[0] = '-') (fun ppf (i, m) -> Format.fprintf ppf "%s%c" i m) ppf (i, m) let is_punned_labelled_pattern_no_attrs p lbl = match p.ppat_attributes, p.ppat_desc with | _ :: _, _ -> false | ( [] , Ppat_constraint ({ ppat_desc = Ppat_var { txt; _ }; ppat_attributes = []; _ }, _) ) | [], Ppat_var { txt; _ } -> txt = lbl | _ -> false let isLongIdentWithDot = function Ldot _ -> true | _ -> false (* Js.t -> useful for Melange syntax sugar: `Js.t({. foo: bar})` -> `{. "foo": bar}` *) let isJsDotTLongIdent ident = match ident with Ldot (Lident "Js", "t") -> true | _ -> false let recordRowIsPunned pld = let name = pld.pld_name.txt in match pld.pld_type with | { ptyp_desc = Ptyp_constr ( { txt; _ } , (* don't pun parameterized types, e.g. {tag: tag 'props} *) [] ) ; (* Don't pun types that have attributes attached, e.g. { foo: [@bar] foo } *) ptyp_attributes = [] ; _ } when Longident.last_exn txt = name (* Don't pun types from other modules, e.g. type bar = {foo: Baz.foo}; *) && isLongIdentWithDot txt == false -> true | _ -> false let isPunnedJsxArg lbl ident attr = (not (isLongIdentWithDot ident.txt)) && Longident.last_exn ident.txt = lbl && attr = [] let is_unit_pattern x = match x.ppat_desc with | Ppat_construct ({ txt = Lident "()"; _ }, None) -> true | _ -> false let is_ident_pattern x = match x.ppat_desc with Ppat_var _ -> true | _ -> false let is_any_pattern x = x.ppat_desc = Ppat_any let is_direct_pattern x = x.ppat_attributes == [] && match x.ppat_desc with | Ppat_construct ({ txt = Lident "()"; _ }, None) -> true | _ -> false let isJSXComponent expr = match expr with | { pexp_desc = Pexp_apply ({ pexp_desc = Pexp_ident _; _ }, args) ; pexp_attributes ; _ } | { pexp_desc = Pexp_apply ({ pexp_desc = Pexp_letmodule (_, _, _); _ }, args) ; pexp_attributes ; _ } -> let { Reason_attributes.jsxAttrs; _ } = Reason_attributes.partitionAttributes pexp_attributes in let hasLabelledChildrenLiteral = List.exists (function Labelled "children", _ -> true | _ -> false) args in let rec hasSingleNonLabelledUnitAndIsAtTheEnd l = match l with | [] -> false | ( Nolabel , { pexp_desc = Pexp_construct ({ txt = Lident "()"; _ }, _); _ } ) :: [] -> true | (Nolabel, _) :: _ -> false | _ :: rest -> hasSingleNonLabelledUnitAndIsAtTheEnd rest in if jsxAttrs != [] && hasLabelledChildrenLiteral && hasSingleNonLabelledUnitAndIsAtTheEnd args then true else false | _ -> false (* Some cases require special formatting when there's a function application * with a single argument containing some kind of structure with braces/parens/brackets. * Example: `foo({a: 1, b: 2})` needs to be formatted as * foo({ * a: 1, * b: 2 * }) * when the line length dictates breaking. Notice how `({` and `})` 'hug'. * Also applies to (poly)variants because they can be seen as a form of "function application". * This function says if a list of expressions fulfills the need to be formatted like * the example above. *) let isSingleArgParenApplication = function | [ { pexp_attributes = []; pexp_desc = Pexp_record _; _ } ] | [ { pexp_attributes = []; pexp_desc = Pexp_tuple _; _ } ] | [ { pexp_attributes = []; pexp_desc = Pexp_array _; _ } ] | [ { pexp_attributes = []; pexp_desc = Pexp_object _; _ } ] -> true | [ { pexp_attributes = []; pexp_desc = Pexp_extension (s, _); _ } ] when s.txt = "mel.obj" -> true | [ ({ pexp_attributes = []; _ } as exp) ] when is_simple_list_expr exp -> true | _ -> false (* Determines if the arguments of a constructor pattern match need * special printing. If there's one argument & they have some kind of wrapping, * they're wrapping need to 'hug' the surrounding parens. * Example: * switch x { * | Some({ * a, * b, * }) => () * } * * Notice how ({ and }) hug. * This applies for records, arrays, tuples & lists. * See `singleArgParenPattern` for the acutal formatting *) let isSingleArgParenPattern = function | [ { ppat_attributes = []; ppat_desc = Ppat_record _; _ } ] | [ { ppat_attributes = []; ppat_desc = Ppat_array _; _ } ] | [ { ppat_attributes = []; ppat_desc = Ppat_tuple _; _ } ] -> true | [ { ppat_attributes = [] ; ppat_desc = Ppat_construct ({ txt = Lident "::"; _ }, _) ; _ } ] -> true | _ -> false (* Flattens a resolvedRule into a list of infixChain nodes. * When foo |> f |> z gets parsed, we get the following tree: * |> * / \ * foo |> * / \ * f z * To format this recursive tree in a way that allows nice breaking * & respects the print-width, we need some kind of flattened * version of the above tree. `computeInfixChain` transforms the tree * in a flattened version which allows flexible formatting. * E.g. we get * [LayoutNode foo; InfixToken |>; LayoutNode f; InfixToken |>; LayoutNode z] *) let rec computeInfixChain = function | LayoutNode layoutNode -> [ Layout layoutNode ] | InfixTree (op, leftResolvedRule, rightResolvedRule) -> computeInfixChain leftResolvedRule @ [ InfixToken op ] @ computeInfixChain rightResolvedRule let equalityOperators = [ "!="; "!=="; "==="; "=="; ">="; "<="; "<"; ">" ] (* Formats a flattened list of infixChain nodes into a list of layoutNodes * which allow smooth line-breaking * e.g. [LayoutNode foo; InfixToken |>; LayoutNode f; InfixToken |>; LayoutNode z] * becomes * [ * foo * ; |> f --> label * ; |> z --> label * ] * If you make a list out of this items, we get smooth line breaking * foo |> f |> z * becomes * foo * |> f * |> z * when the print-width forces line breaks. *) let formatComputedInfixChain infixChainList = let layout_of_group group currentToken = (* Represents the `foo` in * foo * |> f * |> z *) match group with | [] | [ _ ] -> makeList ~inline:(true, true) ~sep:(Sep " ") group | _ -> (* Basic equality operators require special formatting, we can't give it * 'classic' infix operator formatting, otherwise we would get * let example = * true * != false * && "a" * == "b" * *) if List.mem currentToken equalityOperators then let hd = List.hd group in let tl = makeList ~inline:(true, true) ~sep:(Sep " ") (List.tl group) in makeList ~inline:(true, true) ~sep:(Sep " ") ~break:IfNeed [ hd; tl ] else if currentToken.[0] = '#' then let isSharpEqual = currentToken = sharpOpEqualToken in makeList ~postSpace:isSharpEqual group else (* Represents `|> f` in foo |> f * We need a label here to indent possible closing parens * on the same height as the infix operator * e.g. * >|= ( * fun body => * Printf.sprintf * "okokok" uri meth headers body * ) <-- notice how this closing paren is on the same height as >|= *) label ~break:`Never ~space:true (atom currentToken) (List.nth group 1) in let rec print acc group currentToken l = match l with | x :: xs -> (match x with | InfixToken t -> (* = or := *) if List.mem t requireIndentFor then let groupNode = makeList ~inline:(true, true) ~sep:(Sep " ") (print [] group currentToken [] @ [ atom t ]) in let children = makeList ~inline:(true, true) ~preSpace:true ~break:IfNeed (print [] [] t xs) in print (acc @ [ label ~space:true groupNode children ]) [] t [] (* Represents: * List.map @@ * List.length * * Notice how we want the `@@` on the first line. * Extra indent puts pressure on the subsequent line lengths *) else if t = "@@" then let groupNode = makeList ~inline:(true, true) ~sep:(Sep " ") (group @ [ atom t ]) in print (acc @ [ groupNode ]) [] t xs (* != !== === == >= <= < > etc *) else if List.mem t equalityOperators then print acc (print [] group currentToken [] @ [ atom t ]) t xs else if requireNoSpaceFor t then if currentToken = "" || requireNoSpaceFor currentToken then print acc (group @ [ atom t ]) t xs else (* a + b + foo##bar##baz * `foo` needs to be picked from the current group * and inserted into a new one. This way `foo` * gets the special "chained"-printing: * foo##bar##baz. *) match List.rev group with | hd :: tl -> let acc = acc @ [ layout_of_group (List.rev tl) currentToken ] in print acc [ hd; atom t ] t xs | [] -> print acc (group @ [ atom t ]) t xs else print (acc @ [ layout_of_group group currentToken ]) [ atom t ] t xs | Layout layoutNode -> print acc (group @ [ layoutNode ]) currentToken xs) | [] -> if List.mem currentToken requireIndentFor then acc @ group else acc @ [ layout_of_group group currentToken ] in let l = print [] [] "" infixChainList in makeList ~inline:(true, true) ~sep:(Sep " ") ~break:IfNeed l (** * [groupAndPrint] will print every item in [items] according to the function [xf]. * [getLoc] will extract the location from an item. Based on the difference * between the location of two items, if there's whitespace between the two * (taken possible comments into account), items get grouped. * Every group designates a series of layout nodes "in need * of whitespace above". A group gets decorated with a Whitespace node * containing enough info to interleave whitespace at a later time during * printing. *) let groupAndPrint ~xf ~getLoc ~comments items = let rec group prevLoc curr acc = function (* group items *) | x :: xs -> let item = xf x in let loc = getLoc x in (* Get the range between the current and previous item * Example: * 1| let a = 1; * 2| --> this is the range between the two * 3| let b = 2; * *) let range = Range.makeRangeBetween prevLoc loc in (* If there's whitespace interleaved, append the new layout node * to a new group, otherwise keep it in the current group. * Takes possible comments interleaved into account. * * Example: * 1| let a = 1; * 2| * 3| let b = 2; * 4| let c = 3; * `let b = 2` will mark the start of a new group * `let c = 3` will be added to the group containing `let b = 2` *) if Range.containsWhitespace ~range ~comments () then group loc [ range, item ] (List.rev curr :: acc) xs else group loc ((range, item) :: curr) acc xs (* convert groups into "Layout.Whitespace" *) | [] -> let groups = List.rev (List.rev curr :: acc) in List.mapi (fun i group -> match group with | curr :: xs -> let range, x = curr in (* if this is the first group of all "items", the number of * newlines interleaved should be 0, else we collapse all newlines * to 1. * * Example: * module Abc = { * let a = 1; * * let b = 2; * } * `let a = 1` should be wrapped in a `Layout.Whitespace` because a * user might put comments above the `let a = 1`. * e.g. * module Abc = { * /* comment 1 */ * * /* comment 2 */ * let a = 1; * * A Whitespace-node will automatically take care of the whitespace * interleaving between the comments. *) let newlines = if i > 0 then 1 else 0 in let region = WhitespaceRegion.make ~range ~newlines () in let firstLayout = Layout.Whitespace (region, x) in (* the first layout node of every group taks care of the * whitespace above a group*) firstLayout :: List.map snd xs | [] -> []) groups in match items with | first :: rest -> List.concat (group (getLoc first) [] [] (first :: rest)) | [] -> [] let printer = object (self : 'self) val pipe = false val semi = false val inline_braces = false val preserve_braces = true (* *Mutable state* in the printer to keep track of all comments * Used when whitespace needs to be interleaved. * The printing algorithm needs to take the comments into account in between * two items, to correctly determine if there's whitespace between two items. * The ast doesn't know if there are comments between two items, since * comments are store separately. The location diff between two items * might indicate whitespace between the two. While in reality there are * comments filling that whitespace. The printer needs access to the comments * for this reason. * * Example: * 1| let a = 1; * 2| * 3| * 4| let b = 2; * -> here we can just diff the locations between `let a = 1` and `let b = 2` * * 1| let a = 1; * 2| /* a comment */ * 3| /* another comment */ * 4| let b = 2; * -> here the location diff will result into false info if we don't include * the comments in the diffing *) val mutable comments = [] method comments = comments method trackComment comment = comments <- comment :: comments (* The test and first branch of ternaries must be guarded *) method under_pipe = {<pipe = true>} method under_semi = {<semi = true>} method reset_semi = {<semi = false>} method reset_pipe = {<pipe = false>} method reset = {<pipe = false; semi = false>} method inline_braces = {<inline_braces = true>} method dont_preserve_braces = {<preserve_braces = false>} method reset_request_braces = {<inline_braces = false; preserve_braces = true>} method longident = function | Lident s -> protectIdentifier s | Ldot (longPrefix, s) -> protectLongIdentifier (self#longident longPrefix) s | Lapply (y, s) -> makeList [ self#longident y; atom "("; self#longident s; atom ")" ] (* This form allows applicative functors. *) method longident_class_or_type_loc x = self#longident x.txt (* TODO: Fail if observing applicative functors for this form. *) method longident_loc (x : Longident.t Location.loc) = source_map ~loc:x.loc (self#longident x.txt) method constant ?raw_literal ?(parens = true) = wrap (constant ?raw_literal ~parens) method constant_string_for_primitive = wrap constant_string_for_primitive method tyvar = wrap tyvar (* c ['a,'b] *) method class_params_def = function [] -> atom "" | l -> makeTup (List.map self#type_param l) (* This will fall through to the simple version. *) method non_arrowed_core_type x = self#non_arrowed_non_simple_core_type x method core_type2 x = let { Reason_attributes.stdAttrs; uncurried; _ } = Reason_attributes.partitionAttributes x.ptyp_attributes in let uncurried = uncurried || try Hashtbl.find uncurriedTable x.ptyp_loc with | Not_found -> false in if stdAttrs != [] then formatAttributed (self#non_arrowed_simple_core_type { x with ptyp_attributes = [] }) (self#attributes stdAttrs) else let x = if uncurried then { x with ptyp_attributes = [] } else x in match x.ptyp_desc with | Ptyp_arrow _ -> let rec allArrowSegments ?(uncurried = false) acc = function | { ptyp_desc = Ptyp_arrow (l, ct1, ct2) ; ptyp_attributes = [] ; _ } -> allArrowSegments ~uncurried:false ((l, ct1, false || uncurried) :: acc) ct2 | rhs -> let rhs = self#core_type2 rhs in let is_tuple typ = match typ.ptyp_desc with Ptyp_tuple _ -> true | _ -> false in (match acc with | [ (Nolabel, lhs, uncurried) ] when not (is_tuple lhs) -> let t = self#non_arrowed_simple_core_type lhs in let lhs = if uncurried then makeList ~wrap:("(. ", ")") ~postSpace:true [ t ] else t in lhs, rhs | acc -> let params = List.rev_map self#type_with_label acc in makeCommaBreakableListSurround "(" ")" params, rhs) in let lhs, rhs = allArrowSegments ~uncurried [] x in let normalized = makeList ~preSpace:true ~postSpace:true ~inline:(true, true) ~break:IfNeed ~sep:(Sep "=>") [ lhs; rhs ] in source_map ~loc:x.ptyp_loc normalized | Ptyp_poly (sl, ct) -> let ct = self#core_type ct in let poly = match sl with | [] -> ct | sl -> makeList ~break:IfNeed ~postSpace:true [ makeList [ makeList ~postSpace:true (List.map (fun { txt; _ } -> self#tyvar txt) sl) ; atom "." ] ; ct ] in source_map ~loc:x.ptyp_loc poly | _ -> self#non_arrowed_core_type x (* Same as core_type2 but can be aliased *) method core_type x = let { Reason_attributes.stdAttrs; uncurried; _ } = Reason_attributes.partitionAttributes x.ptyp_attributes in let () = if uncurried then Hashtbl.add uncurriedTable x.ptyp_loc true in if stdAttrs != [] then formatAttributed (self#non_arrowed_simple_core_type { x with ptyp_attributes = [] }) (self#attributes stdAttrs) else match x.ptyp_desc with | Ptyp_alias (ct, s) -> source_map ~loc:x.ptyp_loc (label ~space:true (self#core_type ct) (makeList ~postSpace:true [ atom "as"; atom ("'" ^ s.txt) ])) | _ -> self#core_type2 x method type_with_label (lbl, c, uncurried) = let typ = self#core_type c in let t = match lbl with | Nolabel -> typ | Labelled lbl -> label ~space:true (atom (namedArgSym ^ lbl ^ ":")) typ | Optional lbl -> label ~space:true (atom (namedArgSym ^ lbl ^ ":")) (label typ (atom "=?")) in if uncurried then makeList ~postSpace:true [ atom "."; t ] else t method type_param (ct, (a, _)) = makeList [ atom (type_variance a); self#core_type ct ] (* According to the parse rule [type_declaration], the "type declaration"'s * physical location (as indicated by [td.ptype_loc]) begins with the * identifier and includes the constraints. *) method formatOneTypeDef prepend name assignToken ({ ptype_params; ptype_kind; ptype_loc; _ } as td) = let equalInitiatedSegments, constraints = self#type_declaration_binding_segments td in let formattedTypeParams = List.map self#type_param ptype_params in let binding = makeList ~postSpace:true [ prepend; name ] in (* /-----------everythingButConstraints-------------- | -constraints--\ * /-innerL---| ------innerR--------------------------\ * /binding\ /typeparams\ /--equalInitiatedSegments-\ * type name 'v1 'v1 = foo = private bar constraint a = b *) let labelWithParams = match formattedTypeParams with | [] -> binding | l -> label binding (makeTup l) in let everythingButConstraints = let nameParamsEquals = makeList ~postSpace:true [ labelWithParams; assignToken ] in match equalInitiatedSegments with | [] -> labelWithParams | _ :: _ :: _ :: _ -> raise (NotPossible "More than two type segments.") | hd :: [] -> formatAttachmentApplication typeApplicationFinalWrapping (Some (true, nameParamsEquals)) (hd, None) | [ hd; hd2 ] -> let first = makeList ~postSpace:true ~break:IfNeed ~inline:(true, true) (hd @ [ atom "=" ]) in (* Because we want a record as a label with the opening brace on the same line * and the closing brace indented at the beginning, we can't wrap it in a list here * Example: * type doubleEqualsRecord = * myRecordWithReallyLongName = { <- opening brace on the same line * xx: int, * yy: int * }; <- closing brace indentation *) let second = match ptype_kind with | Ptype_record _ -> List.hd hd2 | _ -> makeList ~postSpace:true ~break:IfNeed ~inline:(true, true) hd2 in label ~space:true nameParamsEquals (label ~space:true first second) in let everything = match constraints with | [] -> everythingButConstraints | hd :: tl -> makeList ~break:IfNeed ~postSpace:true ~indent:0 ~inline:(true, true) (everythingButConstraints :: hd :: tl) in source_map ~loc:ptype_loc everything method formatOneTypeExt prepend name assignToken te = let privateAtom = atom "pri" in let privatize scope lst = match scope with Public -> lst | Private -> privateAtom :: lst in let equalInitiatedSegments = let segments = List.map self#type_extension_binding_segments te.ptyext_constructors in let privatized_segments = privatize te.ptyext_private segments in [ makeList ~break:Always_rec ~postSpace:true ~inline:(true, true) privatized_segments ] in let formattedTypeParams = List.map self#type_param te.ptyext_params in let binding = makeList ~postSpace:true [ prepend; name ] in let labelWithParams = match formattedTypeParams with | [] -> binding | l -> label binding (makeTup l) in let everything = let nameParamsEquals = makeList ~postSpace:true [ labelWithParams; assignToken ] in formatAttachmentApplication typeApplicationFinalWrapping (Some (true, nameParamsEquals)) (equalInitiatedSegments, None) in source_map ~loc:te.ptyext_path.loc everything method type_extension_binding_segments { pext_kind; pext_loc; pext_attributes; pext_name } = let normalize lst = match lst with | [] -> raise (NotPossible "should not be called") | [ hd ] -> hd | _ :: _ -> makeList lst in let add_bar name attrs args = let lbl = match args with None -> name | Some args -> label name args in if attrs != [] then label ~space:true (makeList ~postSpace:true [ atom "|" ; makeList ~postSpace:true ~break:Layout.IfNeed ~inline:(true, true) (self#attributes attrs) ]) lbl else makeList ~postSpace:true [ atom "|"; lbl ] in let sourceMappedName = atom ~loc:pext_name.loc pext_name.txt in let resolved = match pext_kind with | Pext_decl (_, ctor_args, gadt) -> let formattedArgs = match ctor_args with | Pcstr_tuple [] -> [] | Pcstr_tuple args -> [ makeTup (List.map self#non_arrowed_non_simple_core_type args) ] | Pcstr_record r -> [ self#record_declaration ~wrap:("({", "})") r ] in let formattedGadt = match gadt with | None -> None | Some x -> Some (makeList [ formatJustTheTypeConstraint (self#core_type x) ]) in formattedArgs, formattedGadt (* type bar += Foo = Attr.Foo *) | Pext_rebind rebind -> let r = self#longident_loc rebind in (* we put an empty space before the '=': we don't have access to the fact * that we need a space because of the Pext_rebind later *) let prepend = atom " =" in [ makeList ~postSpace:true [ prepend; r ] ], None in (* * The first element of the tuple represents constructor arguments, * the second an optional formatted gadt. * * Case 1: No constructor arguments, neither a gadt * type attr = ..; * type attr += | Str * * Case 2: No constructor arguments, is a gadt * type attr = ..; * type attr += | Str :attr * * Case 3: Has Constructor args, not a gadt * type attr = ..; * type attr += | Str(string); * type attr += | Point(int, int); * * Case 4: Has Constructor args & is a gadt * type attr = ..; * type attr += | Point(int, int) :attr; *) let everything = match resolved with | [], None -> add_bar sourceMappedName pext_attributes None | [], Some gadt -> add_bar sourceMappedName pext_attributes (Some gadt) | ctorArgs, None -> add_bar sourceMappedName pext_attributes (Some (normalize ctorArgs)) | ctorArgs, Some gadt -> add_bar sourceMappedName pext_attributes (Some (normalize (ctorArgs @ [ gadt ]))) in source_map ~loc:pext_loc everything (* shared by [Pstr_type, Psig_type]*) method type_def_list ?(eq_symbol = "=") ?extension rf l = (* As oposed to used in type substitution. *) let formatOneTypeDefStandard prepend td = let itm = self#formatOneTypeDef prepend (atom ~loc:td.ptype_name.loc (add_raw_identifier_prefix td.ptype_name.txt)) (atom eq_symbol) td in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true td.ptype_attributes in let layout = self#attach_std_item_attrs stdAttrs itm in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:td.ptype_loc ~layout () in match l with | [] -> raise (NotPossible "asking for type list of nothing") | hd :: tl -> let first = match rf with | Recursive -> let label = add_extension_sugar "type" extension in formatOneTypeDefStandard (atom label) hd | Nonrecursive -> formatOneTypeDefStandard (atom "type nonrec") hd in (match tl with (* Exactly one type *) | [] -> first | _ :: _ as typeList -> let items = (hd.ptype_loc, first) :: List.map (fun ptyp -> ( ptyp.ptype_loc , formatOneTypeDefStandard (atom "and") ptyp )) typeList in makeList ~indent:0 ~inline:(true, true) ~break:Always_rec (groupAndPrint ~xf:snd ~getLoc:fst ~comments:self#comments items)) method type_variant_list lst = match lst with | [] -> [ atom "|" ] | _ -> List.map (fun x -> self#type_variant_leaf x) lst method type_variant_leaf ?opt_ampersand:(a = false) ?polymorphic:(p = false) = self#type_variant_leaf1 a p true method type_variant_leaf_nobar ?opt_ampersand:(a = false) ?polymorphic:(p = false) = self#type_variant_leaf1 a p false (* TODOATTRIBUTES: Attributes on the entire variant leaf are likely * not parsed or printed correctly. *) method type_variant_leaf1 opt_ampersand polymorphic print_bar x = let { pcd_name; pcd_args; pcd_res; pcd_loc; pcd_attributes; _ } = x in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true pcd_attributes in let ampersand_helper i arg = let ct = self#core_type arg in let ct = match arg.ptyp_desc with | Ptyp_tuple _ -> ct | _ -> makeTup [ ct ] in if i == 0 && not opt_ampersand then ct else label (atom "&") ct in let args = match pcd_args with | Pcstr_record r -> [ self#record_declaration ~wrap:("({", "})") r ] | Pcstr_tuple [] -> [] | Pcstr_tuple l when polymorphic -> List.mapi ampersand_helper l (* Here's why this works. With the new syntax, all the args, are already inside of a safely guarded place like Constructor(here, andHere). Compare that to the previous syntax Constructor here andHere. In the previous syntax, we needed to require that we print "non-arrowed" types for here, and andHere to avoid something like Constructor a=>b c=>d. In the new syntax, we don't care if here and andHere have unguarded arrow types like a=>b because they're safely separated by commas. *) | Pcstr_tuple l -> [ makeTup (List.map self#core_type l) ] in let gadtRes = match pcd_res with | None -> None | Some x -> Some (formatJustTheTypeConstraint (self#core_type x)) in let normalize lst = match lst with | [] -> raise (NotPossible "should not be called") | [ hd ] -> hd | _ :: _ -> makeList ~inline:(true, true) ~break:IfNeed ~postSpace:true lst in let add_bar constructor = makeList ~postSpace:true (if print_bar then [ atom "|"; constructor ] else [ constructor ]) in (* In some cases (e.g. inline records) we want the label with bar & the gadt resolution * as a list. * | If { * pred: expr bool, * true_branch: expr 'a, * false_branch: expr 'a * } ==> end of label * :expr 'a; ==> gadt res * The label & the gadt res form two separate units combined into a list. * This is necessary to properly align the closing '}' on the same height as the 'If'. *) let add_bar_2 ?gadt name args = let lbl = label name args in let fullLbl = match gadt with | Some g -> makeList ~inline:(true, true) ~break:IfNeed [ lbl; g ] | None -> lbl in add_bar fullLbl in let prefix = if polymorphic then "`" else "" in let sourceMappedName = atom ~loc:pcd_name.loc (prefix ^ pcd_name.txt) in let sourceMappedNameWithAttributes = let layout = match stdAttrs with | [] -> sourceMappedName | stdAttrs -> formatAttributed sourceMappedName (self#attributes stdAttrs) in match docAttrs with | [] -> layout | docAttrs -> makeList ~break:Always ~inline:(true, true) [ makeList (self#attributes docAttrs); layout ] in let constructorName = makeList ~postSpace:true [ sourceMappedNameWithAttributes ] in let everything = match args, gadtRes with | [], None -> add_bar sourceMappedNameWithAttributes | [], Some gadt -> add_bar_2 sourceMappedNameWithAttributes gadt | _ :: _, None -> add_bar_2 constructorName (normalize args) | _ :: _, Some gadt -> (match pcd_args with | Pcstr_record _ -> add_bar_2 ~gadt constructorName (normalize args) | _ -> add_bar_2 constructorName ~gadt (normalize args)) in source_map ~loc:pcd_loc everything method record_declaration ?(wrap = "{", "}") ?assumeRecordLoc lbls = let recordRow pld = let hasPunning = recordRowIsPunned pld in let name = let name = add_raw_identifier_prefix pld.pld_name.txt in if hasPunning then [ atom name ] else [ atom name; atom ":" ] in let name = source_map ~loc:pld.pld_name.loc (makeList name) in let withMutable = match pld.pld_mutable with | Immutable -> name | Mutable -> makeList ~postSpace:true [ atom "mutable"; name ] in let recordRow = if hasPunning then label withMutable (atom "") else label ~space:true withMutable (self#core_type pld.pld_type) in let recordRow = match pld.pld_attributes with | [] -> recordRow | attrs -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true attrs in let stdAttrsLayout = makeList ~inline:(true, true) ~postSpace:true (self#attributes stdAttrs) in let docAttrsLayout = makeList ~inline:(true, true) (self#attributes docAttrs) in let children = match docAttrs, stdAttrs with | [], [] -> [ recordRow ] | _, [] -> [ docAttrsLayout; recordRow ] | [], _ -> [ stdAttrsLayout; recordRow ] | _, _ -> [ docAttrsLayout; stdAttrsLayout; recordRow ] in makeList ~inline:(true, true) ~break:Always_rec children in source_map ~loc:pld.pld_loc recordRow in let rows = List.map recordRow lbls in (* if a record type has more than 1 row, always break *) let break = match rows with | [] | [ _ ] -> Layout.IfNeed | _ -> Layout.Always_rec in source_map ?loc:assumeRecordLoc (makeList ~wrap ~sep:commaTrail ~postSpace:true ~break rows) (* Returns the type declaration partitioned into three segments - one suitable for appending to a label, the actual type manifest and the list of constraints. *) method type_declaration_binding_segments x = (* Segments of the type binding (occuring after the type keyword) that * should begin with "=". Zero to two total sections. * This is just a straightforward reverse mapping from the original parser: * type_kind: * /*empty*/ * { (Ptype_abstract, Public, None) } * | EQUAL core_type * { (Ptype_abstract, Public, Some $2) } * | EQUAL PRIVATE core_type * { (Ptype_abstract, Private, Some $3) } * | EQUAL constructor_declarations * { (Ptype_variant(List.rev $2), Public, None) } * | EQUAL PRIVATE constructor_declarations * { (Ptype_variant(List.rev $3), Private, None) } * | EQUAL private_flag BAR constructor_declarations * { (Ptype_variant(List.rev $4), $2, None) } * | EQUAL DOTDOT * { (Ptype_open, Public, None) } * | EQUAL private_flag LBRACE label_declarations opt_comma RBRACE * { (Ptype_record(List.rev $4), $2, None) } * | EQUAL core_type EQUAL private_flag opt_bar constructor_declarations * { (Ptype_variant(List.rev $6), $4, Some $2) } * | EQUAL core_type EQUAL DOTDOT * { (Ptype_open, Public, Some $2) } * | EQUAL core_type EQUAL private_flag LBRACE label_declarations opt_comma RBRACE * { (Ptype_record(List.rev $6), $4, Some $2) } *) let privateAtom = atom "pri" in let privatize scope lst = match scope with Public -> lst | Private -> privateAtom :: lst in let estimateRecordOpenBracePoint () = match x.ptype_params with | [] -> x.ptype_name.loc.loc_end | _ -> (fst (List.nth x.ptype_params (List.length x.ptype_params - 1))) .ptyp_loc .loc_end in let equalInitiatedSegments = match x.ptype_kind, x.ptype_private, x.ptype_manifest with (* /*empty*/ {(Ptype_abstract, Public, None)} *) | Ptype_abstract, Public, None -> [] (* EQUAL core_type {(Ptype_abstract, Public, Some _)} *) | Ptype_abstract, Public, Some y -> [ [ self#core_type y ] ] (* EQUAL PRIVATE core_type {(Ptype_abstract, Private, Some $3)} *) | Ptype_abstract, Private, Some y -> [ [ privateAtom; self#core_type y ] ] (* EQUAL constructor_declarations {(Ptype_variant _., Public, None)} *) (* This case is redundant *) (* | (Ptype_variant lst, Public, None) -> [ *) (* [makeSpacedBreakableInlineList (List.map type_variant_leaf lst)] *) (* ] *) (* EQUAL PRIVATE constructor_declarations {(Ptype_variant _, Private, None)} *) | Ptype_variant lst, Private, None -> [ [ privateAtom ; makeList ~break:IfNeed ~postSpace:true ~inline:(true, true) (self#type_variant_list lst) ] ] (* EQUAL private_flag BAR constructor_declarations {(Ptype_variant _, $2, None)} *) | Ptype_variant lst, scope, None -> [ privatize scope [ makeList ~break:Always_rec ~postSpace:true ~inline:(true, true) (self#type_variant_list lst) ] ] (* EQUAL DOTDOT {(Ptype_open, Public, None)} *) | Ptype_open, Public, None -> [ [ atom ".." ] ] | Ptype_open, Private, None -> [ [ privateAtom; atom ".." ] ] (* Super confusing how record/variants' manifest is not actually the description of the structure. What's in the manifest in that case is the *second* EQUALS asignment. *) (* EQUAL private_flag LBRACE label_declarations opt_comma RBRACE {(Ptype_record _, $2, None)} *) | Ptype_record lst, scope, None -> let assumeRecordLoc = { loc_start = estimateRecordOpenBracePoint () ; loc_end = x.ptype_loc.loc_end ; loc_ghost = false } in [ privatize scope [ self#record_declaration ~assumeRecordLoc lst ] ] (* And now all of the forms involving *TWO* equals *) (* Again, super confusing how manifests of variants/records represent the structure after the second equals. *) (* ================================================*) (* EQUAL core_type EQUAL private_flag opt_bar constructor_declarations { (Ptype_variant _, _, Some _)} *) | Ptype_variant lst, scope, Some mani -> [ [ self#core_type mani ] ; (let variant = makeList ~break:IfNeed ~postSpace:true ~inline:(true, true) (self#type_variant_list lst) in privatize scope [ variant ]) ] (* EQUAL core_type EQUAL DOTDOT {(Ptype_open, Public, Some $2)} *) | Ptype_open, Public, Some mani -> [ [ self#core_type mani ]; [ atom ".." ] ] (* EQUAL core_type EQUAL private_flag LBRACE label_declarations opt_comma RBRACE {(Ptype_record _, $4, Some $2)} *) | Ptype_record lst, scope, Some mani -> let declaration = self#record_declaration lst in let record = match scope with | Public -> [ declaration ] | Private -> [ label ~space:true privateAtom declaration ] in [ [ self#core_type mani ]; record ] (* Everything else is impossible *) (* ================================================*) | _, _, _ -> raise (NotPossible "Encountered impossible type specification") in let makeConstraint (ct1, ct2, _) = let constraintEq = makeList ~postSpace:true [ atom "constraint"; self#core_type ct1; atom "=" ] in label ~space:true constraintEq (self#core_type ct2) in let constraints = List.map makeConstraint x.ptype_cstrs in equalInitiatedSegments, constraints (* "non-arrowed" means "a type where all arrows are inside at least one level of parens" * * z => z: not a "non-arrowed" type. * (a, b): a "non-arrowed" type. * (z=>z): a "non-arrowed" type because the arrows are guarded by parens. * * A "non arrowed, non simple" type would be one that is not-arrowed, and also * not "simple". Simple means it is "clearly one unit" like (a, b), identifier, * "hello", None. *) method non_arrowed_non_simple_core_type x = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes x.ptyp_attributes in if stdAttrs != [] then formatAttributed (self#non_arrowed_simple_core_type { x with ptyp_attributes = [] }) (self#attributes stdAttrs) else match x.ptyp_desc with (* This significantly differs from the standard OCaml printer/parser: Type constructors are no longer simple *) | _ -> self#non_arrowed_simple_core_type x method type_param_list_element = function | { ptyp_attributes = []; ptyp_desc = Ptyp_package (lid, cstrs); _ } -> self#typ_package ~mod_prefix:true lid cstrs | t -> self#core_type t method non_arrowed_simple_core_type x = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes x.ptyp_attributes in if stdAttrs != [] then formatSimpleAttributed (self#non_arrowed_simple_core_type { x with ptyp_attributes = [] }) (self#attributes stdAttrs) else let result = match x.ptyp_desc with (* LPAREN core_type_comma_list RPAREN %prec below_NEWDOT *) (* { match $2 with *) (* | [] -> raise Parse_error *) (* | one::[] -> one *) (* | moreThanOne -> mktyp(Ptyp_tuple(List.rev moreThanOne)) } *) | Ptyp_tuple l -> makeTup (List.map self#type_param_list_element l) | Ptyp_object (l, o) -> self#unparseObject l o | Ptyp_package (lid, cstrs) -> self#typ_package ~protect:true ~mod_prefix:true lid cstrs (* | QUOTE ident *) (* { mktyp(Ptyp_var $2) } *) | Ptyp_var s -> ensureSingleTokenSticksToLabel (self#tyvar s) (* | UNDERSCORE *) (* { mktyp(Ptyp_any) } *) | Ptyp_any -> ensureSingleTokenSticksToLabel (atom "_") (* | type_longident *) (* { mktyp(Ptyp_constr(mkrhs $1 1, [])) } *) | Ptyp_constr (li, []) -> (* [ensureSingleTokenSticksToLabel] loses location information which is important when you are embedded inside a list and comments are to be interleaved around you. Therefore, we wrap the result in the correct [SourceMap]. *) source_map ~loc:li.loc (ensureSingleTokenSticksToLabel (self#longident_loc li)) | Ptyp_constr (li, l) -> (match l with | [ { ptyp_desc = Ptyp_object ((_ :: _ as l), o); _ } ] when isJsDotTLongIdent li.txt -> (* should have one or more rows, Js.t({..}) should print as Js.t({..}) * {..} has a totally different meaning than Js.t({..}) *) self#unparseObject ~withStringKeys:true l o | [ { ptyp_desc = Ptyp_object (l, o); _ } ] when not (isJsDotTLongIdent li.txt) -> label (self#longident_loc li) (self#unparseObject ~wrap:("(", ")") l o) | [ { ptyp_desc = Ptyp_constr ( lii , [ { ptyp_desc = Ptyp_object ((_ :: _ as ll), o); _ } ] ) ; _ } ] when isJsDotTLongIdent lii.txt -> label (self#longident_loc li) (self#unparseObject ~withStringKeys:true ~wrap:("(", ")") ll o) | _ -> (* small guidance: in `type foo = bar`, we're now at the `bar` part *) (* The single identifier has to be wrapped in a [ensureSingleTokenSticksToLabel] to avoid (@see @avoidSingleTokenWrapping): *) label (self#longident_loc li) (makeTup (List.map self#type_param_list_element l))) | Ptyp_variant (l, closed, low) -> let pcd_attributes = x.ptyp_attributes in let pcd_res = None in let variant_helper i rf = match rf.prf_desc with | Rtag (label, opt_ampersand, ctl) -> let label = { label with txt = add_raw_identifier_prefix label.txt } in let pcd_args = Pcstr_tuple ctl in let all_attrs = List.concat [ pcd_attributes; rf.prf_attributes ] in self#type_variant_leaf ~opt_ampersand ~polymorphic:true { pcd_name = label ; pcd_args ; pcd_res ; pcd_loc = label.loc ; pcd_attributes = all_attrs ; pcd_vars = [] } | Rinherit ct -> (* '| type' is required if the Rinherit is not the first row_field in the list *) if i = 0 then self#core_type ct else makeList ~postSpace:true [ atom "|"; self#core_type ct ] in let designator, tl = match closed, low with | Closed, None -> "", [] | Closed, Some tl -> "<", tl | Open, _ -> ">", [] in let node_list = List.mapi variant_helper l in let ll = List.map (fun t -> atom ("`" ^ t)) tl in let tag_list = makeList ~postSpace:true ~break:IfNeed (atom ">" :: ll) in let type_list = if tl != [] then node_list @ [ tag_list ] else node_list in let break = match type_list with | _ :: _ :: _ -> Layout.Always_rec | [] | _ :: [] -> IfNeed in makeList ~wrap:("[" ^ designator, "]") ~pad:(true, false) ~postSpace:true ~break type_list | Ptyp_class (li, []) -> makeList [ atom "#"; self#longident_loc li ] | Ptyp_class (li, l) -> label (makeList [ atom "#"; self#longident_loc li ]) (makeTup (List.map self#core_type l)) | Ptyp_extension e -> self#extension e | Ptyp_arrow (_, _, _) | Ptyp_alias (_, _) | Ptyp_poly (_, _) -> makeList ~wrap:("(", ")") ~break:IfNeed [ self#core_type x ] | Ptyp_open (m, ct) -> label (label (self#longident m.txt) (atom ".")) (self#core_type ct) in source_map ~loc:x.ptyp_loc result (* TODO: ensure that we have a form of desugaring that protects *) (* when final argument of curried pattern is a type constraint: *) (* | COLON non_arrowed_core_type EQUALGREATER expr { mkexp_constraint $4 (Some $2, None) } *) (* \----/ \--/ * constraint coerce * * Creates a ghost expression: * mkexp_constraint | Some t, None -> ghexp(Pexp_constraint(e, t)) *) method pattern_list_split_cons acc = function | { ppat_desc = Ppat_construct ( { txt = Lident "::"; _ } , Some ([], { ppat_desc = Ppat_tuple [ pat1; pat2 ]; _ }) ) ; _ } -> self#pattern_list_split_cons (pat1 :: acc) pat2 | p -> List.rev acc, p (* Adds parens to the right sub-tree when it is not a single node: * * A | B is formatted as A | B * A | (B | C) is formatted as A | (B | C) * * Also, adds parens to both sub-trees when both of them * are not a single node: * (A | B) | (C | D) is formatted as A | B | (C | D) * A | B | (C | D) is formatted as A | B | (C | D) * (A | B) | C is formatted as A | B | C * A | B | C is formatted as A | B | C * *) method or_pattern p1 p2 = let p1_raw, p2_raw = self#pattern p1, self#pattern p2 in let left, right = match p2.ppat_desc with | Ppat_or _ -> p1_raw, formatPrecedence p2_raw | _ -> p1_raw, p2_raw in makeList ~break:IfNeed ~inline:(true, true) ~sep:(Sep "|") ~postSpace:true ~preSpace:true [ left; right ] method pattern_with_precedence ?(attrs = []) p = let raw_pattern = self#pattern p in match p.ppat_desc, attrs with | Ppat_or (p1, p2), _ -> formatPrecedence (self#or_pattern p1 p2) | Ppat_constraint _, _ | _, _ :: _ -> makeList ~wrap:("(", ")") [ raw_pattern ] | _, [] -> raw_pattern (* Renders level 3 or simpler patterns: * * Simpler * ^ ----------- * | 1. [ ], { }, X.{ }, ident, (any-other-pattern-with-parens-around) * | 2. F(args), lazy(foo), [@attr] 1-2 * | 3. pat as alias, pat | pat * | 4. 1-3 : typ * v ------------ * Complex * * Assumes visually rendered attributes have already been rendered. *) method pattern_at_least_as_simple_as_alias_or_or x = let { Reason_attributes.arityAttrs = _; stdAttrs; _ } = Reason_attributes.partitionAttributes x.ppat_attributes in match stdAttrs, x.ppat_desc with | [], Ppat_or (p1, p2) -> self#or_pattern p1 p2 | [], Ppat_alias (p, s) -> let pattern_with_precedence = self#pattern_with_precedence p in label ~space:true (source_map ~loc:p.ppat_loc pattern_with_precedence) (makeList ~postSpace:true [ atom "as"; source_map ~loc:s.loc (protectIdentifier s.txt) ]) (* RA*) | _ -> self#pattern_at_least_as_simple_as_application x (* Formats a pattern that is a least as "simple" as function application * style syntax. Produces formatting that is as simple as either 1 or 2. * * Simpler * ^ ----------- * | 1. [ ], { }, X.{ }, ident, (any-other-pattern-with-parens-around) * | 2. F(args), lazy(foo), [@attr] 1-2 * | 3. pat as alias, pat | pat * | 4. 1-3 : typ * v ------------ * Complex * * * 1. and 2. do not need parens around them in order to apply attributes to * them. 3. does need parens around it to apply attributes to the whole * pattern. * * Assumes visually rendered attributes have already been rendered. *) method pattern_at_least_as_simple_as_application x = (* TODOATTRIBUTES: Handle the stdAttrs here *) let { Reason_attributes.stdAttrs; arityAttrs; _ } = Reason_attributes.partitionAttributes x.ppat_attributes in let formattedPattern = match x.ppat_desc with | Ppat_variant (l, Some p) -> if arityAttrs != [] then raise (NotPossible "Should never see embedded attributes on poly variant") else source_map ~loc:x.ppat_loc (self#constructor_pattern (atom ("`" ^ l)) p ~polyVariant:true ~arityIsClear:true) | Ppat_lazy p -> label (atom "lazy") (formatPrecedence (self#simple_pattern p)) | Ppat_construct ({ txt = Lident (("true" | "false") as txt); _ }, None) -> atom txt | Ppat_construct (({ txt; _ } as li), po) when not (txt = Lident "::") -> (* FIXME The third field always false *) let formattedConstruction = match po with (* TODO: Check the explicit_arity field on the pattern/constructor attributes to determine if should desugar to an *actual* tuple. *) (* | Some ({ *) (* ppat_desc=Ppat_tuple l; *) (* ppat_attributes=[{txt="explicit_arity"; loc}] *) (* }) -> *) (* label ~space:true (self#longident_loc li) (makeSpacedBreakableInlineList (List.map self#simple_pattern l)) *) | Some (_, pattern) -> let arityIsClear = isArityClear arityAttrs in self#constructor_pattern ~arityIsClear (self#longident_loc li) pattern | None -> self#longident_loc li in source_map ~loc:x.ppat_loc formattedConstruction | _ -> self#simple_pattern { x with ppat_attributes = arityAttrs } in if stdAttrs != [] then formatAttributed formattedPattern (self#attributes stdAttrs) else formattedPattern (* Format a pattern with no particular requirements of simplicity. For example when * formatting a pattern *inside* one tuple position: * | * v * let (x : int, foo) = .. * * * Renders level 3 or simpler patterns: * * Simpler * ^ ----------- * | 1. [ ], { }, X.{ }, ident, (any-other-pattern-with-parens-around) * | 2. F(args), lazy(foo), [@attr] 1-2 * | 3. pat as alias, pat | pat * | 4. 1-3 : typ * v ------------ * Complex * * Assumes visually rendered attributes have already been rendered. *) method pattern x = let { Reason_attributes.arityAttrs = _; stdAttrs; _ } = Reason_attributes.partitionAttributes x.ppat_attributes in match stdAttrs, x.ppat_desc with | [], Ppat_constraint (p, ct) -> let pat, typ = match p, ct with | ( { ppat_desc = Ppat_unpack unpack; _ } , { ptyp_desc = Ptyp_package (lid, cstrs); _ } ) -> let unpack = match unpack.txt with None -> "_" | Some unpack -> unpack in ( makeList ~postSpace:true [ atom "module"; atom unpack ] , self#typ_package ~mod_prefix:false lid cstrs ) | _ -> (* Have to call pattern_at_least_as_simple_as_alias_or_or because * we don't want to allow *another* nested type annotation without * first adding parens *) ( self#pattern_at_least_as_simple_as_alias_or_or p , self#core_type ct ) in formatTypeConstraint pat typ | _ -> self#pattern_at_least_as_simple_as_alias_or_or x method patternList ?(wrap = "", "") pat = let pat_list, pat_last = self#pattern_list_split_cons [] pat in let pat_list = List.map self#pattern pat_list in match pat_last with | { ppat_desc = Ppat_construct ({ txt = Lident "[]"; _ }, _); _ } -> (* [x,y,z] *) let lwrap, rwrap = wrap in makeList pat_list ~break:Layout.IfNeed ~sep:commaTrail ~postSpace:true ~wrap:(lwrap ^ "[", "]" ^ rwrap) | _ -> (* x::y *) makeES6List pat_list (self#pattern pat_last) ~wrap (* In some contexts the Ptyp_package needs to be protected by parens, or * the `module` keyword needs to be added. * Example: let f = (module Add: S.Z, x) => Add.add(x); * It's clear that `S.Z` is a module because it constraints the * `module Add` pattern. No need to add "module" before `S.Z`. * * Example2: * type t = (module Console); * In this case the "module" keyword needs to be printed to indicate * usage of a first-class-module. *) method typ_package ?(protect = false) ?(mod_prefix = true) lid cstrs = let packageIdent = let packageIdent = self#longident_loc lid in if mod_prefix then makeList ~postSpace:true [ atom "module"; packageIdent ] else packageIdent in let unwrapped_layout = match cstrs with | [] -> packageIdent | cstrs -> label ~space:true (makeList ~postSpace:true [ packageIdent; atom "with" ]) (makeList ~inline:(true, true) ~break:IfNeed ~sep:(Sep " and ") (List.map (fun (s, ct) -> label ~space:true (makeList ~break:IfNeed ~postSpace:true [ atom "type"; self#longident_loc s; atom "=" ]) (self#core_type ct)) cstrs)) in if protect then makeList ~postSpace:true ~wrap:("(", ")") [ unwrapped_layout ] else unwrapped_layout method simple_pattern x = let { Reason_attributes.arityAttrs; stdAttrs; _ } = Reason_attributes.partitionAttributes x.ppat_attributes in if stdAttrs != [] then formatSimpleAttributed (self#simple_pattern { x with ppat_attributes = arityAttrs }) (self#attributes stdAttrs) else let itm = match x.ppat_desc with | Ppat_construct ( { loc; txt = Lident (("()" | "[]" | "true" | "false") as x) } , _ ) -> (* Patterns' locations might include a leading bar depending on the * context it was parsed in. Therefore, we need to include further * information about the contents of the pattern such as tokens etc, * in order to get comments to be distributed correctly.*) atom ~loc x | Ppat_construct ({ txt = Lident "::"; _ }, _) -> self#patternList x (* LIST PATTERN *) | Ppat_construct (li, None) -> source_map ~loc:x.ppat_loc (self#longident_loc li) | Ppat_any -> atom "_" | Ppat_var { loc; txt } -> (* To prevent this: * * let oneArgShouldWrapToAlignWith * theFunctionNameBinding => theFunctionNameBinding; * * And instead do: * * let oneArgShouldWrapToAlignWith * theFunctionNameBinding => theFunctionNameBinding; * * We have to do something to the non "listy" patterns. Non listy * patterns don't indent the same amount as listy patterns when docked * to a label. * * If wrapping the non-listy pattern in [ensureSingleTokenSticksToLabel] * you'll get the following (even though it should wrap) * * let oneArgShouldWrapToAlignWith theFunctionNameBinding => theFunctionNameBinding; *) source_map ~loc (protectIdentifier txt) | Ppat_array l -> self#patternArray l | Ppat_unpack s -> let s = match s.txt with None -> "_" | Some s -> s in makeList ~wrap:("(", ")") ~break:IfNeed ~postSpace:true [ atom "module"; atom s ] | Ppat_open (lid, pat) -> (* let someFn Qualified.{ record } = ... *) let needsParens = match pat.ppat_desc with | Ppat_exception _ -> true | _ -> false in let pat = self#simple_pattern pat in label (label (self#longident_loc lid) (atom ".")) (if needsParens then formatPrecedence pat else pat) | Ppat_type li -> makeList [ atom "#"; self#longident_loc li ] | Ppat_record (l, closed) -> self#patternRecord l closed | Ppat_tuple l -> self#patternTuple l | Ppat_constant c -> let raw_literal, _ = Reason_attributes.extract_raw_literal x.ppat_attributes in self#constant ?raw_literal c | Ppat_interval (c1, c2) -> makeList ~postSpace:true [ self#constant c1; atom ".."; self#constant c2 ] | Ppat_variant (l, None) -> makeList [ atom "`"; atom l ] | Ppat_constraint _ -> formatPrecedence (self#pattern x) | Ppat_lazy p -> formatPrecedence (label (atom "lazy") (formatPrecedence (self#simple_pattern p))) | Ppat_extension e -> self#extension e | Ppat_exception p -> (* An exception pattern with an alias should be wrapped in (...) * The rules for what goes to the right of the exception are a little (too) nuanced. * It accepts "non simple" parameters, except in the case of `as`. * Here we consistently apply "simplification" to the exception argument. * Example: * | exception (Sys_error _ as exc) => raise exc * parses correctly while * | Sys_error _ as exc => raise exc * results in incorrect parsing with type error otherwise. *) makeList ~postSpace:true [ atom "exception"; self#simple_pattern p ] | _ -> formatPrecedence (self#pattern x) (* May have a redundant sourcemap *) in source_map ~loc:x.ppat_loc itm method label_exp lbl opt pat = let term = self#pattern pat in let param = match lbl with | Nolabel -> term | (Labelled lbl | Optional lbl) when is_punned_labelled_pattern_no_attrs pat lbl -> makeList [ atom namedArgSym; term ] | Labelled lbl | Optional lbl -> let lblLayout = makeList ~sep:(Sep " ") ~break:Layout.Never [ atom (namedArgSym ^ lbl); atom "as" ] in label lblLayout ~space:true term in match opt, lbl with | None, Optional _ -> makeList [ param; atom "=?" ] | None, _ -> param | Some o, _ -> makeList [ param; atom "="; self#unparseProtectedExpr ~forceParens:true o ] method access op cls e1 e2 = makeList [ (* Important that this be not breaking - at least to preserve same behavior as stock desugarer. It might even be required (double check in parser.mly) *) e1 ; atom op ; e2 ; atom cls ] method simple_get_application x = let { Reason_attributes.stdAttrs; jsxAttrs; _ } = Reason_attributes.partitionAttributes x.pexp_attributes in match x.pexp_desc, stdAttrs, jsxAttrs with | _, _ :: _, [] -> None (* Has some printed attributes - not simple *) | Pexp_apply ({ pexp_desc = Pexp_ident loc; _ }, l), [], _jsx :: _ -> (* TODO: Soon, we will allow the final argument to be an identifier which represents the entire list. This would be written as `<tag>...list</tag>`. If you imagine there being an implicit [] inside the tag, then it would be consistent with array spread: [...list] evaluates to the thing as list. *) let hasLabelledChildrenLiteral = List.exists (function Labelled "children", _ -> true | _ -> false) l in let rec hasSingleNonLabelledUnitAndIsAtTheEnd l = match l with | [] -> false | ( Nolabel , { pexp_desc = Pexp_construct ({ txt = Lident "()"; _ }, _) ; _ } ) :: [] -> true | (Nolabel, _) :: _ -> false | _ :: rest -> hasSingleNonLabelledUnitAndIsAtTheEnd rest in if hasLabelledChildrenLiteral && hasSingleNonLabelledUnitAndIsAtTheEnd l then match loc.txt with | Ldot (moduleLid, "createElement") -> Some (self#formatJSXComponent (String.concat "." (Longident.flatten_exn moduleLid)) l) | lid -> Some (self#formatJSXComponent (String.concat "." (Longident.flatten_exn lid)) l) else None | ( Pexp_apply ( { pexp_desc = Pexp_letmodule ( _ , ({ pmod_desc = Pmod_apply _; _ } as app) , { pexp_desc = Pexp_ident loc; _ } ) ; _ } , l ) , [] , _jsx :: _ ) -> (* TODO: Soon, we will allow the final argument to be an identifier which represents the entire list. This would be written as `<tag>...list</tag>`. If you imagine there being an implicit [] inside the tag, then it would be consistent with array spread: [...list] evaluates to the thing as list. *) let rec extract_apps args = function | { pmod_desc = Pmod_apply (m1, { pmod_desc = Pmod_ident loc; _ }) ; _ } -> let arg = String.concat "." (Longident.flatten_exn loc.txt) in extract_apps (arg :: args) m1 | { pmod_desc = Pmod_ident loc; _ } -> String.concat "." (Longident.flatten_exn loc.txt) :: args | _ -> failwith "Functors in JSX tags support only module names as parameters" in let hasLabelledChildrenLiteral = List.exists (function Labelled "children", _ -> true | _ -> false) l in let rec hasSingleNonLabelledUnitAndIsAtTheEnd l = match l with | [] -> false | ( Nolabel , { pexp_desc = Pexp_construct ({ txt = Lident "()"; _ }, _) ; _ } ) :: [] -> true | (Nolabel, _) :: _ -> false | _ :: rest -> hasSingleNonLabelledUnitAndIsAtTheEnd rest in if hasLabelledChildrenLiteral && hasSingleNonLabelledUnitAndIsAtTheEnd l then match Longident.flatten_exn loc.txt with | [] | [ _ ] -> Some (self#formatJSXComponent (Longident.last_exn loc.txt) l) | _ -> if Longident.last_exn loc.txt = "createElement" then match extract_apps [] app with | ftor :: args -> let applied = ftor ^ "(" ^ String.concat ", " args ^ ")" in Some (self#formatJSXComponent ~closeComponentName:ftor applied l) | _ -> None else None else None | _ -> None method sugar_set_expr_parts e = if e.pexp_attributes != [] then None (* should also check attributes underneath *) else match e.pexp_desc with | Pexp_apply ( { pexp_desc = Pexp_ident { txt = Ldot (Lident "Array", "set"); _ } ; _ } , [ (_, e1); (_, e2); (_, e3) ] ) -> let prec = Custom "prec_lbracket" in let lhs = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:prec e1) in Some (self#access "[" "]" lhs (self#unparseExpr e2), e3) | Pexp_apply ( { pexp_desc = Pexp_ident { txt = Ldot (Lident "String", "set"); _ } ; _ } , [ (_, e1); (_, e2); (_, e3) ] ) -> let prec = Custom "prec_lbracket" in let lhs = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:prec e1) in Some (self#access ".[" "]" lhs (self#unparseExpr e2), e3) | Pexp_apply ( { pexp_desc = Pexp_ident { txt = Ldot (Ldot (Lident "Bigarray", array), "set") ; _ } ; _ } , label_exprs ) -> (match array with | "Genarray" -> (match label_exprs with | [ (_, a); (_, { pexp_desc = Pexp_array ls; _ }); (_, c) ] -> let formattedList = List.map self#unparseExpr ls in let lhs = makeList [ self#simple_enough_to_be_lhs_dot_send a; atom "." ] in let rhs = makeList ~break:IfNeed ~postSpace:true ~sep:commaSep ~wrap:("{", "}") formattedList in Some (label lhs rhs, c) | _ -> None) | "Array1" | "Array2" | "Array3" -> (match label_exprs with | (_, a) :: rest -> (match List.rev rest with | (_, v) :: rest -> let args = List.map snd (List.rev rest) in let formattedList = List.map self#unparseExpr args in let lhs = makeList [ self#simple_enough_to_be_lhs_dot_send a; atom "." ] in let rhs = makeList ~break:IfNeed ~postSpace:true ~sep:commaSep ~wrap:("{", "}") formattedList in Some (label lhs rhs, v) | _ -> assert false) | _ -> assert false) | _ -> None) | _ -> None (** Detects "sugar expressions" (sugar for array/string setters) and returns their separate parts. *) (* How would we know not to print the sequence without { }; protecting the let a? * * let a * | * sequence * / \ * let a print a * alert a * let res = { * let a = something(); * { \ * alert(a); | portion to be parsed as a sequence() * let a = 20; | The final ; print(a) causes the entire * alert(a); | portion to be parsed as a sequence() * }; | * print (a); / * } * * ****************************************************************** * Any time the First expression of a sequence is another sequence, or (as in * this case) a let, wrapping the first sequence expression in { } is * required. * ****************************************************************** *) (** TODO: Configure the optional ability to print the *minimum* number of parens. It's simply a matter of changing [higherPrecedenceThan] to [higherOrEqualPrecedenceThan]. *) (* The point of the function is to ensure that ~reducesAfterRight:rightExpr will reduce at the proper time when it is reparsed, possibly wrapping it in parenthesis if needed. It ensures a rule doesn't reduce until *after* `reducesAfterRight` gets a chance to reduce. Example: The addition rule which has precedence of rightmost token "+", in `x + a * b` should not reduce until after the a * b gets a chance to reduce. This function would determine the minimum parens to ensure that. *) method ensureContainingRule ~withPrecedence ~reducesAfterRight () = match self#unparseExprRecurse reducesAfterRight with | SpecificInfixPrecedence ({ shiftPrecedence; _ }, rightRecurse) -> if higherPrecedenceThan shiftPrecedence withPrecedence then rightRecurse else if higherPrecedenceThan withPrecedence shiftPrecedence then LayoutNode (formatPrecedence ~loc:reducesAfterRight.pexp_loc (self#unparseResolvedRule rightRecurse)) else if isRightAssociative ~prec:withPrecedence then rightRecurse else LayoutNode (formatPrecedence ~loc:reducesAfterRight.pexp_loc (self#unparseResolvedRule rightRecurse)) | FunctionApplication itms -> let funApplExpr = formatAttachmentApplication applicationFinalWrapping None (itms, Some reducesAfterRight.pexp_loc) in (* Little hack: need to print parens for the `bar` application in e.g. `foo->other##(bar(baz))` or `foo->other->(bar(baz))`. *) if higherPrecedenceThan withPrecedence (Custom "prec_functionAppl") then LayoutNode (formatPrecedence ~loc:reducesAfterRight.pexp_loc funApplExpr) else LayoutNode funApplExpr | PotentiallyLowPrecedence itm -> LayoutNode (formatPrecedence ~loc:reducesAfterRight.pexp_loc itm) | Simple itm -> LayoutNode itm method ensureExpression ~reducesOnToken expr = match self#unparseExprRecurse expr with | SpecificInfixPrecedence ({ reducePrecedence; _ }, leftRecurse) -> if higherPrecedenceThan reducePrecedence reducesOnToken then leftRecurse else if higherPrecedenceThan reducesOnToken reducePrecedence then LayoutNode (formatPrecedence ~loc:expr.pexp_loc (self#unparseResolvedRule leftRecurse)) else if isLeftAssociative ~prec:reducesOnToken then leftRecurse else LayoutNode (formatPrecedence ~loc:expr.pexp_loc (self#unparseResolvedRule leftRecurse)) | FunctionApplication itms -> LayoutNode (formatAttachmentApplication applicationFinalWrapping None (itms, Some expr.pexp_loc)) | PotentiallyLowPrecedence itm -> LayoutNode (formatPrecedence ~loc:expr.pexp_loc itm) | Simple itm -> LayoutNode itm method unparseExpr x = match self#unparseExprRecurse x with | SpecificInfixPrecedence (_, resolvedRule) -> self#unparseResolvedRule resolvedRule | FunctionApplication itms -> formatAttachmentApplication applicationFinalWrapping None (itms, Some x.pexp_loc) | PotentiallyLowPrecedence itm -> itm | Simple itm -> itm (** Attempts to unparse: The beginning of a more general printing algorithm, that determines how to print based on precedence of tokens and rules. The end goal is that this should be completely auto-generated from the Menhir parsing tables. We could move more and more into this function. You could always just call self#expression, but `unparseExpr` will render infix/prefix/unary/terary fixities in their beautiful forms while minimizing parenthesis. *) (* This method may not even be needed *) method unparseUnattributedExpr x = match Reason_attributes.partitionAttributes x.pexp_attributes with | { docAttrs = []; stdAttrs = []; _ } -> self#unparseExpr x | _ -> makeList ~wrap:("(", ")") [ self#unparseExpr x ] (* ensureExpr ensures that the expression is wrapped in parens * e.g. is necessary in cases like: * let display = (:message=("hello": string)) => 1; * but not in cases like: * let f = (a: bool) => 1; * TODO: in the future we should probably use the type ruleCategory * to 'automatically' ensure the validity of a constraint expr with parens... *) method unparseProtectedExpr ?(forceParens = false) e = let itm = match e with | { pexp_attributes = []; pexp_desc = Pexp_constraint (x, ct); _ } -> let x = self#unparseExpr x in let children = [ x; label ~space:true (atom ":") (self#core_type ct) ] in if forceParens then makeList ~wrap:("(", ")") children else makeList children | { pexp_attributes; pexp_desc = Pexp_constant c; _ } -> (* When we have Some(-1) or someFunction(-1, -2), the arguments -1 and -2 * pass through this case. In this context they don't need to be wrapped in extra parens * Some((-1)) should be printed as Some(-1). This is in contrast with * 1 + (-1) where we print the parens for readability. *) let raw_literal, pexp_attributes = Reason_attributes.extract_raw_literal pexp_attributes in let constant = self#constant ?raw_literal ~parens:forceParens c in (match pexp_attributes with | [] -> constant | attrs -> let formattedAttrs = makeSpacedBreakableInlineList (List.map self#item_attribute attrs) in makeSpacedBreakableInlineList [ formattedAttrs; constant ]) | { pexp_desc = Pexp_function (_ :: _, _, Pfunction_body _); _ } -> self#formatPexpFun e | x -> self#unparseExpr x in source_map ~loc:e.pexp_loc itm method simplifyUnparseExpr ?(inline = false) ?(even_wrap_simple = false) ?(wrap = "(", ")") x = match self#unparseExprRecurse x, even_wrap_simple with | SpecificInfixPrecedence (_, itm), _ -> formatPrecedence ~inline ~wrap ~loc:x.pexp_loc (self#unparseResolvedRule itm) | FunctionApplication itms, _ -> formatPrecedence ~inline ~wrap ~loc:x.pexp_loc (formatAttachmentApplication applicationFinalWrapping None (itms, Some x.pexp_loc)) | PotentiallyLowPrecedence itm, _ | Simple itm, true -> formatPrecedence ~inline ~wrap ~loc:x.pexp_loc itm | Simple itm, false -> itm method unparseResolvedRule = function | LayoutNode layoutNode -> layoutNode | InfixTree _ as infixTree -> formatComputedInfixChain (computeInfixChain infixTree) method unparseExprApplicationItems x = match self#unparseExprRecurse x with | SpecificInfixPrecedence (_, wrappedRule) -> let itm = self#unparseResolvedRule wrappedRule in [ itm ], Some x.pexp_loc | FunctionApplication itms -> itms, Some x.pexp_loc | PotentiallyLowPrecedence itm -> [ itm ], Some x.pexp_loc | Simple itm -> [ itm ], Some x.pexp_loc (* Provides beautiful printing for pipe first sugar: * foo * ->f(a, b) * ->g(c, d) *) method formatPipeFirst e = let module PipeFirstTree = struct type exp = Parsetree.expression type flatNode = | Exp of exp | ExpU of exp (* uncurried *) | Args of (Asttypes.arg_label * exp) list type flatT = flatNode list type node = { exp : exp ; args : (Asttypes.arg_label * exp) list ; uncurried : bool } type t = node list let formatNode ?prefix ?(first = false) { exp; args; uncurried } = let formatLayout expr = let formatted = if first then self#ensureExpression ~reducesOnToken:(Token pipeFirstToken) expr else match expr with (* a->foo(x, _) and a->(foo(x, _)) are equivalent under pipe first * (a->foo)(x, _) is unnatural and desugars to * (__x) => (a |. foo)(x, __x) * Under `->`, it makes more sense to desugar into * a |. (__x => foo(x, __x)) * * Hence we don't need parens in this case. *) | expr when Reason_heuristics.isUnderscoreApplication expr -> LayoutNode (self#unparseExpr expr) | _ -> self#ensureContainingRule ~withPrecedence:(Token pipeFirstToken) ~reducesAfterRight:expr () in self#unparseResolvedRule formatted in let parens = match exp.pexp_desc with | Pexp_apply (e, _) -> printedStringAndFixityExpr e = UnaryPostfix "^" | _ -> false in let layout = match args with | [] -> let e = formatLayout exp in (match prefix with Some l -> makeList [ l; e ] | None -> e) | args -> let args = List.map (fun (label, arg) -> label, self#process_underscore_application arg) args in let fakeApplExp = let loc_end = match List.rev args with | (_, e) :: _ -> e.pexp_loc.loc_end | _ -> exp.pexp_loc.loc_end in { exp with pexp_loc = { exp.pexp_loc with loc_end } } in makeList (self#formatFunAppl ?prefix ~jsxAttrs:[] ~args ~funExpr:exp ~applicationExpr:fakeApplExp ~uncurried ()) in if parens then formatPrecedence layout else layout end in (* Imagine: foo->f(a, b)->g(c,d) * The corresponding parsetree looks more like: * (((foo->f)(a,b))->g)(c, d) * The extra Pexp_apply nodes, e.g. (foo->f), result into a * nested/recursive ast which is pretty inconvenient in terms of printing. * For printing purposes we actually want something more like: * foo->|f(a,b)|->|g(c, d)| * in order to provide to following printing: * foo * ->f(a, b) * ->g(c, d) * The job of "flatten" is to turn the inconvenient, nested ast * (((foo->f)(a,b))->g)(c, d) * into * [Exp foo; Exp f; Args [a; b]; Exp g; Args [c; d]] * which can be processed for printing purposes. *) let rec flatten ?(uncurried = false) acc = function | { pexp_desc = Pexp_apply ( { pexp_desc = Pexp_ident { txt = Longident.Lident "|."; _ } ; _ } , [ (Nolabel, arg1); (Nolabel, arg2) ] ) ; _ } -> flatten (PipeFirstTree.Exp arg2 :: acc) arg1 | { pexp_attributes ; pexp_desc = Pexp_apply ( { pexp_desc = Pexp_apply ( { pexp_desc = Pexp_ident { txt = Longident.Lident "|."; _ } ; _ } , [ (Nolabel, arg1); (Nolabel, arg2) ] ) ; _ } , args ) ; _ } as e -> let args = PipeFirstTree.Args args in (match pexp_attributes with | [ { attr_name = { txt = "u" | "bs"; _ } ; attr_payload = PStr [] ; _ } ] -> flatten (PipeFirstTree.ExpU arg2 :: args :: acc) arg1 | [] -> (* the uncurried attribute might sit on the Pstr_eval * enclosing the Pexp_apply*) if uncurried then flatten (PipeFirstTree.ExpU arg2 :: args :: acc) arg1 else flatten (PipeFirstTree.Exp arg2 :: args :: acc) arg1 | _ -> PipeFirstTree.Exp e :: acc) | { pexp_desc = Pexp_ident { txt = Longident.Lident "|."; _ }; _ } -> acc | arg -> PipeFirstTree.Exp arg :: acc in (* Given: foo->f(a, b)->g(c, d) * We get the following PipeFirstTree.flatNode list: * [Exp foo; Exp f; Args [a; b]; Exp g; Args [c; d]] * The job of `parse` is to turn the "flat representation" * (a.k.a. PipeFirstTree.flastNode list) into a more convenient structure * that allows us to express the segments: "foo" "f(a, b)" "g(c, d)". * PipeFirstTree.t expresses those segments. * [{exp = foo; args = []}; {exp = f; args = [a; b]}; {exp = g; args = [c; d]}] *) let rec parse acc = function | PipeFirstTree.Exp e :: PipeFirstTree.Args args :: xs -> parse (PipeFirstTree.{ exp = e; args; uncurried = false } :: acc) xs | PipeFirstTree.ExpU e :: PipeFirstTree.Args args :: xs -> parse (PipeFirstTree.{ exp = e; args; uncurried = true } :: acc) xs | PipeFirstTree.Exp e :: xs -> parse (PipeFirstTree.{ exp = e; args = []; uncurried = false } :: acc) xs | _ -> List.rev acc in (* Given: foo->f(. a,b); * The uncurried attribute doesn't sit on the Pexp_apply, but sits on * the top level Pstr_eval. We don't have access to top-level context here, * hence the lookup in the global uncurriedTable to correctly determine * if we need to print uncurried. *) let uncurried = try Hashtbl.find uncurriedTable e.pexp_loc with Not_found -> false in (* Turn * foo->f(a, b)->g(c, d) * into * [Exp foo; Exp f; Args [a; b]; Exp g; Args [c; d]] *) let (flatNodes : PipeFirstTree.flatT) = flatten ~uncurried [] e in (* Turn * [Exp foo; Exp f; Args [a; b]; Exp g; Args [c; d]] * into * [{exp = foo; args = []}; {exp = f; args = [a; b]}; {exp = g; args = [c; d]}] *) let (pipetree : PipeFirstTree.t) = parse [] flatNodes in (* Turn * [{exp = foo; args = []}; {exp = f; args = [a; b]}; {exp = g; args = [c; d]}] * into * [foo; ->f(a, b); ->g(c, d)] *) let pipeSegments = match pipetree with (* Special case printing of * foo->bar( * aa, * bb, * ) * * We don't want * foo * ->bar( * aa, * bb * ) * * Notice how `foo->bar` shouldn't break, it wastes space and is * inconsistent with * foo.bar( * aa, * bb, * ) *) | [ ({ exp = { pexp_desc = Pexp_ident _; _ }; _ } as hd); last ] -> let prefix = Some (makeList [ PipeFirstTree.formatNode ~first:true hd; atom "->" ]) in [ PipeFirstTree.formatNode ?prefix last ] | hd :: tl -> let hd = PipeFirstTree.formatNode ~first:true hd in let tl = List.map (fun node -> makeList [ atom "->"; PipeFirstTree.formatNode node ]) tl in hd :: tl | [] -> [] in (* Provide nice breaking for: [foo; ->f(a, b); ->g(c, d)] * foo * ->f(a, b) * ->g(c, d) *) makeList ~break:IfNeed ~inline:(true, true) pipeSegments (* * Replace (__x) => foo(__x) with foo(_) *) method process_underscore_application x = let process_application expr = let process_arg (l, e) = match e.pexp_desc with | Pexp_ident ({ txt = Lident "__x"; _ } as id) -> let pexp_desc = Pexp_ident { id with txt = Lident "_" } in l, { e with pexp_desc } | _ -> l, e in match expr.pexp_desc with | Pexp_apply (e_fun, args) -> let pexp_desc = Pexp_apply (e_fun, List.map process_arg args) in { expr with pexp_desc } | _ -> expr in match x.pexp_desc with | Pexp_function ( [ { pparam_desc = Pparam_val ( Nolabel , None , { ppat_desc = Ppat_var { txt = "__x"; _ }; _ } ) ; _ } ] , _ , Pfunction_body ({ pexp_desc = Pexp_apply _; _ } as e) ) -> process_application e | Pexp_function (params, constraint_, body) -> (match body with | Pfunction_cases _ -> x | Pfunction_body body -> let e_processed = self#process_underscore_application body in if body == e_processed then x else { x with pexp_desc = Pexp_function (params, constraint_, Pfunction_body e_processed) }) | _ -> x method unparseExprRecurse x = let x = self#process_underscore_application x in (* If there are any attributes, render unary like `(~-) x [@ppx]`, and infix like `(+) x y [@attr]` *) let { Reason_attributes.arityAttrs ; stdAttrs ; jsxAttrs ; stylisticAttrs ; uncurried ; _ } = Reason_attributes.partitionAttributes ~allowUncurry:(Reason_heuristics.bsExprCanBeUncurried x) x.pexp_attributes in let stylisticAttrs = Reason_attributes.maybe_remove_stylistic_attrs stylisticAttrs ~should_preserve:preserve_braces in let () = if uncurried then Hashtbl.add uncurriedTable x.pexp_loc true in let x = { x with pexp_attributes = stylisticAttrs @ arityAttrs @ stdAttrs @ jsxAttrs } in (* If there's any attributes, recurse without them, then apply them to the ends of functions, or simplify infix printings then append. *) match stdAttrs, x.pexp_desc with | _, Pexp_letop _ -> (* `Pexp_letop` is a bit different than `let` bindings because the attributes are in `Pexp_letop` rather than the `value_binding` type (check https://github.com/ocaml/ocaml/issues/9301 too), so we must treat it a bit differently if we want to print the attributes inside the braces. *) FunctionApplication [ makeLetSequence (self#letList x) ] | _ :: _, _ -> let withoutVisibleAttrs = { x with pexp_attributes = stylisticAttrs @ arityAttrs @ jsxAttrs } in let attributesAsList = List.map self#attribute stdAttrs in let itms = match self#unparseExprRecurse withoutVisibleAttrs with | SpecificInfixPrecedence ({ reducePrecedence; _ }, wrappedRule) -> let itm = self#unparseResolvedRule wrappedRule in (match reducePrecedence with (* doesn't need wrapping; we know how to parse *) | Custom "prec_lbracket" | Token "." -> [ itm ] | _ -> [ formatPrecedence ~loc:x.pexp_loc itm ]) | FunctionApplication itms -> itms | PotentiallyLowPrecedence itm -> [ formatPrecedence ~loc:x.pexp_loc itm ] | Simple itm -> [ itm ] in FunctionApplication [ makeList ~break:IfNeed ~inline:(true, true) ~indent:0 ~postSpace:true (List.concat [ attributesAsList; itms ]) ] | [], _ -> (match self#simplest_expression x with | Some se -> Simple se | None -> let self = self#reset_request_braces in (match x.pexp_desc with | Pexp_apply (e, ls) -> let ls = List.map (fun (l, expr) -> l, self#process_underscore_application expr) ls in (match e, ls with | e, _ when Reason_heuristics.isPipeFirst e -> let prec = Token pipeFirstToken in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (self#formatPipeFirst x) ) | ( { pexp_desc = Pexp_ident { txt = Ldot (Lident "Array", "get"); _ } ; _ } , [ (_, e1); (_, e2) ] ) -> (match e1.pexp_desc with | Pexp_ident { txt = Lident "_"; _ } -> let k = atom "Array.get" in let v = makeList ~postSpace:true ~sep:(Layout.Sep ",") ~wrap:("(", ")") [ atom "_"; self#unparseExpr e2 ] in Simple (label k v) | _ -> let prec = Custom "prec_lbracket" in let lhs = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:prec e1) in let rhs = self#unparseExpr e2 in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (self#access "[" "]" lhs rhs) )) | ( { pexp_desc = Pexp_ident { txt = Ldot (Lident "String", "get"); _ } ; _ } , [ (_, e1); (_, e2) ] ) -> if Reason_heuristics.isUnderscoreIdent e1 then let k = atom "String.get" in let v = makeList ~postSpace:true ~sep:(Layout.Sep ",") ~wrap:("(", ")") [ atom "_"; self#unparseExpr e2 ] in Simple (label k v) else let prec = Custom "prec_lbracket" in let lhs = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:prec e1) in let rhs = self#unparseExpr e2 in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (self#access ".[" "]" lhs rhs) ) | ( { pexp_desc = Pexp_ident { txt = Ldot (Ldot (Lident "Bigarray", "Genarray"), "get") ; _ } ; _ } , [ (_, e1); (_, ({ pexp_desc = Pexp_array ls; _ } as e2)) ] ) -> if Reason_heuristics.isUnderscoreIdent e1 then let k = atom "Bigarray.Genarray.get" in let v = makeList ~postSpace:true ~sep:(Layout.Sep ",") ~wrap:("(", ")") [ atom "_"; self#unparseExpr e2 ] in Simple (label k v) else let formattedList = List.map self#unparseExpr ls in let lhs = makeList [ self#simple_enough_to_be_lhs_dot_send e1; atom "." ] in let rhs = makeList ~break:IfNeed ~postSpace:true ~sep:commaSep ~wrap:("{", "}") formattedList in let prec = Custom "prec_lbracket" in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (label lhs rhs) ) | ( { pexp_desc = Pexp_ident { txt = Ldot ( Ldot ( Lident "Bigarray" , (("Array1" | "Array2" | "Array3") as arrayIdent) ) , "get" ) ; _ } ; _ } , (_, e1) :: rest ) -> if Reason_heuristics.isUnderscoreIdent e1 then let k = atom ("Bigarray." ^ arrayIdent ^ ".get") in let v = makeList ~postSpace:true ~sep:(Layout.Sep ",") ~wrap:("(", ")") (atom "_" :: List.map (fun (_, e) -> self#unparseExpr e) rest) in Simple (label k v) else let formattedList = List.map self#unparseExpr (List.map snd rest) in let lhs = makeList [ self#simple_enough_to_be_lhs_dot_send e1; atom "." ] in let rhs = makeList ~break:IfNeed ~postSpace:true ~sep:commaSep ~wrap:("{", "}") formattedList in let prec = Custom "prec_lbracket" in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (label lhs rhs) ) | _ -> (match self#sugar_set_expr_parts x with (* Returns None if there's attributes - would render as regular function *) (* Format as if it were an infix function application with identifier "=" *) | Some (simplyFormatedLeftItm, rightExpr) -> let tokenPrec = Token updateToken in let rightItm = self#ensureContainingRule ~withPrecedence:tokenPrec ~reducesAfterRight:rightExpr () in let leftWithOp = makeList ~postSpace:true [ simplyFormatedLeftItm; atom updateToken ] in let expr = label ~space:true leftWithOp (self#unparseResolvedRule rightItm) in SpecificInfixPrecedence ( { reducePrecedence = tokenPrec ; shiftPrecedence = tokenPrec } , LayoutNode expr ) | None -> (match printedStringAndFixityExpr e, ls with (* We must take care not to print two subsequent prefix operators without spaces between them (`! !` could become `!!` which is totally different). *) | AlmostSimplePrefix prefixStr, [ (Nolabel, rightExpr) ] -> let forceSpace = match rightExpr.pexp_desc with | Pexp_apply (ee, _) -> (match printedStringAndFixityExpr ee with | AlmostSimplePrefix _ -> true | _ -> false) | _ -> false in let prec = Token prefixStr in let rightItm = self#unparseResolvedRule (self#ensureContainingRule ~withPrecedence:prec ~reducesAfterRight:rightExpr ()) in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode (label ~space:forceSpace (atom prefixStr) rightItm) ) | UnaryPostfix postfixStr, [ (Nolabel, leftExpr) ] -> let forceSpace = match leftExpr.pexp_desc with | Pexp_apply (ee, _) -> (match printedStringAndFixityExpr ee with | UnaryPostfix "^" | AlmostSimplePrefix _ -> true | _ -> false) | _ -> false in let leftItm = match leftExpr.pexp_desc with | Pexp_apply (e, _) -> (match printedStringAndFixityExpr e with | Infix printedIdent when requireNoSpaceFor printedIdent || Reason_heuristics.isPipeFirst e -> self#unparseExpr leftExpr | _ -> self#simplifyUnparseExpr leftExpr) | Pexp_field _ -> self#unparseExpr leftExpr | _ -> self#simplifyUnparseExpr leftExpr in Simple (label ~space:forceSpace leftItm (atom postfixStr)) | ( Infix printedIdent , [ (Nolabel, leftExpr); (Nolabel, rightExpr) ] ) -> let infixToken = Token printedIdent in let rightItm = self#ensureContainingRule ~withPrecedence:infixToken ~reducesAfterRight:rightExpr () in let leftItm = self#ensureExpression ~reducesOnToken:infixToken leftExpr in (* Left exprs of infix tokens which we don't print spaces for (e.g. `##`) need to be wrapped in parens in the case of postfix `^`. Otherwise, printing will be ambiguous as `^` is also a valid start of an infix operator. *) let formattedLeftItm = match leftItm with | LayoutNode x -> (match leftExpr.pexp_desc with | Pexp_apply (e, _) -> (match printedStringAndFixityExpr e with | UnaryPostfix "^" when requireNoSpaceFor printedIdent -> LayoutNode (formatPrecedence ~loc:leftExpr.pexp_loc x) | _ -> leftItm) | _ -> leftItm) | InfixTree _ -> leftItm in let infixTree = InfixTree (printedIdent, formattedLeftItm, rightItm) in SpecificInfixPrecedence ( { reducePrecedence = infixToken ; shiftPrecedence = infixToken } , infixTree ) (* Will be rendered as `(+) a b c` which is parsed with higher precedence than all the other forms unparsed here.*) | UnaryPlusPrefix printedIdent, [ (Nolabel, rightExpr) ] -> let prec = Custom "prec_unary" in let rightItm = self#unparseResolvedRule (self#ensureContainingRule ~withPrecedence:prec ~reducesAfterRight:rightExpr ()) in let expr = label ~space:true (atom printedIdent) rightItm in SpecificInfixPrecedence ( { reducePrecedence = prec ; shiftPrecedence = Token printedIdent } , LayoutNode expr ) | ( (UnaryMinusPrefix printedIdent as x) , [ (Nolabel, rightExpr) ] ) | ( (UnaryNotPrefix printedIdent as x) , [ (Nolabel, rightExpr) ] ) -> let forceSpace = match x with | UnaryMinusPrefix _ -> true | _ -> (match rightExpr.pexp_desc with | Pexp_apply ( { pexp_desc = Pexp_ident { txt = Lident s; _ } ; _ } , _ ) -> isSimplePrefixToken s | _ -> false) in let prec = Custom "prec_unary" in let rightItm = self#unparseResolvedRule (self#ensureContainingRule ~withPrecedence:prec ~reducesAfterRight:rightExpr ()) in let expr = label ~space:forceSpace (atom printedIdent) rightItm in SpecificInfixPrecedence ( { reducePrecedence = prec ; shiftPrecedence = Token printedIdent } , LayoutNode expr ) (* Will need to be rendered in self#expression as (~-) x y z. *) | _, _ -> (* This case will happen when there is something like * * Bar.createElement a::1 b::2 [] [@bla] [@JSX] * * At this point the bla will be stripped (because it's a visible * attribute) but the JSX will still be there. *) (* this case also happens when we have something like: * List.map((a) => a + 1, numbers); * We got two "List.map" as Pexp_ident & a list of arguments: * [`(a) => a + 1`; `numbers`] * * Another possible case is: * describe("App", () => * test("math", () => * Expect.expect(1 + 2) |> toBe(3))); *) let uncurried = try Hashtbl.find uncurriedTable x.pexp_loc with | Not_found -> false in FunctionApplication (self#formatFunAppl ~uncurried ~jsxAttrs ~args:ls ~applicationExpr:x ~funExpr:e ())))) | Pexp_field (e, li) -> let prec = Token "." in let leftItm = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:prec e) in let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes e.pexp_attributes in let formattedLeftItm = if stdAttrs == [] then leftItm else formatPrecedence ~loc:e.pexp_loc leftItm in let layout = label (makeList [ formattedLeftItm; atom "." ]) (self#longident_loc li) in SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode layout ) | Pexp_construct (li, Some eo) when not (is_simple_construct (view_expr x)) -> (match view_expr x with (* TODO: Explicit arity *) | `normal -> let arityIsClear = isArityClear arityAttrs in FunctionApplication [ self#constructor_expression ~arityIsClear stdAttrs (self#longident_loc li) eo ] | _ -> assert false) | Pexp_variant (l, Some eo) -> if arityAttrs != [] then raise (NotPossible "Should never see embedded attributes on poly variant") else FunctionApplication [ self#constructor_expression ~polyVariant:true ~arityIsClear:true stdAttrs (atom ("`" ^ add_raw_identifier_prefix l)) eo ] (* TODO: Should protect this identifier *) | Pexp_setinstvar (s, rightExpr) -> let rightItm = self#unparseResolvedRule (self#ensureContainingRule ~withPrecedence:(Token updateToken) ~reducesAfterRight:rightExpr ()) in let expr = label ~space:true (makeList ~postSpace:true [ protectIdentifier s.txt; atom updateToken ]) rightItm in SpecificInfixPrecedence ( { reducePrecedence = Token updateToken ; shiftPrecedence = Token updateToken } , LayoutNode expr ) | Pexp_setfield (leftExpr, li, rightExpr) -> let rightItm = self#unparseResolvedRule (self#ensureContainingRule ~withPrecedence:(Token updateToken) ~reducesAfterRight:rightExpr ()) in let leftItm = self#unparseResolvedRule (self#ensureExpression ~reducesOnToken:(Token ".") leftExpr) in let leftLbl = label (makeList [ leftItm; atom "." ]) (self#longident_loc li) in let expr = label ~space:true (makeList ~postSpace:true [ leftLbl; atom updateToken ]) rightItm in SpecificInfixPrecedence ( { reducePrecedence = Token updateToken ; shiftPrecedence = Token updateToken } , LayoutNode expr ) | Pexp_match (e, l) when detectTernary l != None -> (match detectTernary l with | None -> raise (Invalid_argument "Impossible") | Some (tt, ff) -> let ifTrue = self#reset_request_braces#unparseExpr tt in let testItem = self#unparseResolvedRule (self#reset_request_braces#ensureExpression e ~reducesOnToken:(Token "?")) in let ifFalse = self#unparseResolvedRule (self#reset_request_braces#ensureContainingRule ~withPrecedence:(Token ":") ~reducesAfterRight:ff ()) in let trueBranch = label ~space:true ~break:`Never (atom "?") ifTrue in let falseBranch = label ~space:true ~break:`Never (atom ":") ifFalse in let expr = label ~space:true testItem (makeList ~break:IfNeed ~sep:(Sep " ") ~inline:(true, true) [ trueBranch; falseBranch ]) in SpecificInfixPrecedence ( { reducePrecedence = Token ":" ; shiftPrecedence = Token "?" } , LayoutNode expr )) | _ -> (match self#expression_requiring_parens_in_infix x with | Some e -> e | None -> raise (Invalid_argument "No match for unparsing expression")))) method formatNonSequencyExpression ?parent e = (* Instead of printing: * let result = { open Fmt; strf(foo);} * * We format as: * let result = Fmt.(strf(foo)) * * (Also see https://github.com/facebook/Reason/issues/114) *) match e.pexp_attributes, e.pexp_desc with | [], Pexp_record _ (* syntax sugar for M.{x:1} *) | [], Pexp_tuple _ (* syntax sugar for M.(a, b) *) | [], Pexp_object { pcstr_fields = []; _ } (* syntax sugar for M.{} *) | [], Pexp_construct ({ txt = Lident "::"; _ }, Some _) | [], Pexp_construct ({ txt = Lident "[]"; _ }, _) | [], Pexp_extension ({ txt = "mel.obj"; _ }, _) -> self#simplifyUnparseExpr e (* syntax sugar for M.[x,y] *) (* syntax sugar for the rest, wrap with parens to avoid ambiguity. * E.g., avoid M.(M2.v) being printed as M.M2.v * Or ReasonReact.(<> {string("Test")} </>); *) | _ -> (match parent with | Some parent when Reason_attributes.has_open_notation_attr parent.pexp_attributes -> makeList ~break:IfNeed ~inline:(true, false) ~postSpace:true ~wrap:("(", ")") ~sep:(SepFinal (";", "")) (self#letList e) | Some _ | None -> makeList ~wrap:("(", ")") ~break:IfNeed [ self#unparseExpr e ]) (* It's not enough to only check if precedence of an infix left/right is * greater than the infix itself. We also should likely pay attention to * left/right associativity. So how do we render the minimum number of * parenthesis? * * The intuition is that sequential right associative operators will * naturally build up deep trees on the right side (left builds up left-deep * trees). So by default, we add parens to model the tree structure that * we're rendering except when the parser will *naturally* parse the tree * structure that the parens assert. * * Sequential identical infix operators: * ------------------------------------ * So if we see a nested infix operator of precedence Y, as one side of * another infix operator that has the same precedence (Y), that is S * associative on the S side of the function application, we don't need to * wrap in parens. In more detail: * * -Add parens around infix binary function application * Exception 1: Unless we are a left-assoc operator of precedence X in the left branch of an operator w/ precedence X. * Exception 2: Unless we are a right-assoc operator of precedence X in the right branch of an operator w/ precedence X. * Exception 3: Unless we are a _any_-assoc X operator in the _any_ branch of an Y operator where X has greater precedence than Y. * * Note that the exceptions do not specify any special cases for mixing * left/right associativity. Precedence is what determines necessity of * parens for operators with non-identical precedences. Associativity * only determines necessity of parens for identically precedented operators. * * PLUS is left assoc: * - So this one *shouldn't* expand into two consecutive infix +: * * * [Pexp_apply] * / \ * first + [Pexp_apply] * / \ * second + third * * * - This one *should*: * * [Pexp_apply] * / \ * [ Pexp_apply ] + third * / \ * first + second * * * COLONCOLON is right assoc, so * - This one *should* expand into two consecutive infix :: : * * [Pexp_apply] * / \ * first :: [Pexp_apply] * / \ * second :: third * * * - This one *shouldn't*: * * [Pexp_apply] * / \ * [ Pexp_apply ] :: third * / \ * first :: second * * * Sequential differing infix operators: * ------------------------------------ * * Neither of the following require paren grouping because of rule 3. * * * [Pexp_apply] * / \ * first + [Pexp_apply] * / \ * second * third * * * [Pexp_apply] * / \ * [Pexp_apply + third * / \ * first * second * * The previous has nothing to do with the fact that + and * have the same * associativity. Exception 3 applies to the following where :: is right assoc * and + is left. + has higher precedence than :: * * - so parens aren't required to group + when it is in a branch of a * lower precedence :: * * [Pexp_apply] * / \ * first :: [Pexp_apply] * / \ * second + third * * * - Whereas there is no Exception that applies in this case (Exception 3 * doesn't apply) so parens are required around the :: in this case. * * [Pexp_apply] * / \ * [ Pexp_apply ] + third * / \ * first :: second *) method classExpressionToFormattedApplicationItems = function | { pcl_desc = Pcl_apply (ce, l); _ } -> [ label (self#simple_class_expr ce) (self#label_x_expression_params l) ] | x -> [ self#class_expr x ] method dotdotdotChild expr = let self = self#inline_braces in match expr with | { pexp_desc = Pexp_apply (funExpr, args); _ } when printedStringAndFixityExpr funExpr == Normal && Reason_attributes.without_stylistic_attrs expr.pexp_attributes == [] -> (match self#formatFunAppl ~prefix:(atom "...") ~wrap:("{", "}") ~jsxAttrs:[] ~args ~funExpr ~applicationExpr:expr () with | [ x ] -> x | xs -> makeList xs) | { pexp_desc = Pexp_function (_ :: _, _, Pfunction_body _); _ } -> self#formatPexpFun ~prefix:(atom "...") ~wrap:("{", "}") expr | _ -> (* Currently spreading a list must be wrapped in { }. * You can remove the entire even_wrap_simple arg when that is fixed. *) let even_wrap_simple = match expr with | { pexp_desc = Pexp_construct ( { txt = Lident "::"; _ } , Some { pexp_desc = Pexp_tuple _; _ } ) ; _ } -> not (Reason_attributes.has_jsx_attributes expr.pexp_attributes) | _ -> false in let childLayout = self#dont_preserve_braces#simplifyUnparseExpr ~even_wrap_simple ~wrap:("{", "}") expr in makeList ~break:Never [ atom "..."; childLayout ] (* How JSX is formatted/wrapped. We want the attributes to wrap independently * of children. * * <xxx * attr1=blah * attr2=foo> * child * child * child * </x> * * +-------------------------------+ * | left right (list of attrs) | * | / \ / \ | * | <tag | * | attr1=blah | * | attr2=foo | * +-------------------------------+ * | * | * | * | left right list of children with * | / \ / \ open,close = > </tag> * | +---------+ * +--| | > * +---------+ * * </tag> *) method formatJSXComponent componentName ?closeComponentName args = let self = self#inline_braces in let rec processArguments arguments processedAttrs children = match arguments with | (Labelled "children", { pexp_desc = Pexp_construct (_, None); _ }) :: tail -> processArguments tail processedAttrs None | ( Labelled "children" , ({ pexp_desc = Pexp_construct ( { txt = Lident "::"; _ } , Some { pexp_desc = Pexp_tuple _; _ } ) ; _ } as arg) ) :: tail -> (match self#formatJsxChildrenNonSpread arg [] with (* Back out of the standard jsx child formatting *) | None -> processArguments tail processedAttrs (Some [ self#dotdotdotChild arg ]) | Some chldn -> processArguments tail processedAttrs (Some chldn)) | (Labelled "children", expr) :: tail -> processArguments tail processedAttrs (Some [ self#dotdotdotChild expr ]) | (Optional lbl, expression) :: tail -> let { Reason_attributes.jsxAttrs; stdAttrs; _ } = Reason_attributes.partitionAttributes expression.pexp_attributes in let value_has_jsx = jsxAttrs != [] in let nextAttr = match expression.pexp_desc with | Pexp_ident ident when isPunnedJsxArg lbl ident stdAttrs -> makeList ~break:Layout.Never [ atom "?"; atom lbl ] | Pexp_construct _ when value_has_jsx -> label (makeList ~break:Layout.Never [ atom lbl; atom "=?" ]) (self#simplifyUnparseExpr ~wrap:("{", "}") expression) | _ -> label (makeList ~break:Layout.Never [ atom lbl; atom "=?" ]) (self#dont_preserve_braces#simplifyUnparseExpr ~wrap:("{", "}") expression) in processArguments tail (nextAttr :: processedAttrs) children | (Labelled lbl, expression) :: tail -> let { Reason_attributes.jsxAttrs; stdAttrs; _ } = Reason_attributes.partitionAttributes expression.pexp_attributes in let value_has_jsx = jsxAttrs != [] in let nextAttr = match expression.pexp_desc with | Pexp_ident ident when isPunnedJsxArg lbl ident stdAttrs -> atom lbl | _ when isJSXComponent expression -> label (atom (lbl ^ "=")) (makeList ~break:IfNeed ~wrap:("{", "}") [ self#dont_preserve_braces#simplifyUnparseExpr expression ]) | Pexp_open (me, e) when self#isSeriesOfOpensFollowedByNonSequencyExpression expression -> label (makeList [ atom lbl ; atom "=" ; label (self#moduleExpressionToFormattedApplicationItems me.popen_expr) (atom ".") ]) (self#formatNonSequencyExpression e) | Pexp_apply (({ pexp_desc = Pexp_ident _; _ } as funExpr), args) when printedStringAndFixityExpr funExpr == Normal && Reason_attributes.without_stylistic_attrs expression.pexp_attributes == [] -> let lhs = makeList [ atom lbl; atom "=" ] in (match self#formatFunAppl ~prefix:lhs ~wrap:("{", "}") ~jsxAttrs:[] ~args ~funExpr ~applicationExpr:expression () with | [ x ] -> x | xs -> makeList xs) | Pexp_apply (eFun, _) -> let lhs = makeList [ atom lbl; atom "=" ] in let rhs = match printedStringAndFixityExpr eFun with | Infix str when requireNoSpaceFor str -> self#unparseExpr expression | _ -> self#dont_preserve_braces#simplifyUnparseExpr ~wrap:("{", "}") expression in label lhs rhs | Pexp_construct _ when value_has_jsx -> label (makeList [ atom lbl; atom "=" ]) (self#simplifyUnparseExpr ~wrap:("{", "}") expression) | Pexp_record _ | Pexp_construct _ | Pexp_array _ | Pexp_tuple _ | Pexp_match _ | Pexp_extension _ | Pexp_function (_, _, Pfunction_cases _) -> label (makeList [ atom lbl; atom "=" ]) (self#dont_preserve_braces#simplifyUnparseExpr ~wrap:("{", "}") expression) | Pexp_function (_ :: _, _, Pfunction_body _) -> let propName = makeList [ atom lbl; atom "=" ] in self#formatPexpFun ~wrap:("{", "}") ~prefix:propName expression | _ -> makeList [ atom lbl ; atom "=" ; self#dont_preserve_braces#simplifyUnparseExpr ~wrap:("{", "}") expression ] in processArguments tail (nextAttr :: processedAttrs) children | [] -> processedAttrs, children | _ :: tail -> processArguments tail processedAttrs children in let reversedAttributes, children = processArguments args [] None in match children with | None -> makeList ~break:IfNeed ~wrap:("<" ^ componentName, "/>") ~pad:(true, true) ~inline:(false, false) ~postSpace:true (List.rev reversedAttributes) | Some renderedChildren -> let openTagAndAttrs = match reversedAttributes with | [] -> atom ("<" ^ componentName ^ ">") | revAttrHd :: revAttrTl -> let finalAttrList = List.rev (makeList ~break:Layout.Never [ revAttrHd; atom ">" ] :: revAttrTl) in let renderedAttrList = makeList ~inline:(true, true) ~break:IfNeed ~pad:(false, false) ~preSpace:true finalAttrList in label ~space:true (atom ("<" ^ componentName)) renderedAttrList in label openTagAndAttrs (makeList ~wrap: ( "" , "</" ^ (match closeComponentName with | None -> componentName | Some close -> close) ^ ">" ) ~inline:(true, false) ~break:IfNeed ~pad:(true, true) ~postSpace:true renderedChildren) (* Format Pexp_fun expression: (a, b) => a + b; * Example: the `onClick` prop with Pexp_fun in * <div * onClick={(event) => { * Js.log(event); * handleChange(event); * }} * />; * * The arguments of the callback (Pexp_fun) should be inlined as much as * possible on the same line as `onClick={`. * Also notice the brace-hugging `}}` at the end. * * ~prefix -> prefixes the Pexp_fun layout, example `onClick=` * ~wrap -> wraps the `Pexp_fun` in the tuple passed to wrap, e.g. `{` and * `}` for jsx *) method formatPexpFun ?(prefix = atom "") ?(wrap = "", "") expression = let lwrap, rwrap = wrap in let { Reason_attributes.stdAttrs; uncurried; _ } = Reason_attributes.partitionAttributes expression.pexp_attributes in if uncurried then Hashtbl.add uncurriedTable expression.pexp_loc true; let args, ret = (* omit attributes here, we're formatting them manually *) self#curriedPatternsAndReturnVal { expression with pexp_attributes = [] } in (* Format `onClick={` *) let propName = makeList ~wrap:("", lwrap) [ prefix ] in let argsList = let args = match args with [ argsList ] -> argsList | args -> makeList args in match stdAttrs with | [] -> args | attrs -> (* attach attributes to the args of the Pexp_fun: `[@attr] (event)` *) let attrList = makeList ~inline:(true, true) ~break:IfNeed ~postSpace:true (List.map self#attribute attrs) in let all = [ attrList; args ] in makeList ~break:IfNeed ~inline:(true, true) ~postSpace:true all in (* Format `onClick={(event)` *) let propNameWithArgs = label propName argsList in (* Pick constraints: (a, b) :string => ... * :string is the constraint here *) let return, optConstr = match ret.pexp_desc with | Pexp_constraint (e, ct) -> e, Some (self#non_arrowed_core_type ct) | _ -> ret, None in let returnExpr, leftWrap = match self#letList return with | [ x ] -> (* Format `handleChange(event)}` or * handleChange(event) * } * * If the closing rwrap is empty, we need it to be inline, otherwise * we get a empty newline when the layout breaks: * ``` * handleChange(event) * * ``` * (Notice to nonsense newline) *) let shouldPreserveBraces = self#should_preserve_requested_braces return in let rwrap = if shouldPreserveBraces then "}" ^ rwrap else rwrap in let inlineClosing = rwrap = "" in let layout = makeList ~break:IfNeed ~inline:(true, inlineClosing) ~wrap:("", rwrap) [ x ] in layout, if shouldPreserveBraces then "{" else "" | xs -> (* Format `Js.log(event)` and `handleChange(event)` as * { * Js.log(event); * handleChange(event); * }} *) let layout = makeList ~break:Always_rec ~sep:(SepFinal (";", ";")) ~wrap:("{", "}" ^ rwrap) xs in layout, "" in match optConstr with | Some typeConstraint -> let upToConstraint = label ~space:true (makeList ~wrap:("", ":") [ propNameWithArgs ]) typeConstraint in label (makeList ~wrap:("", " => " ^ leftWrap) [ upToConstraint ]) returnExpr | None -> label (makeList ~wrap:("", " => " ^ leftWrap) [ propNameWithArgs ]) returnExpr (* Creates a list of simple module expressions corresponding to module expression or functor application. *) method moduleExpressionToFormattedApplicationItems ?(prefix = "") x = match x with (* are we formatting a functor application with a module structure as arg? * YourLib.Make({ * type t = int; * type s = string; * }); * * We should "hug" the parens here: ({ & }) should stick together. *) | { pmod_desc = Pmod_apply ( ({ pmod_desc = Pmod_ident _; _ } as m1) , ({ pmod_desc = Pmod_structure _; _ } as m2) ) ; _ } -> let modIdent = source_map ~loc:m1.pmod_loc (self#simple_module_expr m1) in let name = if prefix <> "" then makeList ~postSpace:true [ atom prefix; modIdent ] else modIdent in let arg = source_map ~loc:m2.pmod_loc (self#simple_module_expr ~hug:true m2) in label name arg | _ -> let rec extract_apps args = function | { pmod_desc = Pmod_apply_unit me; _ } -> let head = source_map ~loc:me.pmod_loc (self#module_expr me) in label head (makeTup args) | { pmod_desc = Pmod_apply (me1, me2); _ } -> let arg = source_map ~loc:me2.pmod_loc (self#simple_module_expr me2) in extract_apps (arg :: args) me1 | me -> let head = source_map ~loc:me.pmod_loc (self#module_expr me) in if args == [] then head else label head (makeTup args) in let functor_application = extract_apps [] x in if prefix <> "" then makeList ~postSpace:true [ atom prefix; functor_application ] else functor_application (* Watch out, if you see something like below (sixteenTuple getting put on a * newline), yet a paren-wrapped list wouldn't have had an extra newlin, you * might need to wrap the single token (sixteenTuple) in [ensureSingleTokenSticksToLabel]. * let ( * axx, * oxx, * pxx * ): * sixteenTuple = echoTuple ( * 0, * 0, * 0 * ); *) method formatSimplePatternBinding labelOpener layoutPattern typeConstraint appTerms = let letPattern = label ~break:`Never ~space:true (atom labelOpener) layoutPattern in let upUntilEqual = match typeConstraint with | None -> letPattern | Some (tc, `Constraint) -> formatTypeConstraint letPattern tc | Some (tc, `Coercion ground) -> formatCoerce letPattern ground tc in let includingEqual = makeList ~postSpace:true [ upUntilEqual; atom "=" ] in formatAttachmentApplication applicationFinalWrapping (Some (true, includingEqual)) appTerms (* The [bindingLabel] is either the function name (if let binding) or first * arg (if lambda). * * For defining layout of the following form: * * lbl one * two * constraint => { * ... * } * * If using "=" as the arrow, can also be used for: * * met private * myMethod * constraint = fun ... * *) method wrapCurriedFunctionBinding ?attachTo ~arrow ?(sweet = false) ?(spaceBeforeArrow = true) prefixText bindingLabel patternList returnedAppTerms = let allPatterns = bindingLabel :: patternList in let partitioning = curriedFunctionFinalWrapping allPatterns in let everythingButReturnVal = (* Because align_closing is set to false, you get: * * (Brackets[] inserted to show boundaries between open/close of pattern list) * let[firstThing * secondThing * thirdThing] * * It only wraps to indent four by coincidence: If the "opening" token was * longer, you'd get: * * letReallyLong[firstThing * secondThing * thirdThing] * * For curried let bindings, we stick the arrow in the *last* pattern: * let[firstThing * secondThing * thirdThing =>] * * But it could have just as easily been the "closing" token corresponding to * "let". This works because we have [align_closing = false]. The benefit of * shoving it in the last pattern, is that we can turn [align_closing = true] * and still have the arrow stuck to the last pattern (which is usually what we * want) (See modeTwo below). *) match partitioning with | None when sweet -> makeList ~pad:(false, spaceBeforeArrow) ~wrap:("", arrow) ~indent:(settings.space * settings.indentWrappedPatternArgs) ~postSpace:true ~inline:(true, true) ~break:IfNeed allPatterns | None -> (* We want the binding label to break *with* the arguments. Again, there's no apparent way to add additional indenting for the args with this setting. *) (* Formats lambdas by treating the first pattern as the * "bindingLabel" which is kind of strange in some cases (when * you only have one arg that wraps)... * * echoTheEchoer ( * fun ( * a, * p * ) => ( * a, * b * ) * * But it makes sense in others (where you have multiple args): * * echoTheEchoer ( * fun ( * a, * p * ) * mySecondArg * myThirdArg => ( * a, * b * ) * * Try any other convention for wrapping that first arg and it * won't look as balanced when adding multiple args. *) makeList ~pad:(true, spaceBeforeArrow) ~wrap:(prefixText, arrow) ~indent:(settings.space * settings.indentWrappedPatternArgs) ~postSpace:true ~inline:(true, true) ~break:IfNeed allPatterns | Some (attachedList, wrappedListy) -> (* To get *only* the final argument to "break", while not necessarily breaking the prior arguments, we dock everything but the last item to a created label *) label ~space:true (makeList ~pad:(true, spaceBeforeArrow) ~wrap:(prefixText, arrow) ~indent:(settings.space * settings.indentWrappedPatternArgs) ~postSpace:true ~inline:(true, true) ~break:IfNeed attachedList) wrappedListy in let everythingButAppTerms = match attachTo with | None -> everythingButReturnVal | Some toThis -> label ~space:true toThis everythingButReturnVal in formatAttachmentApplication applicationFinalWrapping (Some (true, everythingButAppTerms)) returnedAppTerms method leadingCurriedAbstractTypes x = let rec argsAndReturn xx = match xx.pexp_desc with | Pexp_newtype (str, e) -> let nextArgs, return = argsAndReturn e in str :: nextArgs, return | _ -> [], xx.pexp_desc in argsAndReturn x method curriedConstructorPatternsAndReturnVal cl = let rec argsAndReturn args = function | { pcl_desc = Pcl_fun (label, eo, p, e); pcl_attributes = []; _ } -> let arg = source_map ~loc:p.ppat_loc (self#label_exp label eo p) in argsAndReturn (arg :: args) e | xx -> if args == [] then None, xx else Some (makeTup (List.rev args)), xx in argsAndReturn [] cl (* Returns the arguments list (if any, that occur before the =>), and the final expression (that is either returned from the function (after =>) or that is bound to the value (if there are no arguments, and this is just a let pattern binding)). *) method curriedPatternsAndReturnVal x = let uncurried = try Hashtbl.find uncurriedTable x.pexp_loc with Not_found -> false in let rec extract_args = let extract_from_params param = match param.pparam_desc with | Pparam_val (lbl, eo, pat) -> `Value (lbl, eo, pat) | Pparam_newtype newtype -> `Type newtype in fun xx -> let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes ~allowUncurry:false xx.pexp_attributes in if stdAttrs != [] then [], xx else match xx.pexp_desc with | Pexp_function (params, constraint_, body) -> let vs = List.map extract_from_params params in (match constraint_ with | Some _ -> vs, xx | None -> (match body with | Pfunction_cases _ as c -> vs, { xx with pexp_desc = Pexp_function ([], None, c) } | Pfunction_body e -> let args, ret = extract_args e in vs @ args, ret)) | Pexp_newtype (newtype, e) -> let args, ret = extract_args e in `Type newtype :: args, ret | Pexp_constraint _ -> [], xx | _ -> [], xx in let prepare_arg = function | `Value (l, eo, p) -> source_map ~loc:p.ppat_loc (self#label_exp l eo p) | `Type nt -> atom ("type " ^ nt.txt) in let single_argument_no_parens p ret = if uncurried then false else let isUnitPat = is_unit_pattern p in let isAnyPat = is_any_pattern p in match ret.pexp_desc with (* (event) :ReasonReact.event => {...} * The above Pexp_fun with constraint ReasonReact.event requires parens * surrounding the single argument `event`.*) | Pexp_constraint _ when (not isUnitPat) && not isAnyPat -> false | _ -> isUnitPat || isAnyPat || is_ident_pattern p in match extract_args x with | [], ret -> [], ret | [ `Value (Nolabel, None, p) ], ret when is_unit_pattern p && uncurried -> [ atom "(.)" ], ret | [ (`Value (Nolabel, None, p) as arg) ], ret when single_argument_no_parens p ret -> [ prepare_arg arg ], ret | args, ret -> [ makeTup ~uncurried (List.map prepare_arg args) ], ret (* Returns the (curriedModule, returnStructure) for a functor *) method curriedFunctorPatternsAndReturnStruct = function (* string loc * module_type option * module_expr *) | { pmod_desc = Pmod_functor (fp, me2); _ } -> let firstOne = match fp with | Unit -> atom "" | Named (s, mt') -> let s = moduleIdent s in self#module_type (makeList [ atom s; atom ":" ]) mt' in let functorArgsRecurse, returnStructure = self#curriedFunctorPatternsAndReturnStruct me2 in firstOne :: functorArgsRecurse, returnStructure | me -> [], me method isRenderableAsPolymorphicAbstractTypes typeVars polyType leadingAbstractVars nonVarifiedType = same_ast_modulo_varification_and_extensions polyType nonVarifiedType && for_all2' string_loc_equal typeVars leadingAbstractVars (* Reinterpret this as a pattern constraint since we don't currently have a * way to disambiguate. There is currently a way to disambiguate a parsing * from Ppat_constraint vs. Pexp_constraint. Currently (and consistent with * OCaml standard parser): * let (x: typ) = blah; * Becomes Ppat_constraint * let x:poly . type = blah; * Becomes Ppat_constraint * let x:typ = blah; * Becomes Pexp_constraint(ghost) * let x = (blah:typ); * Becomes Pexp_constraint(ghost) * * How are double constraints represented? * let (x:typ) = (blah:typ); * If currently both constraints are parsed into a single Pexp_constraint, * then something must be lost, and how could you fail type checking on: * let x:int = (10:string) ?? Answer: It probably parses into a nested * Pexp_constraint. * * Proposal: * * let (x: typ) = blah; * Becomes Ppat_constraint (still) * let x:poly . type = blah; * Becomes Ppat_constraint (still) * let x:typ = blah; * Becomes Ppat_constraint * let x = blah:typ; * Becomes Pexp_constraint * * * Reasoning: Allows parsing of any of the currently valid ML forms, but * combines the two most similar into one form. The only lossyness is the * unnecessary parens, which there is already precedence for dropping in * expressions. In the existing approach, preserving a paren-constrained * expression is *impossible* because it becomes pretty printed as * let x:t =.... In the proposal, it is not impossible - it is only * impossible to preserve unnecessary parenthesis around the let binding. * * The one downside is that integrating with existing code that uses [let x = * (blah:typ)] in standard OCaml will be parsed as a Pexp_constraint. There * might be some lossiness (beyond parens) that occurs in the original OCaml * parser. *) method locallyAbstractPolymorphicFunctionBinding prefixText layoutPattern funWithNewTypes absVars bodyType = let appTerms = self#unparseExprApplicationItems funWithNewTypes in let locallyAbstractTypes = List.map (fun x -> atom x.txt) absVars in let typeLayout = source_map ~loc:bodyType.ptyp_loc (self#core_type bodyType) in let polyType = label ~space:true (* TODO: This isn't a correct use of sep! It ruins how * comments are interleaved. *) (makeList [ makeList ~sep:(Sep " ") (atom "type" :: locallyAbstractTypes) ; atom "." ]) typeLayout in self#formatSimplePatternBinding prefixText layoutPattern (Some (polyType, `Constraint)) appTerms (* Intelligently switches between: * Curried function binding w/ constraint on return expr: * lbl patt * pattAux * arg * :constraint => { * ... * } * * Constrained: * lbl patt * pattAux... * :constraint = { * ... * } *) method wrappedBinding prefixText ~arrow ?vbct pattern patternAux expr = let expr = self#process_underscore_application expr in let argsList, return = self#curriedPatternsAndReturnVal expr in let patternList = match patternAux with | [] -> pattern | _ :: _ -> makeList ~postSpace:true ~inline:(true, true) ~break:IfNeed (pattern :: patternAux) in match argsList, return.pexp_desc with | [], Pexp_constraint (e, ct) -> assert (vbct = None); let typeLayout = source_map ~loc:ct.ptyp_loc (match ct.ptyp_desc with | Ptyp_package (li, cstrs) -> self#typ_package li cstrs | _ -> self#core_type ct) in let appTerms = self#unparseExprApplicationItems e in self#formatSimplePatternBinding prefixText patternList (Some (typeLayout, `Constraint)) appTerms | [], _ -> (* simple let binding, e.g. `let number = 5` *) (* let f = (. a, b) => a + b; *) let appTerms = self#unparseExprApplicationItems expr in self#formatSimplePatternBinding prefixText patternList vbct appTerms | _ :: _, _ -> let argsWithConstraint, actualReturn = self#normalizeFunctionArgsConstraint argsList return in let fauxArgs = List.concat [ patternAux; argsWithConstraint ] in let returnedAppTerms = self#unparseExprApplicationItems actualReturn in (* Attaches the `=` to `f` to recreate javascript function syntax in * let f = (a, b) => a + b; *) let lbl = let pattern = match vbct with | None -> pattern | Some (x, `Constraint) -> label ~indent:0 pattern (formatJustTheTypeConstraint x) | Some (x, `Coercion ground) -> label ~indent:0 pattern (formatJustCoerce ground x) in makeList ~sep:(Sep " ") ~break:Layout.Never [ pattern; atom "=" ] in self#wrapCurriedFunctionBinding prefixText ~arrow lbl fauxArgs returnedAppTerms (* Similar to the above method. *) method wrappedClassBinding prefixText pattern patternAux expr = let args, return = self#curriedConstructorPatternsAndReturnVal expr in let patternList = match patternAux with | [] -> pattern | _ :: _ -> makeList ~postSpace:true ~inline:(true, true) ~break:IfNeed (pattern :: patternAux) in match args, return.pcl_desc with | None, Pcl_constraint (e, ct) -> let typeLayout = source_map ~loc:ct.pcty_loc (self#class_constructor_type ct) in self#formatSimplePatternBinding prefixText patternList (Some (typeLayout, `Constraint)) (self#classExpressionToFormattedApplicationItems e, None) | None, _ -> self#formatSimplePatternBinding prefixText patternList None (self#classExpressionToFormattedApplicationItems expr, None) | Some args, _ -> let argsWithConstraint, actualReturn = self#normalizeConstructorArgsConstraint [ args ] return in let fauxArgs = List.concat [ patternAux; argsWithConstraint ] in self#wrapCurriedFunctionBinding prefixText ~arrow:"=" pattern fauxArgs ( self#classExpressionToFormattedApplicationItems actualReturn , None ) (* Attaches doc comments to a layout, with whitespace preserved * Example: * /** Doc comment */ * * /* another random comment */ * let a = 1; *) method attachDocAttrsToLayout ~(* all std attributes attached on the ast node backing the layout *) (stdAttrs : Parsetree.attributes) ~(* all doc comments attached on the ast node backing the layout *) (docAttrs : Parsetree.attributes) ~(* location of the layout *) loc ~(* layout to attach the doc comments to *) layout () = (* compute the correct location of layout * Example: * 1| /** doc-comment */ * 2| * 3| [@attribute] * 4| let a = 1; * * The location might indicate a start of line 4 for the ast-node * representing `let a = 1`. The reality is that `[@attribute]` should be * included (start of line 3), to represent the correct start location * of the whole layout. *) let loc = match stdAttrs with | { attr_name = astLoc; _ } :: _ -> astLoc.loc | [] -> loc in let rec aux prevLoc layout = function | ({ attr_name = x; _ } as attr : Parsetree.attribute) :: xs -> let newLayout = let range = Range.makeRangeBetween x.loc prevLoc in let layout = if Range.containsWhitespace ~range ~comments:self#comments () then let region = WhitespaceRegion.make ~range ~newlines:1 () in Layout.Whitespace (region, layout) else layout in makeList ~inline:(true, true) ~break:Always [ self#attribute attr; layout ] in aux x.loc newLayout xs | [] -> layout in aux loc layout (List.rev docAttrs) method value_binding prefixText { pvb_pat; pvb_attributes; pvb_loc; pvb_expr; pvb_constraint } = self#binding prefixText ~attrs:pvb_attributes ~loc:pvb_loc ~pat:pvb_pat ?pvb_constraint pvb_expr method binding_op prefixText { pbop_pat; pbop_loc; pbop_exp; _ } = self#binding (Reason_syntax_util.escape_stars_slashes prefixText) ~loc:pbop_loc ~pat:pbop_pat pbop_exp method binding prefixText ?(attrs = []) ~loc ~pat ?pvb_constraint expr = (* TODO: print attributes *) let body = let vbct = match pvb_constraint with | Some (Pvc_constraint { locally_abstract_univars = []; typ }) -> Some (self#core_type typ, `Constraint) | Some (Pvc_constraint { locally_abstract_univars = vars; typ }) -> Some ( label ~space:true (* TODO: This isn't a correct use of sep! It ruins how * comments are interleaved. *) (makeList [ makeList ~sep:(Sep " ") (atom "type" :: List.map (fun v -> atom v.txt) vars) ; atom "." ]) (self#core_type typ) , `Constraint ) | Some (Pvc_coercion { ground; coercion }) -> Some ( self#core_type coercion , `Coercion (match ground with | Some ground -> Some (self#core_type ground) | None -> None) ) | None -> None in match pat.ppat_attributes, pat.ppat_desc with | [], Ppat_var _ -> self#wrappedBinding prefixText ~arrow:"=>" (source_map ~loc:pat.ppat_loc (self#simple_pattern pat)) ?vbct [] expr (* Ppat_constraint is used in bindings of the form * * let (inParenVar:typ) = ... * * And in the case of let bindings for explicitly polymorphic type * annotations (see parser for more details). * * See reason_parser.mly for explanation of how we encode the two primary * forms of explicit polymorphic annotations in the parse tree, and how * we must recover them here. *) | [], Ppat_open (lid, { ppat_desc = Ppat_record (l, closed); _ }) -> (* Special case handling for: * * let Foo.{ * destruct1, * destruct2, * destruct3, * destruct4, * destruct5, * } = bar; *) let upUntilEqual = let pat = self#patternRecord l closed in label (label ~space:true (atom prefixText) (label (self#longident_loc lid) (atom "."))) pat in let appTerms = self#unparseExprApplicationItems expr in let includingEqual = let vbct = match vbct with | Some (x, `Constraint) -> [ formatJustTheTypeConstraint x ] | Some (x, `Coercion ground) -> [ formatJustCoerce ground x ] | None -> [] in makeList ~postSpace:true ((upUntilEqual :: vbct) @ [ atom "=" ]) in formatAttachmentApplication applicationFinalWrapping (Some (true, includingEqual)) appTerms | [], Ppat_constraint (p, ty) -> (* Locally abstract forall types are *seriously* mangled by the parsing * stage, and we have to be very smart about how to recover it. * * let df_locallyAbstractFuncAnnotated: * type a b. * a => * b => * (inputEchoRecord a, inputEchoRecord b) = * fun (input: a) (input2: b) => ( * {inputIs: input}, * {inputIs: input2} * ); * * becomes: * * let df_locallyAbstractFuncAnnotatedTwo: * 'a 'b . * 'a => 'b => (inputEchoRecord 'a, inputEchoRecord 'b) * = * fun (type a) (type b) => ( * fun (input: a) (input2: b) => ({inputIs: input}, {inputIs:input2}): * a => b => (inputEchoRecord a, inputEchoRecord b) * ); *) let layoutPattern = source_map ~loc:pat.ppat_loc (self#simple_pattern p) in let leadingAbsTypesAndExpr = self#leadingCurriedAbstractTypes expr in (match p.ppat_desc, ty.ptyp_desc, leadingAbsTypesAndExpr with | ( Ppat_var _ , Ptyp_poly (typeVars, varifiedPolyType) , ( (_ :: _ as absVars) , Pexp_constraint (funWithNewTypes, nonVarifiedExprType) ) ) when self#isRenderableAsPolymorphicAbstractTypes typeVars (* If even artificially varified - don't know until returns*) varifiedPolyType absVars nonVarifiedExprType -> (* We assume was the case whenever we see this pattern in the * AST, it was because the parser parsed the polymorphic locally * abstract type sugar. * * Ppat_var..Ptyp_poly...Pexp_constraint: * * let x: 'a 'b . 'a => 'b => 'b = * fun (type a) (type b) => * (fun aVal bVal => bVal : a => b => b); * * We need to be careful not to accidentally detect similar * forms, that cannot be printed as sugar. * * let x: 'a 'b . 'a => 'b => 'b = * fun (type a) (type b) => * (fun aVal bVal => bVal : int => int => int); * * Should *NOT* be formatted as: * * let x: type a b. int => int => int = fun aVal bVal => bVal; * * The helper function * [same_ast_modulo_varification_and_extensions] was created to * help compare the varified constraint pattern body, and the * non-varified expression constraint type. * * The second requirement that we check before assuming that the * sugar form is correct, is to make sure the list of type vars * corresponds to a leading prefix of the Pexp_newtype variables. *) self#locallyAbstractPolymorphicFunctionBinding prefixText layoutPattern funWithNewTypes absVars nonVarifiedExprType | _ -> let typeLayout, layoutPattern = let typeLayout = source_map ~loc:ty.ptyp_loc (self#core_type ty) in match vbct with | Some _ -> (* nested constraints *) ( vbct , makeList ~wrap:("(", ")") [ layoutPattern ; formatJustTheTypeConstraint typeLayout ] ) | None -> Some (typeLayout, `Constraint), layoutPattern in let appTerms = self#unparseExprApplicationItems expr in self#formatSimplePatternBinding prefixText layoutPattern typeLayout appTerms) | _ -> let layoutPattern = source_map ~loc:pat.ppat_loc (match vbct with | Some _ -> self#pattern_with_precedence ~attrs:pat.ppat_attributes pat | None -> self#pattern pat) in let appTerms = self#unparseExprApplicationItems expr in self#formatSimplePatternBinding prefixText layoutPattern vbct appTerms in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true attrs in let body = makeList ~inline:(true, true) [ body ] in let layout = self#attach_std_item_attrs stdAttrs (source_map ~loc body) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:pat.ppat_loc ~layout () (* Ensures that the constraint is formatted properly for sake of function binding (formatted without arrows) let x y z : no_unguarded_arrows_allowed_here => ret; *) method normalizeFunctionArgsConstraint argsList return = match return.pexp_desc with | Pexp_constraint (e, ct) -> let typeLayout = source_map ~loc:ct.ptyp_loc (self#non_arrowed_non_simple_core_type ct) in ( [ makeList ~break:IfNeed ~inline:(true, true) (argsList @ [ formatJustTheTypeConstraint typeLayout ]) ] , e ) | _ -> argsList, return method normalizeConstructorArgsConstraint argsList return = match return.pcl_desc with | Pcl_constraint (e, ct) when return.pcl_attributes == [] -> let typeLayout = source_map ~loc:ct.pcty_loc (self#non_arrowed_class_constructor_type ct) in argsList @ [ formatJustTheTypeConstraint typeLayout ], e | _ -> argsList, return method bindingsLocationRange ?extension l = let len = List.length l in let fstLoc = match extension with | Some ({ pexp_loc = { loc_ghost = false; _ }; _ } as ext) -> ext.pexp_loc | _ -> (List.nth l 0).pvb_loc in let lstLoc = (List.nth l (len - 1)).pvb_loc in { loc_start = fstLoc.loc_start ; loc_end = lstLoc.loc_end ; loc_ghost = false } method bindingOpsLocationRange { let_; ands; _ } = let fstLoc = let_.pbop_loc in let lstLoc = match ands with | [] -> fstLoc | xs -> let len = List.length xs in (List.nth xs (len - 1)).pbop_loc in { loc_start = fstLoc.loc_start ; loc_end = lstLoc.loc_end ; loc_ghost = false } method bindings ?extension (rf, l) = let label = add_extension_sugar "let" extension in let label = match rf with Nonrecursive -> label | Recursive -> label ^ " rec" in match l with | [ x ] -> self#value_binding label x | l -> let items = List.mapi (fun i x -> let loc = extractLocValBinding x in let layout = self#value_binding (if i == 0 then label else "and") x in loc, layout) l in let itemsLayout = groupAndPrint ~xf:(fun (_, layout) -> layout) ~getLoc:(fun (loc, _) -> loc) ~comments:self#comments items in makeList ~postSpace:true ~break:Always ~indent:0 ~inline:(true, true) itemsLayout method letop_bindings { let_; ands; _ } = let label = Reason_syntax_util.compress_letop_identifier let_.pbop_op.txt in let let_item = self#binding_op label let_ in match ands with | [] -> let_item | l -> let and_items = List.map (fun x -> let loc = extractLocBindingOp x in let layout = self#binding_op (Reason_syntax_util.compress_letop_identifier x.pbop_op.txt) x in loc, layout) l in let itemsLayout = groupAndPrint ~xf:(fun (_, layout) -> layout) ~getLoc:(fun (loc, _) -> loc) ~comments:self#comments ((extractLocBindingOp let_, let_item) :: and_items) in makeList ~postSpace:true ~break:Always ~indent:0 ~inline:(true, true) itemsLayout method pexp_open ~attrs ?extension expr me = let openLayout = label ~space:true (atom (add_open_extension_sugar ~override:me.popen_override extension)) (self#moduleExpressionToFormattedApplicationItems me.popen_expr) in let attrsOnOpen = makeList ~inline:(true, true) ~postSpace:true ~break:Always (self#attributes attrs @ [ openLayout ]) in (* Just like the bindings, have to synthesize a location since the * Pexp location is parsed (potentially) beginning with the open * brace {} in the let sequence. *) let layout = source_map ~loc:me.popen_loc attrsOnOpen in let loc = { me.popen_loc with loc_start = { me.popen_loc.loc_start with pos_lnum = expr.pexp_loc.loc_start.pos_lnum } } in loc, layout method letList expr = let letModuleBinding ?extension s me = let prefixText = add_extension_sugar "module" extension in let bindingName = atom ~loc:s.loc (moduleIdent s) in let moduleExpr = me in let letModuleLayout = self#let_module_binding prefixText bindingName moduleExpr in let letModuleLoc = { loc_start = s.loc.loc_start ; loc_end = me.pmod_loc.loc_end ; loc_ghost = false } in (* Just like the bindings, have to synthesize a location since the * Pexp location is parsed (potentially) beginning with the open * brace {} in the let sequence. *) let layout = source_map ~loc:letModuleLoc letModuleLayout in let _, return = self#curriedFunctorPatternsAndReturnStruct moduleExpr in let loc = { letModuleLoc with loc_end = return.pmod_loc.loc_end } in loc, layout in (* Recursively transform a nested ast of "let-items", into a flat * list containing the location indicating start/end of the "let-item" and * its layout. *) let rec processLetList acc expr = let { Reason_attributes.stdAttrs ; arityAttrs ; jsxAttrs ; stylisticAttrs ; _ } = Reason_attributes.partitionAttributes ~allowUncurry:false expr.pexp_attributes in match stdAttrs, expr.pexp_desc with | [], Pexp_let (rf, l, e) -> (* For "letList" bindings, the start/end isn't as simple as with * module value bindings. For "let lists", the sequences were formed * within braces {}. The parser relocates the first let binding to the * first brace. *) let bindingsLayout = self#bindings (rf, l) in let bindingsLoc = self#bindingsLocationRange l in let layout = source_map ~loc:bindingsLoc bindingsLayout in processLetList ((bindingsLoc, layout) :: acc) e | attrs, Pexp_letop ({ body; _ } as op) -> (* For "letList" bindings, the start/end isn't as simple as with * module value bindings. For "let lists", the sequences were formed * within braces {}. The parser relocates the first let binding to the * first brace. *) let bindingsLayout = self#letop_bindings op in let bindingsLoc = self#bindingOpsLocationRange op in let bindingsLayout = makeList ~break:IfNeed ~inline:(true, true) ~postSpace:true (self#attributes attrs @ [ bindingsLayout ]) in let layout = source_map ~loc:bindingsLoc bindingsLayout in processLetList ((bindingsLoc, layout) :: acc) body | attrs, Pexp_open (me, e) (* Add this when check to make sure these are handled as regular "simple expressions" *) when not (self#isSeriesOfOpensFollowedByNonSequencyExpression { expr with pexp_attributes = [] }) -> if Reason_attributes.has_open_notation_attr stylisticAttrs then ( Location.none , label (label (self#moduleExpressionToFormattedApplicationItems me.popen_expr) (atom ".")) (makeLetSequence ~wrap:("(", ")") (self#letList e)) ) :: acc else let loc, layout = self#pexp_open ~attrs expr me in processLetList ((loc, layout) :: acc) e | [], Pexp_letmodule (s, me, e) -> let loc, layout = letModuleBinding s me in processLetList ((loc, layout) :: acc) e | [], Pexp_letexception (extensionConstructor, expr) -> let exc = self#exception_declaration extensionConstructor in let layout = source_map ~loc:extensionConstructor.pext_loc exc in processLetList ((extensionConstructor.pext_loc, layout) :: acc) expr | [], Pexp_sequence (({ pexp_desc = Pexp_sequence _; _ } as e1), e2) | [], Pexp_sequence (({ pexp_desc = Pexp_let _; _ } as e1), e2) | [], Pexp_sequence (({ pexp_desc = Pexp_open _; _ } as e1), e2) | [], Pexp_sequence (({ pexp_desc = Pexp_letmodule _; _ } as e1), e2) | [], Pexp_sequence (e1, e2) -> let e1Layout = match expression_not_immediate_extension_sugar e1 with | Some (extension, e) -> self#attach_std_item_attrs ~extension [] (self#unparseExpr e) | None -> self#unparseExpr e1 in let loc = e1.pexp_loc in let layout = source_map ~loc e1Layout in processLetList ((loc, layout) :: acc) e2 | _ -> let expr = { expr with pexp_attributes = arityAttrs @ stdAttrs @ jsxAttrs } in (match expression_not_immediate_extension_sugar expr with | Some ( extension , { pexp_attributes = []; pexp_desc = Pexp_let (rf, l, e); _ } ) -> let bindingsLayout = self#bindings ~extension (rf, l) in let bindingsLoc = self#bindingsLocationRange ~extension:expr l in let layout = source_map ~loc:bindingsLoc bindingsLayout in processLetList ((extractLocationFromValBindList expr l, layout) :: acc) e | Some ( extension , { pexp_attributes = [] ; pexp_desc = Pexp_letmodule (s, me, e) ; _ } ) -> let loc, layout = letModuleBinding ~extension s me in processLetList ((loc, layout) :: acc) e | Some ( extension , { pexp_attributes = attrs ; pexp_desc = Pexp_open (me, e) ; _ } ) -> let loc, layout = self#pexp_open ~attrs ~extension expr me in processLetList ((loc, layout) :: acc) e | Some (extension, e) -> let layout = self#attach_std_item_attrs ~extension [] (self#unparseExpr e) in (expr.pexp_loc, layout) :: acc | None -> (* Should really do something to prevent infinite loops here. Never allowing a top level call into letList to recurse back to self#unparseExpr- top level calls into letList *must* be one of the special forms above whereas lower level recursive calls may be of any form. *) let layout = source_map ~loc:expr.pexp_loc (self#unparseExpr expr) in (expr.pexp_loc, layout) :: acc) in let es = processLetList [] expr in (* Interleave whitespace between the "let-items" when appropriate *) groupAndPrint ~xf:(fun (_, layout) -> layout) ~getLoc:(fun (loc, _) -> loc) ~comments:self#comments (List.rev es) method constructor_expression ?(polyVariant = false) ~arityIsClear stdAttrs ctor eo = let implicit_arity, arguments = match eo.pexp_desc with | Pexp_construct ({ txt = Lident "()"; _ }, _) -> (* `foo() is a polymorphic variant that contains a single unit construct as expression * This requires special formatting: `foo(()) -> `foo() *) false, atom "()" (* special printing: MyConstructor(()) -> MyConstructor() *) | Pexp_tuple l when is_single_unit_construct l -> false, atom "()" | Pexp_tuple l when polyVariant == true -> false, self#unparseSequence ~wrap:("(", ")") ~construct:`Tuple l | Pexp_tuple l -> (* There is no ambiguity when the number of tuple components is 1. We don't need put implicit_arity in that case *) (match l with | exprList when isSingleArgParenApplication exprList -> false, self#singleArgParenApplication exprList | _ -> not arityIsClear, makeTup (List.map self#unparseProtectedExpr l)) | _ when isSingleArgParenApplication [ eo ] -> false, self#singleArgParenApplication [ eo ] | _ -> false, makeTup [ self#unparseProtectedExpr eo ] in let arguments = source_map ~loc:eo.pexp_loc arguments in let construction = label ctor (if isSequencey arguments then arguments else ensureSingleTokenSticksToLabel arguments) in let attrs = if implicit_arity && not polyVariant then { attr_name = { txt = "implicit_arity"; loc = eo.pexp_loc } ; attr_payload = PStr [] ; attr_loc = eo.pexp_loc } :: stdAttrs else stdAttrs in match attrs with | [] -> construction | _ :: _ -> formatAttributed construction (self#attributes attrs) (* TODOATTRIBUTES: Handle stdAttrs here (merge with implicit_arity) *) method constructor_pattern ?(polyVariant = false) ~arityIsClear ctor po = let implicit_arity, arguments = match po.ppat_desc with (* There is no ambiguity when the number of tuple components is 1. We don't need put implicit_arity in that case *) | Ppat_tuple (([] | _ :: []) as l) -> false, l | Ppat_tuple l -> not arityIsClear, l | _ -> false, [ po ] in let space, arguments = match arguments with | [ x ] when is_direct_pattern x -> true, self#simple_pattern x | xs when isSingleArgParenPattern xs -> false, self#singleArgParenPattern xs (* Optimize the case when it's a variant holding a shot variable - avoid trailing*) | [ ({ ppat_desc = Ppat_constant (Pconst_string (s, _, None)); _ } as x) ] | [ ({ ppat_desc = Ppat_construct ({ txt = Lident s; _ }, None); _ } as x) ] | [ ({ ppat_desc = Ppat_var { txt = s; _ }; _ } as x) ] when Reason_heuristics.singleTokenPatternOmmitTrail s -> let layout = makeTup ~trailComma:false [ self#pattern x ] in false, source_map ~loc:po.ppat_loc layout | [ ({ ppat_desc = Ppat_any; _ } as x) ] | [ ({ ppat_desc = Ppat_constant (Pconst_char _); _ } as x) ] | [ ({ ppat_desc = Ppat_constant (Pconst_integer _); _ } as x) ] -> let layout = makeTup ~trailComma:false [ self#pattern x ] in false, source_map ~loc:po.ppat_loc layout | xs -> let layout = makeTup (List.map self#pattern xs) in false, source_map ~loc:po.ppat_loc layout in let construction = label ~space ctor arguments in if implicit_arity && not polyVariant then formatAttributed construction (self#attributes [ { attr_name = { txt = "implicit_arity"; loc = po.ppat_loc } ; attr_payload = PStr [] ; attr_loc = po.ppat_loc } ]) else construction (* Provides special printing for constructor arguments: * iff there's one argument & they have some kind of wrapping, * they're wrapping need to 'hug' the surrounding parens. * Example: * switch x { * | Some({ * a, * b, * }) => () * } * * Notice how ({ and }) hug. * This applies for records, arrays, tuples & lists. * Also see `isSingleArgParenPattern` to determine if this kind of wrapping applies. *) method singleArgParenPattern = function | [ { ppat_desc = Ppat_record (l, closed); ppat_loc = loc; _ } ] -> source_map ~loc (self#patternRecord ~wrap:("(", ")") l closed) | [ { ppat_desc = Ppat_array l; ppat_loc = loc; _ } ] -> source_map ~loc (self#patternArray ~wrap:("(", ")") l) | [ { ppat_desc = Ppat_tuple l; ppat_loc = loc; _ } ] -> source_map ~loc (self#patternTuple ~wrap:("(", ")") l) | [ ({ ppat_desc = Ppat_construct ({ txt = Lident "::"; _ }, _) ; ppat_loc ; _ } as listPattern) ] -> source_map ~loc:ppat_loc (self#patternList ~wrap:("(", ")") listPattern) | _ -> assert false (* TODO: Similar to tuples, do not print parens around type constraints (same for lists) *) method patternArray ?(wrap = "", "") l = let left, right = wrap in let wrap = left ^ "[|", "|]" ^ right in makeList ~wrap ~break:IfNeed ~postSpace:true ~sep:commaTrail (List.map self#pattern l) method patternTuple ?(wrap = "", "") l = let left, right = wrap in let wrap = left ^ "(", ")" ^ right in makeList ~wrap ~sep:commaTrail ~postSpace:true ~break:IfNeed (List.map self#pattern l) method patternRecord ?(wrap = "", "") l closed = let longident_x_pattern (li, p) = match li, p.ppat_desc with | { txt = ident; _ }, Ppat_var { txt; _ } when Longident.last_exn ident = txt -> (* record field punning when destructuring. {x: x, y: y} becomes {x, y} *) (* works with module prefix too: {MyModule.x: x, y: y} becomes {MyModule.x, y} *) self#longident_loc li | ( { txt = ident; _ } , Ppat_alias ( { ppat_desc = Ppat_var { txt = ident2; _ }; _ } , { txt = aliasIdent; _ } ) ) when Longident.last_exn ident = ident2 -> (* record field punning when destructuring with renaming. {state: state as prevState} becomes {state as prevState *) (* works with module prefix too: {ReasonReact.state: state as prevState} becomes {ReasonReact.state as prevState *) makeList ~sep:(Sep " ") [ self#longident_loc li; atom "as"; atom aliasIdent ] | _ -> let pattern = let formatted = self#pattern p in let wrap = match p.ppat_desc with | Ppat_constraint (_, _) -> Some ("(", ")") | _ -> None in makeList ~inline:(true, true) ?wrap [ formatted ] in label ~space:true (makeList [ self#longident_loc li; atom ":" ]) pattern in let rows = List.map longident_x_pattern l @ match closed with Closed -> [] | _ -> [ atom "_" ] in let left, right = wrap in let wrap = left ^ "{", "}" ^ right in makeList ~wrap ~break:IfNeed ~sep:commaTrail ~pad:(true, true) ~postSpace:true rows method patternFunction ?extension loc l = let estimatedFunLocation = { loc_start = loc.loc_start ; loc_end = { loc.loc_start with pos_cnum = loc.loc_start.Lexing.pos_cnum + 3 } ; loc_ghost = false } in makeList ~postSpace:true ~break:IfNeed ~inline:(true, true) ~pad:(false, false) (atom ~loc:estimatedFunLocation (add_extension_sugar funToken extension) :: self#case_list l) method parenthesized_expr ?break expr = let result = self#unparseExpr expr in match expr.pexp_attributes, expr.pexp_desc with | [], (Pexp_tuple _ | Pexp_construct ({ txt = Lident "()"; _ }, None)) -> result | _ -> makeList ~wrap:("(", ")") ?break [ self#unparseExpr expr ] (* Expressions requiring parens, in most contexts such as separated by infix *) method expression_requiring_parens_in_infix x = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes x.pexp_attributes in assert (stdAttrs == []); (* keep the incoming expression around, an expr with * immediate extension sugar might contain less than perfect location * info in its children (used for comment interleaving), the expression passed to * 'expression_requiring_parens_in_infix' contains the correct location *) let originalExpr = x in let extension, x = expression_immediate_extension_sugar x in match x.pexp_desc with (* The only reason Pexp_fun must also be wrapped in parens when under pipe, is that its => token will be confused with the match token. Simple expression will also invoke `#reset`. *) | Pexp_function (_, _, Pfunction_cases _) when pipe || semi -> None (* Would be rendered as simplest_expression *) (* Pexp_function, on the other hand, doesn't need wrapping in parens in most cases anymore, since `fun` is not ambiguous anymore (we print Pexp_fun as ES6 functions). *) | Pexp_function (_, _, Pfunction_cases (cases, loc, _attrs)) -> let prec = Custom funToken in let expr = self#patternFunction ?extension loc cases in Some (SpecificInfixPrecedence ( { reducePrecedence = prec; shiftPrecedence = prec } , LayoutNode expr )) | _ -> (* The Pexp_function cases above don't use location because comment printing breaks for them. *) let itm = match x.pexp_desc with | Pexp_function (_ :: _, _, Pfunction_body _) | Pexp_newtype _ -> (* let uncurried = *) let args, ret = self#curriedPatternsAndReturnVal x in (match args with | [] -> raise (NotPossible "no arrow args in unparse ") | firstArg :: tl -> (* Suboptimal printing of parens: * * something >>= fun x => x \+ 1; * * Will be printed as: * * something >>= (fun x => x \+ 1); * * Because the arrow has lower precedence than >>=, but it wasn't * needed because * * (something >>= fun x) => x + 1; * * Is not a valid parse. Parens around the `=>` weren't needed to * prevent reducing instead of shifting. To optimize this part, we need * a much deeper encoding of the parse rules to print parens only when * needed, testing which rules will be reduced. It really should be * integrated deeply with Menhir. * * One question is, if it's this difficult to describe when parens are * needed, should we even print them with the minimum amount? We can * instead model everything as "infix" with ranked precedences. *) let retValUnparsed = self#unparseExprApplicationItems ret in Some (self#wrapCurriedFunctionBinding ~sweet:(extension = None) (add_extension_sugar funToken extension) ~arrow:"=>" firstArg tl retValUnparsed)) | Pexp_try (e, l) -> let estimatedBracePoint = { loc_start = e.pexp_loc.loc_end ; loc_end = x.pexp_loc.loc_end ; loc_ghost = false } in let cases = self#case_list ~allowUnguardedSequenceBodies:true l in let switchWith = self#dont_preserve_braces#formatSingleArgLabelApplication (atom (add_extension_sugar "try" extension)) e in Some (label ~space:true switchWith (source_map ~loc:estimatedBracePoint (makeList ~indent:settings.trySwitchIndent ~wrap:("{", "}") ~break:Always_rec ~postSpace:true cases))) (* These should have already been handled and we should never havgotten this far. *) | Pexp_setinstvar _ -> raise (Invalid_argument "Cannot handle setinstvar here - call unparseExpr") | Pexp_setfield (_, _, _) -> raise (Invalid_argument "Cannot handle setfield here - call unparseExpr") | Pexp_apply _ -> raise (Invalid_argument "Cannot handle apply here - call unparseExpr") | Pexp_match (e, l) -> let estimatedBracePoint = { loc_start = e.pexp_loc.loc_end ; (* See originalExpr binding, for more info. * It contains the correct location under immediate extension sugar *) loc_end = originalExpr.pexp_loc.loc_end ; loc_ghost = false } in let cases = self#case_list ~allowUnguardedSequenceBodies:true l in let switchWith = label ~space:true (atom (add_extension_sugar "switch" extension)) (self#parenthesized_expr ~break:IfNeed e) in let lbl = label ~space:true switchWith (source_map ~loc:estimatedBracePoint (makeList ~indent:settings.trySwitchIndent ~wrap:("{", "}") ~break:Always_rec ~postSpace:true cases)) in Some lbl | Pexp_ifthenelse (e1, e2, eo) -> let blocks, finalExpression = sequentialIfBlocks eo in let rec singleExpression exp = match exp.pexp_desc with | Pexp_ident _ -> true | Pexp_constant _ -> true | Pexp_construct (_, arg) -> (match arg with | None -> true | Some x -> singleExpression x) | _ -> false in let singleLineIf = singleExpression e1 && singleExpression e2 && match eo with | Some expr -> singleExpression expr | None -> true in let makeLetSequence = if singleLineIf then makeLetSequenceSingleLine else makeLetSequence in let rec sequence soFar remaining = match remaining, finalExpression with | [], None -> soFar | [], Some e -> let soFarWithElseAppended = makeList ~postSpace:true [ soFar; atom "else" ] in label ~space:true soFarWithElseAppended (source_map ~loc:e.pexp_loc (makeLetSequence (self#letList e))) | hd :: tl, _ -> let e1, e2 = hd in let soFarWithElseIfAppended = label ~space:true (makeList ~postSpace:true [ soFar; atom "else if" ]) (makeList ~wrap:("(", ")") [ self#unparseExpr e1 ]) in let nextSoFar = label ~space:true soFarWithElseIfAppended (source_map ~loc:e2.pexp_loc (makeLetSequence (self#letList e2))) in sequence nextSoFar tl in let init = let if_ = atom (add_extension_sugar "if" extension) in let cond = self#parenthesized_expr e1 in label ~space:true (source_map ~loc:e1.pexp_loc (label ~space:true if_ cond)) (source_map ~loc:e2.pexp_loc (makeLetSequence (self#letList e2))) in Some (sequence init blocks) | Pexp_while (e1, e2) -> let lbl = let while_ = atom (add_extension_sugar "while" extension) in let cond = self#parenthesized_expr e1 in label ~space:true (label ~space:true while_ cond) (source_map ~loc:e2.pexp_loc (makeLetSequence (self#letList e2))) in Some lbl | Pexp_for (s, e1, e2, df, e3) -> (* for longIdentifier in * (longInit expr) to * (longEnd expr) { * print_int longIdentifier; * }; *) let identifierIn = makeList ~postSpace:true [ self#pattern s; atom "in" ] in let dockedToFor = makeList ~break:IfNeed ~postSpace:true ~inline:(true, true) ~wrap:("(", ")") [ identifierIn ; makeList ~postSpace:true [ self#unparseExpr e1; self#direction_flag df ] ; self#unparseExpr e2 ] in let upToBody = makeList ~inline:(true, true) ~postSpace:true [ atom (add_extension_sugar "for" extension); dockedToFor ] in Some (label ~space:true upToBody (source_map ~loc:e3.pexp_loc (makeLetSequence (self#letList e3)))) | Pexp_new li -> Some (label ~space:true (atom "new") (self#longident_class_or_type_loc li)) | Pexp_assert e -> Some (label (atom "assert") (makeTup [ self#unparseExpr e ])) | Pexp_lazy e -> Some (self#formatSingleArgLabelApplication (atom "lazy") e) | Pexp_poly _ -> failwith ("This version of the pretty printer assumes it is \ impossible to " ^ "construct a Pexp_poly outside of a method definition - \ yet it sees one.") | _ -> None in (match itm with | None -> None | Some i -> Some (PotentiallyLowPrecedence (source_map ~loc:x.pexp_loc i))) method potentiallyConstrainedExpr x = match x.pexp_desc with | Pexp_constraint (e, ct) -> formatTypeConstraint (self#unparseExpr e) (self#core_type ct) | _ -> self#unparseExpr x (* Because the rule BANG simple_expr was given %prec below_DOT_AND_SHARP, * !x.y.z will parse as !(x.y.z) and not (!x).y.z. * * !x.y.z == !((x.y).z) * !x#y#z == !((x#y)#z) * * So the intuition is: In general, any simple expression can exist to the * left of a `.`, except `BANG simple_expr`, which has special precedence, * and must be guarded in this one case. * * TODO: Instead of special casing this here, we should continue to extend * unparseExpr to also unparse simple expressions, (by encoding the * rules precedence below_DOT_AND_SHARP). * * TODO: * Some would even have the prefix application be parsed with lower * precedence function *application*. In the case of !, where ! means not, * it makes a lot of sense because (!identifier)(arg) would be meaningless. * * !callTheFunction(1, 2, 3)(andEvenCurriedArgs) * * Only problem is that it could then not appear anywhere simple expressions * would appear. * * We could make a special case for ! followed by one simple expression, and * consider the result simple. * * Alternatively, we can figure out a way to not require simple expressions * in the most common locations such as if/while tests. This is really hard * (impossible w/ grammars Menhir supports?) * * if ! myFunc argOne argTwo { * * } else { * * }; * *) method simple_enough_to_be_lhs_dot_send x = match x.pexp_desc with | Pexp_apply (eFun, _) -> (match printedStringAndFixityExpr eFun with | AlmostSimplePrefix _ | UnaryPlusPrefix _ | UnaryMinusPrefix _ | UnaryNotPrefix _ | UnaryPostfix _ | Infix _ -> self#simplifyUnparseExpr x | Letop _ | Andop _ | Normal -> if x.pexp_attributes == [] then (* `let a = foo().bar` instead of `let a = (foo()).bar *) (* same for foo()##bar, foo()#=bar, etc. *) self#unparseExpr x else self#simplifyUnparseExpr x) | _ -> self#simplifyUnparseExpr x method unparseRecord ?wrap:(lwrap, rwrap = "", "") ?(withStringKeys = false) ?(allowPunning = true) ?(forceBreak = false) l eo = (* forceBreak is a ref which can be set to always break the record rows. * Example, when we have a row which contains a nested record, * this ref can be set to true from inside the printing of that row, * which forces breaks for the outer record structure. *) let forceBreak = ref forceBreak in let quote = atom "\"" in let maybeQuoteFirstElem fst rest = if withStringKeys then match fst.txt with | Lident s -> quote :: atom s :: quote :: rest | Ldot _ | Lapply _ -> assert false else self#longident_loc fst :: rest in let makeRow (li, e) shouldPun = let totalRowLoc = { loc_start = li.Asttypes.loc.loc_start ; loc_end = e.pexp_loc.loc_end ; loc_ghost = false } in let stdAttrs = Reason_attributes.extractStdAttrs e.pexp_attributes in let theRow = match e.pexp_desc, shouldPun, allowPunning with (* record value punning. Turns {foo: foo, bar: 1} into {foo, bar: 1} *) (* also turns {Foo.bar: bar, baz: 1} into {Foo.bar, baz: 1} *) (* don't turn {bar: [@foo] bar, baz: 1} into {bar, baz: 1} *) (* don't turn {bar: Foo.bar, baz: 1} into {bar, baz: 1}, naturally *) | Pexp_ident { txt = Lident value; _ }, true, true when Longident.last_exn li.txt = value && stdAttrs = [] -> makeList (maybeQuoteFirstElem li []) (* Force breaks for nested records or mel.obj sugar * Example: * let person = {name: {first: "Bob", last: "Zhmith"}, age: 32}; * is a lot less readable than * let person = { * "name": { * "first": "Bob", * "last": "Zhmith" * }, * "age": 32 * }; *) | Pexp_record (recordRows, optionalGadt), _, _ -> forceBreak := true; let keyWithColon = makeList (maybeQuoteFirstElem li [ atom ":" ]) in let value = self#unparseRecord ~forceBreak:true recordRows optionalGadt in label ~space:true keyWithColon value | Pexp_extension (s, p), _, _ when s.txt = "mel.obj" -> forceBreak := true; let keyWithColon = makeList (maybeQuoteFirstElem li [ atom ":" ]) in let value = self#formatMelObjExtensionSugar ~forceBreak:true p in label ~space:true keyWithColon value | Pexp_object classStructure, _, _ -> forceBreak := true; let keyWithColon = makeList (maybeQuoteFirstElem li [ atom ":" ]) in let value = self#classStructure ~forceBreak:true classStructure in label ~space:true keyWithColon value | _ -> let argsList, return = self#curriedPatternsAndReturnVal e in (match argsList with | [] -> let appTerms = self#unparseExprApplicationItems e in let upToColon = makeList (maybeQuoteFirstElem li [ atom ":" ]) in formatAttachmentApplication applicationFinalWrapping (Some (true, upToColon)) appTerms | firstArg :: tl -> let upToColon = makeList (maybeQuoteFirstElem li [ atom ":" ]) in let returnedAppTerms = self#unparseExprApplicationItems return in self#wrapCurriedFunctionBinding ~sweet:true ~attachTo:upToColon funToken ~arrow:"=>" firstArg tl returnedAppTerms) in source_map ~loc:totalRowLoc theRow, totalRowLoc in let rec getRows l = match l with | [] -> [] | hd :: [] -> [ makeRow hd true ] | hd :: hd2 :: tl -> makeRow hd true :: getRows (hd2 :: tl) in let allRows = match eo with | None -> (match l with (* No punning (or comma) for records with only a single field. It's ambiguous with an expression in a scope *) (* See comment in parser.mly for lbl_expr_list_with_at_least_one_non_punned_field *) | [ hd ] -> [ makeRow hd false ] | _ -> getRows l) (* This case represents a "spread" being present -> {...x, a: 1, b: 2} *) | Some withRecord -> let firstRow = let row = (* Unclear why "sugar_expr" was special cased hre. *) let appTerms = self#unparseExprApplicationItems withRecord in formatAttachmentApplication applicationFinalWrapping (Some (false, atom "...")) appTerms in source_map ~loc:withRecord.pexp_loc row, withRecord.pexp_loc in firstRow :: getRows l in let break = (* if a record has more than 1 row, always break *) match !forceBreak, allRows with | false, ([] | [ _ ]) -> Layout.IfNeed | _ -> Layout.Always_rec in makeList ~wrap:(lwrap ^ "{", "}" ^ rwrap) ~break ~sep:commaTrail ~pad:(true, true) ~postSpace:true (groupAndPrint ~xf:fst ~getLoc:snd ~comments:self#comments allRows) method isSeriesOfOpensFollowedByNonSequencyExpression expr = match expr.pexp_attributes, expr.pexp_desc with | [], Pexp_let _ -> false | [], Pexp_letop _ -> false | [], Pexp_sequence _ -> false | [], Pexp_letmodule _ -> false | ( [] , Pexp_open ( { popen_override ; popen_expr = { pmod_desc = Pmod_ident _; _ } ; _ } , e ) ) -> popen_override == Fresh && self#isSeriesOfOpensFollowedByNonSequencyExpression e | [], Pexp_open _ -> false | [], Pexp_letexception _ -> false | [], Pexp_extension ({ txt; _ }, _) -> txt = "mel.obj" | _ -> true method unparseObject ?wrap:(lwrap, rwrap = "", "") ?(withStringKeys = false) l o = let core_field_type { pof_desc; pof_attributes; _ } = match pof_desc with | Otag ({ txt; _ }, ct) -> let l = Reason_attributes.extractStdAttrs pof_attributes in let row = let rowKey = if withStringKeys then makeList ~wrap:("\"", "\"") [ atom txt ] else atom txt in label ~space:true (makeList ~break:Layout.Never [ rowKey; atom ":" ]) (self#core_type ct) in (match l with | [] -> row | _ :: _ -> makeList ~postSpace:true ~break:IfNeed ~inline:(true, true) (List.concat [ self#attributes pof_attributes; [ row ] ])) | Oinherit ct -> makeList ~break:Layout.Never [ atom "..."; self#core_type ct ] in let rows = List.map core_field_type l in let openness = match o with Closed -> atom "." | Open -> atom ".." in (* if an object has more than 2 rows, always break for readability *) let rows_layout = let break, pad_right = match rows with | [] -> Layout.IfNeed, false | [ _ ] -> Layout.IfNeed, true | _ -> Layout.Always_rec, true in makeList ~break ~inline:(true, true) ~postSpace:true ~pad:(false, pad_right) ~sep:commaTrail rows in makeList ~break:Layout.IfNeed ~preSpace:(rows != []) ~wrap:(lwrap ^ "{", "}" ^ rwrap) (openness :: [ rows_layout ]) method unparseSequence ?(wrap = "", "") ~construct l = match construct with | `ES6List -> let seq, ext = match List.rev l with | ext :: seq_rev -> List.rev seq_rev, ext | [] -> assert false in makeES6List ~wrap (List.map self#unparseExpr seq) (self#unparseExpr ext) | _ -> let left, right = wrap in let xf, (leftDelim, rightDelim) = match construct with | `List -> self#unparseExpr, ("[", "]") | `Array -> self#unparseExpr, ("[|", "|]") | `Tuple -> self#potentiallyConstrainedExpr, ("(", ")") | `ES6List -> assert false in let wrap = left ^ leftDelim, rightDelim ^ right in makeList ~wrap ~sep:commaTrail ~break:IfNeed ~postSpace:true (List.map xf l) method formatMelObjExtensionSugar ?(wrap = "", "") ?(forceBreak = false) payload = match payload with | PStr [ itm ] -> (match itm with | { pstr_desc = Pstr_eval ({ pexp_desc = Pexp_record (l, eo); _ }, []) ; _ } -> self#unparseRecord ~forceBreak ~wrap ~withStringKeys:true ~allowPunning:false l eo | { pstr_desc = Pstr_eval ( { pexp_desc = Pexp_extension ({ txt = "mel.obj"; _ }, payload) ; _ } , [] ) ; _ } -> (* some folks write `[%mel.obj [%mel.obj {foo: bar}]]`. This looks improbable but it happens often if you use the sugared version: `[%mel.obj {"foo": bar}]`. We're gonna be lenient here and treat it as if they wanted to just write `{"foo": bar}`. Melange does the same relaxation when parsing mel.obj *) self#formatMelObjExtensionSugar ~wrap ~forceBreak payload | _ -> raise (Invalid_argument "mel.obj only accepts a record. You've passed something else")) | _ -> assert false method should_preserve_requested_braces expr = let { Reason_attributes.stylisticAttrs; _ } = Reason_attributes.partitionAttributes expr.pexp_attributes in match expr.pexp_desc with | Pexp_ifthenelse _ | Pexp_try _ -> false | Pexp_sequence _ -> (* `let ... in` should _always_ preserve braces *) true | _ -> preserve_braces && Reason_attributes.has_preserve_braces_attrs stylisticAttrs method simplest_expression x = let { Reason_attributes.stdAttrs ; jsxAttrs ; stylisticAttrs ; arityAttrs ; _ } = Reason_attributes.partitionAttributes x.pexp_attributes in let hasJsxAttribute = jsxAttrs != [] in if stdAttrs != [] then None else if self#should_preserve_requested_braces x then let layout = makeList ~break:(if inline_braces then Always else Always_rec) ~inline:(true, inline_braces) ~wrap:("{", "}") ~postSpace:true ~sep:(if inline_braces then Sep ";" else SepFinal (";", ";")) (self#letList x) in Some layout else let item = match x.pexp_desc with (* The only reason Pexp_fun must also be wrapped in parens is that its => token will be confused with the match token. *) | Pexp_function (_ :: _, _, Pfunction_body _) when pipe || semi -> Some (self#reset#simplifyUnparseExpr x) | Pexp_function (_, _, Pfunction_cases (cases, loc, _attrs)) when pipe || semi -> Some (formatPrecedence ~loc:x.pexp_loc (self#reset#patternFunction loc cases)) | Pexp_apply _ -> (match self#simple_get_application x with (* If it's the simple form of application. *) | Some simpleGet -> Some simpleGet | None -> None) | Pexp_object cs -> Some (self#classStructure cs) | Pexp_override l -> (* FIXME *) let string_x_expression (s, e) = label ~space:true (atom (s.txt ^ ":")) (self#unparseExpr e) in Some (makeList ~postSpace:true ~wrap:("{<", ">}") ~sep:(Sep ",") (List.map string_x_expression l)) | Pexp_construct ({ txt = Lident "[]"; _ }, _) when hasJsxAttribute -> Some (atom "<> </>") | Pexp_construct ({ txt = Lident "::"; _ }, Some _) when hasJsxAttribute -> (match self#formatJsxChildrenNonSpread x [] with | None -> (* Back out of the standard jsx child formatting *) (* This is actually not a useful construct to have written: * <> ... x </> * Is the same as: * x * There is also a bug in the parser where a space is needed * between <> and ..., but no one would write the ... form of * <> anyways. *) let withoutJsxAttributes = { x with pexp_attributes = stylisticAttrs @ arityAttrs } in self#simplest_expression withoutJsxAttributes | Some chldn -> Some (makeList ~break:IfNeed ~inline:(false, false) ~postSpace:true ~wrap:("<>", "</>") ~pad:(true, true) chldn)) | Pexp_construct _ when is_simple_construct (view_expr x) -> Some (match view_expr x with | `nil -> atom "[]" | `tuple -> atom "()" | `btrue -> atom "true" | `bfalse -> atom "false" | `list xs -> (* LIST EXPRESSION *) self#unparseSequence ~construct:`List xs | `cons xs -> self#unparseSequence ~construct:`ES6List xs | `simple x -> self#longident x | _ -> assert false) | Pexp_ident li -> (* Lone identifiers shouldn't break when to the right of a label *) Some (ensureSingleTokenSticksToLabel (self#longident_loc li)) | Pexp_constant c -> (* Constants shouldn't break when to the right of a label *) let raw_literal, _ = Reason_attributes.extract_raw_literal x.pexp_attributes in Some (ensureSingleTokenSticksToLabel (self#constant ?raw_literal c)) | Pexp_pack me -> Some (makeList ~break:IfNeed ~postSpace:true ~wrap:("(", ")") ~inline:(true, true) [ atom "module"; self#module_expr me ]) | Pexp_tuple l -> (* TODO: These may be simple, non-simple, or type constrained non-simple expressions *) Some (self#unparseSequence ~construct:`Tuple l) | Pexp_constraint (e, ct) -> Some (makeList ~break:IfNeed ~wrap:("(", ")") [ formatTypeConstraint (self#unparseExpr e) (self#core_type ct) ]) | Pexp_coerce (e, cto1, ct) -> let optFormattedType = match cto1 with | None -> None | Some typ -> Some (self#core_type typ) in Some (makeList ~break:IfNeed ~wrap:("(", ")") [ formatCoerce (self#unparseExpr e) optFormattedType (self#core_type ct) ]) | Pexp_variant (l, None) -> Some (ensureSingleTokenSticksToLabel (atom ("`" ^ add_raw_identifier_prefix l))) | Pexp_record (l, eo) -> Some (self#unparseRecord l eo) | Pexp_array l -> Some (self#unparseSequence ~construct:`Array l) | Pexp_let _ | Pexp_sequence _ | Pexp_letmodule _ | Pexp_letexception _ | Pexp_letop _ -> Some (makeLetSequence (self#letList x)) | Pexp_extension e -> (match expression_immediate_extension_sugar x with | Some _, _ -> None | None, _ -> (match expression_extension_sugar x with | None -> Some (self#extension e) | Some (ext, x') -> (match x'.pexp_desc with | Pexp_let _ | Pexp_letop _ | Pexp_letmodule _ -> Some (makeLetSequence (self#letList x)) | Pexp_constant (Pconst_string (i, _, Some delim)) -> let { Reason_attributes.stylisticAttrs; _ } = Reason_attributes.partitionAttributes ~allowUncurry: (Reason_heuristics.bsExprCanBeUncurried x') x'.pexp_attributes in if Reason_attributes.has_quoted_extension_attrs stylisticAttrs then Some (quoted_ext ext i delim) else Some (self#extension e) | _ -> Some (self#extension e)))) | Pexp_open (me, e) -> if self#isSeriesOfOpensFollowedByNonSequencyExpression x then Some (label (label (self#moduleExpressionToFormattedApplicationItems me.popen_expr) (atom ".")) (self#formatNonSequencyExpression ~parent:x e)) else Some (makeLetSequence (self#letList x)) | Pexp_send (e, s) -> let needparens = match e.pexp_desc with | Pexp_apply (ee, _) -> (match printedStringAndFixityExpr ee with | UnaryPostfix "^" -> true | _ -> false) | _ -> false in let lhs = self#simple_enough_to_be_lhs_dot_send e in let lhs = if needparens then makeList ~wrap:("(", ")") [ lhs ] else lhs in Some (label (makeList [ lhs; atom "#" ]) (atom s.txt)) | Pexp_unreachable -> Some (atom ".") | _ -> None in match item with | None -> None | Some i -> Some (source_map ~loc:x.pexp_loc i) (* Renders jsx children. Returns None if it is not a valid JSX child * structure and must be rendered as spread. You cannot render any list of * JSX children in Reason unless it is nil-terminated. Otherwise you must use * spread. *) method formatJsxChildrenNonSpread expr processedRev = let formatJsxChild x = match x with | { pexp_desc = Pexp_apply _; _ } as e -> (* Pipe first behaves differently according to the expression on the * right. In example (1) below, it's a `SpecificInfixPrecedence`; in * (2), however, it's `Simple` and doesn't need to be wrapped in parens. * * (1). <div> {items->Belt.Array.map(ReasonReact.string)->ReasonReact.array} </div>; * (2). <Foo> (title === "" ? [1, 2, 3] : blocks)->Foo.toString </Foo>; *) if Reason_heuristics.isPipeFirst e && not (Reason_heuristics.isPipeFirstWithNonSimpleJSXChild e) then self#formatPipeFirst e else self#inline_braces#simplifyUnparseExpr ~inline:true ~wrap:("{", "}") e (* No braces - very simple *) | { pexp_desc = Pexp_ident li; _ } -> self#longident_loc li | { pexp_desc = Pexp_constant constant; _ } as x -> let raw_literal, _ = Reason_attributes.extract_raw_literal x.pexp_attributes in self#constant ?raw_literal constant | _ -> (* Currently spreading a list, or having a list as a child must be * wrapped in { }. You can remove the entire even_wrap_simple arg * when that is fixed (there is a conflict in grammar when allowing * a [] without {[]} as child. *) (* Simple child that has jsx: <hi> </hi> *) (* Simple child that doesn't have jsx: "hello" *) (* Simple child that doesn't have jsx but is a "::" and requires braces: [a, b] *) self#inline_braces#simplifyUnparseExpr ~inline:true ~wrap:("{", "}") x in match expr with | { pexp_desc = Pexp_construct ({ txt = Lident "[]"; _ }, None); _ } -> (match processedRev with | [] -> None | _ :: _ -> Some (List.rev processedRev)) | { pexp_desc = Pexp_construct ( { txt = Lident "::"; _ } , Some { pexp_desc = Pexp_tuple [ hd; tl ]; _ } ) ; _ } -> self#formatJsxChildrenNonSpread tl (formatJsxChild hd :: processedRev) | _ -> None method direction_flag = function Upto -> atom "to" | Downto -> atom "downto" method payload ppxToken ppxId e = let wrap = "[" ^ ppxToken ^ ppxId.txt, "]" in let wrap_prefix str (x, y) = x ^ str, y in let pad = true, false in let postSpace = true in match e with | PStr [] -> atom ("[" ^ ppxToken ^ ppxId.txt ^ "]") | PStr [ itm ] -> makeList ~break:Layout.IfNeed ~wrap ~pad [ self#structure_item itm ] | PStr (_ :: _ as items) -> let rows = List.map self#structure_item items in makeList ~wrap ~break:Layout.Always ~pad ~postSpace ~sep:(Layout.Sep ";") rows | PTyp x -> let wrap = wrap_prefix ":" wrap in makeList ~wrap ~break:Layout.IfNeed ~pad [ self#core_type x ] (* Signatures in attributes were added recently *) | PSig [] -> atom ("[" ^ ppxToken ^ ppxId.txt ^ ":]") | PSig [ x ] -> let wrap = wrap_prefix ":" wrap in makeList ~break:Layout.IfNeed ~wrap ~pad [ self#signature_item x ] | PSig items -> let wrap = wrap_prefix ":" wrap in let rows = List.map self#signature_item items in makeList ~wrap ~break:Layout.IfNeed ~pad ~postSpace ~sep:(Layout.Sep ";") rows | PPat (x, None) -> let wrap = wrap_prefix "?" wrap in makeList ~wrap ~break:Layout.IfNeed ~pad [ self#pattern_at_least_as_simple_as_alias_or_or x ] | PPat (x, Some e) -> let wrap = wrap_prefix "?" wrap in makeList ~wrap ~break:Layout.IfNeed ~pad ~postSpace [ self#pattern_at_least_as_simple_as_alias_or_or x ; label ~space:true (atom "when") (self#unparseExpr e) ] (* [% ...] *) method extension (s, p) = match s.txt with (* We special case "mel.obj" for now to allow for a nicer interop with * Melange. We might be able to generalize to any kind of * record looking thing with struct keys. *) | "mel.obj" -> self#formatMelObjExtensionSugar p | _ -> self#payload "%" s p method item_extension (s, e) = self#payload "%%" s e (* [@ ...] Simple attributes *) method attribute = function | { attr_name = { Location.txt = "ocaml.doc" | "ocaml.text"; _ } ; attr_payload = PStr [ { pstr_desc = Pstr_eval ( { pexp_desc = Pexp_constant (Pconst_string (text, _, None)) ; _ } , _ ) ; pstr_loc } ] ; _ } -> let break = if text = "" then Layout.IfNeed else Always_rec in let text = if text = "" then "/**/" else "/**" ^ text ^ "*/" in makeList ~inline:(true, true) ~postSpace:true ~preSpace:true ~indent:0 ~break [ atom ~loc:pstr_loc text ] | { attr_name; attr_payload; _ } -> self#payload "@" attr_name attr_payload (* [@@ ... ] Attributes that occur after a major item in a structure/class *) method item_attribute = self#attribute (* [@@ ...] Attributes that occur not *after* an item in some structure/class/sig, but rather as their own standalone item. Note that syntactic distinction between item_attribute and floating_attribute is no longer necessary with Reason. Thank you semicolons. *) method floating_attribute = self#item_attribute method attributes l = List.map self#attribute l method attach_std_attrs l toThis = let l = Reason_attributes.extractStdAttrs l in match l with | [] -> toThis | _ :: _ -> makeList ~postSpace:true (List.concat [ self#attributes l; [ toThis ] ]) method attach_std_item_attrs ?(allowUncurry = true) ?extension l toThis = let attrs = Reason_attributes.partitionAttributes ~allowUncurry l in match extension, attrs.stdAttrs with | None, [] -> toThis | Some id, _ -> makeList ~wrap:("[%" ^ id.txt, "]") ~indent:1 ~pad:(true, false) ~break:Layout.IfNeed (List.map self#item_attribute l @ [ toThis ]) | None, _ -> makeList ~postSpace:true ~indent:0 ~break:Always ~inline:(true, true) (List.map self#item_attribute l @ [ toThis ]) method exception_declaration ed = let pcd_name = ed.pext_name in let pcd_loc = ed.pext_loc in let pcd_attributes = [] in let exn_arg = match ed.pext_kind with | Pext_decl (vars, args, type_opt) -> let pcd_args, pcd_res = args, type_opt in [ self#type_variant_leaf_nobar { pcd_name ; pcd_args ; pcd_res ; pcd_loc ; pcd_attributes ; pcd_vars = vars } ] | Pext_rebind id -> [ atom pcd_name.txt; atom "="; self#longident_loc id ] in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true ed.pext_attributes in let layout = self#attach_std_item_attrs stdAttrs (label ~space:true (atom "exception") (makeList ~postSpace:true ~inline:(true, true) exn_arg)) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:ed.pext_loc ~layout () (* Note: that override doesn't appear in class_sig_field, but does occur in class/object expressions. TODO: TODOATTRIBUTES *) method method_sig_flags_for s = function | Virtual -> [ atom "virtual"; atom s ] | Concrete -> [ atom s ] method value_type_flags_for s = function | Virtual, Mutable -> [ atom "virtual"; atom "mutable"; atom s ] | Virtual, Immutable -> [ atom "virtual"; atom s ] | Concrete, Mutable -> [ atom "mutable"; atom s ] | Concrete, Immutable -> [ atom s ] method class_sig_field x = match x.pctf_desc with | Pctf_inherit ct -> label ~space:true (atom "inherit") (self#class_constructor_type ct) | Pctf_val (s, mf, vf, ct) -> let valueFlags = self#value_type_flags_for (s.txt ^ ":") (vf, mf) in label ~space:true (label ~space:true (atom "val") (makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed valueFlags)) (self#core_type ct) | Pctf_method (s, pf, vf, ct) -> let methodFlags = self#method_sig_flags_for (s.txt ^ ":") vf in let pubOrPrivate = match pf with Private -> "pri" | Public -> "pub" in let m = label ~space:true (label ~space:true (atom pubOrPrivate) (makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed methodFlags)) (self#core_type ct) in self#attach_std_item_attrs x.pctf_attributes m | Pctf_constraint (ct1, ct2) -> label ~space:true (atom "constraint") (label ~space:true (makeList ~postSpace:true [ self#core_type ct1; atom "=" ]) (self#core_type ct2)) | Pctf_attribute a -> self#floating_attribute a | Pctf_extension e -> self#item_extension e (* * /** doc comment */ (* formattedDocs *) * [@bs.val] [@bs.module "react-dom"] (* formattedAttrs *) * external render : reactElement => element => unit = (* frstHalf *) * "render"; (* sndHalf *) * To improve the formatting with breaking & indentation: * * consider the part before the '=' as a label * * combine that label with '=' in a list * * consider the part after the '=' as a list * * combine both parts as a label * * format the doc comment with a ~postSpace:true (inline, not inline) list * * format the attributes with a ~postSpace:true (inline, inline) list * * format everything together in a ~postSpace:true (inline, inline) list * for nicer breaking *) method primitive_declaration ?extension vd = let external_label = add_extension_sugar "external" extension in let lblBefore = label ~space:true (makeList [ makeList ~postSpace:true [ atom external_label; protectIdentifier vd.pval_name.txt ] ; atom ":" ]) (self#core_type vd.pval_type) in let primDecl = match vd.pval_prim with | [ "" ] -> lblBefore | _ -> let frstHalf = makeList ~postSpace:true [ lblBefore; atom "=" ] in let sndHalf = makeSpacedBreakableInlineList (List.map self#constant_string_for_primitive vd.pval_prim) in label ~space:true frstHalf sndHalf in match vd.pval_attributes with | [] -> primDecl | attrs -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true attrs in let docs = List.map self#item_attribute docAttrs in let formattedDocs = makeList ~postSpace:true docs in let attrs = List.map self#item_attribute stdAttrs in let formattedAttrs = makeSpacedBreakableInlineList attrs in let layouts = match docAttrs, stdAttrs with | [], _ -> [ formattedAttrs; primDecl ] | _, [] -> [ formattedDocs; primDecl ] | _ -> [ formattedDocs; formattedAttrs; primDecl ] in makeSpacedBreakableInlineList layouts method classTypeSigsAndRest x = match x.pcty_desc with | Pcty_signature cs -> let { pcsig_self = ct; pcsig_fields = l } = cs in let instTypeFields = List.map self#class_sig_field l in let allItems = match ct.ptyp_desc with | Ptyp_any -> instTypeFields | _ -> label ~space:true (atom "as") (self#core_type ct) :: instTypeFields in allItems | _ -> [ self#class_instance_type x ] method class_instance_type x = match x.pcty_desc with | Pcty_signature _ | Pcty_open _ -> let opens, rest = self#classTypeOpens x in let cs = self#classTypeSigsAndRest rest in self#attach_std_item_attrs ~allowUncurry:false x.pcty_attributes (makeList ~wrap:("{", "}") ~postSpace:true ~break:Layout.Always_rec (List.map semiTerminated (List.concat [ opens; cs ]))) | Pcty_constr (li, l) -> self#attach_std_attrs x.pcty_attributes (match l with | [] -> self#longident_loc li | _ :: _ -> label (self#longident_loc li) (makeList ~wrap:("(", ")") ~sep:commaTrail (List.map self#core_type l))) | Pcty_extension e -> self#attach_std_item_attrs x.pcty_attributes (self#extension e) | Pcty_arrow _ -> failwith "class_instance_type should not be printed with Pcty_arrow" method classTypeOpens x = let rec gatherOpens acc opn = match opn.pcty_desc with | Pcty_open (md, ct) -> let li = md.popen_expr in gatherOpens (source_map ~loc:li.loc (label ~space:true (atom ("open" ^ override md.popen_override)) (self#longident_loc li)) :: acc) ct | _ -> List.rev acc, opn in gatherOpens [] x method class_declaration_list l = let class_declaration ?(class_keyword = false) ({ pci_params = ls ; pci_name = { txt; _ } ; pci_virt ; pci_loc ; _ } as x) = let firstToken, pattern, patternAux = self#class_opening class_keyword txt pci_virt ls in let classBinding = self#wrappedClassBinding firstToken pattern patternAux x.pci_expr in source_map ~loc:pci_loc (self#attach_std_item_attrs x.pci_attributes classBinding) in match l with | [] -> raise (NotPossible "Class definitions will have at least one item.") | x :: rest -> makeNonIndentedBreakingList (class_declaration ~class_keyword:true x :: List.map class_declaration rest) (* For use with [class type a = class_instance_type]. Class type declarations/definitions declare the types of instances generated by class constructors. We have to call self#class_instance_type because self#class_constructor_type would add a "new" before the type. TODO: TODOATTRIBUTES: *) method class_type_declaration_list l = let class_type_declaration kwd ({ pci_params = ls; pci_name; pci_attributes; _ } as x) = let opener = match x.pci_virt with | Virtual -> kwd ^ " " ^ "virtual" | Concrete -> kwd in let upToName = let name = add_raw_identifier_prefix pci_name.txt in if ls == [] then label ~space:true (atom opener) (atom name) else label ~space:true (label ~space:true (atom opener) (atom name)) (self#class_params_def ls) in let includingEqual = makeList ~postSpace:true [ upToName; atom "=" ] in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true pci_attributes in let layout = self#attach_std_item_attrs stdAttrs @@ label ~space:true includingEqual (self#class_instance_type x.pci_expr) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:pci_name.loc ~layout () in match l with | [] -> failwith "Should not call class_type_declaration with no classes" | [ x ] -> class_type_declaration "class type" x | x :: xs -> makeList ~break:Always_rec ~indent:0 ~inline:(true, true) (class_type_declaration "class type" x :: List.map (class_type_declaration "and") xs) (* Formerly the [class_type] Notice how class_constructor_type doesn't have any type attributes - class_instance_type does. TODO: Divide into class_constructor_types that allow arrows and ones that don't. *) method class_constructor_type x = match x.pcty_desc with | Pcty_arrow _ -> let rec allArrowSegments acc = function | { pcty_desc = Pcty_arrow (l, ct1, ct2); _ } -> allArrowSegments (self#type_with_label (l, ct1, false) :: acc) ct2 (* This "new" is unfortunate. See reason_parser.mly for details. *) | xx -> List.rev acc, self#class_constructor_type xx in let params, return = allArrowSegments [] x in let normalized = makeList ~break:IfNeed ~sep:(Sep "=>") ~preSpace:true ~postSpace:true ~inline:(true, true) [ makeCommaBreakableListSurround "(" ")" params; return ] in source_map ~loc:x.pcty_loc normalized | _ -> (* Unfortunately, we have to have final components of a class_constructor_type be prefixed with the `new` keyword. Hopefully this is temporary. *) self#class_instance_type x method non_arrowed_class_constructor_type x = match x.pcty_desc with | Pcty_arrow _ -> source_map ~loc:x.pcty_loc (formatPrecedence (self#class_constructor_type x)) | _ -> self#class_instance_type x method class_field x = let itm = match x.pcf_desc with | Pcf_inherit (ovf, ce, so) -> let inheritText = "inherit" ^ override ovf in let inheritExp = self#class_expr ce in label ~space:true (atom inheritText) (match so with | None -> inheritExp | Some s -> label ~space:true inheritExp (atom ("as " ^ s.txt))) | Pcf_val (s, mf, Cfk_concrete (ovf, e)) -> let opening = match mf with | Mutable -> let mutableName = [ atom "mutable"; atom s.txt ] in label ~space:true (atom ("val" ^ override ovf)) (makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed mutableName) | Immutable -> label ~space:true (atom ("val" ^ override ovf)) (atom s.txt) in let valExprAndConstraint = match e.pexp_desc with | Pexp_constraint (ex, ct) -> let openingWithTypeConstraint = formatTypeConstraint opening (self#core_type ct) in label ~space:true (makeList ~postSpace:true [ openingWithTypeConstraint; atom "=" ]) (self#unparseExpr ex) | _ -> label ~space:true (makeList ~postSpace:true [ opening; atom "=" ]) (self#unparseExpr e) in valExprAndConstraint | Pcf_val (s, mf, Cfk_virtual ct) -> let opening = match mf with | Mutable -> let mutableVirtualName = [ atom "mutable"; atom "virtual"; atom s.txt ] in let openingTokens = makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed mutableVirtualName in label ~space:true (atom "val") openingTokens | Immutable -> let virtualName = [ atom "virtual"; atom s.txt ] in let openingTokens = makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed virtualName in label ~space:true (atom "val") openingTokens in formatTypeConstraint opening (self#core_type ct) | Pcf_method (s, pf, Cfk_virtual ct) -> let opening = match pf with | Private -> let privateVirtualName = [ atom "virtual"; atom s.txt ] in let openingTokens = makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed privateVirtualName in label ~space:true (atom "pri") openingTokens | Public -> let virtualName = [ atom "virtual"; atom s.txt ] in let openingTokens = makeList ~postSpace:true ~inline:(false, true) ~break:IfNeed virtualName in label ~space:true (atom "pub") openingTokens in formatTypeConstraint opening (self#core_type ct) | Pcf_method (s, pf, Cfk_concrete (ovf, e)) -> let methodText = let postFix = if ovf == Override then "!" else "" in match pf with | Private -> "pri" ^ postFix | Public -> "pub" ^ postFix in (* Should refactor the binding logic so faking out the AST isn't needed, currently, it includes a ton of nuanced logic around recovering explicitly polymorphic type definitions, and that furthermore, that representation... Actually, let's do it. For some reason, concrete methods are only ever parsed as Pexp_poly. If there *is* no polymorphic function for the method, then the return value of the function is wrapped in a ghost Pexp_poly with [None] for the type vars.*) (match e.pexp_desc with | Pexp_poly ( { pexp_desc = Pexp_constraint (methodFunWithNewtypes, nonVarifiedExprType) ; _ } , Some { ptyp_desc = Ptyp_poly (typeVars, varifiedPolyType); _ } ) when let leadingAbstractVars, _ = self#leadingCurriedAbstractTypes methodFunWithNewtypes in self#isRenderableAsPolymorphicAbstractTypes typeVars (* If even artificially varified. Don't know until this returns*) varifiedPolyType leadingAbstractVars nonVarifiedExprType -> let leadingAbstractVars, _ = self#leadingCurriedAbstractTypes methodFunWithNewtypes in self#locallyAbstractPolymorphicFunctionBinding methodText (atom s.txt) methodFunWithNewtypes leadingAbstractVars nonVarifiedExprType | Pexp_poly (e, Some ct) -> self#formatSimplePatternBinding methodText (atom s.txt) (Some ( source_map ~loc:ct.ptyp_loc (self#core_type ct) , `Constraint )) (self#unparseExprApplicationItems e) (* This form means that there is no type constraint - it's a strange node name.*) | Pexp_poly (e, None) -> self#wrappedBinding methodText ~arrow:"=>" (atom s.txt) [] e | _ -> failwith "Concrete methods should only ever have Pexp_poly.") | Pcf_constraint (ct1, ct2) -> label ~space:true (atom "constraint") (makeList ~postSpace:true ~inline:(true, false) [ makeList ~postSpace:true [ self#core_type ct1; atom "=" ] ; self#core_type ct2 ]) | Pcf_initializer e -> label ~space:true (atom "initializer") (self#simplifyUnparseExpr e) | Pcf_attribute a -> self#floating_attribute a | Pcf_extension e -> (* And don't forget, we still need to print post_item_attributes even for this case *) self#item_extension e in let layout = self#attach_std_attrs x.pcf_attributes itm in source_map ~loc:x.pcf_loc layout method class_self_pattern_and_structure { pcstr_self = p; pcstr_fields = l } = let fields = List.map self#class_field l in (* Recall that by default self is bound to "this" at parse time. You'd have to go out of your way to bind it to "_". *) match p.ppat_attributes, p.ppat_desc with | [], Ppat_var { txt = "this"; _ } -> fields | _ -> let field = label ~space:true (atom "as") (self#pattern p) in source_map ~loc:p.ppat_loc field :: fields method simple_class_expr x = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes x.pcl_attributes in if stdAttrs != [] then formatSimpleAttributed (self#simple_class_expr { x with pcl_attributes = [] }) (self#attributes stdAttrs) else let itm = match x.pcl_desc with | Pcl_constraint (ce, ct) -> formatTypeConstraint (self#class_expr ce) (self#class_constructor_type ct) (* In OCaml, * - In the most recent version of OCaml, when in the top level of a * module, let _ = ... is a PStr_eval. * - When in a function, it is a Pexp_let PPat_any * - When in class pre-member let bindings it is a Pcl_let PPat_any * * Reason normalizes all of these to be simple imperative expressions * with trailing semicolons, *except* in the case of classes because it * will likely introduce a conflict with some proposed syntaxes for * objects. *) | Pcl_let _ | Pcl_structure _ | Pcl_open _ -> let opens, rest = self#classExprOpens x in let rows = self#classExprLetsAndRest rest in makeList ~wrap:("{", "}") ~inline:(true, false) ~postSpace:true ~break:Always_rec (List.map semiTerminated (List.concat [ opens; rows ])) | Pcl_extension e -> self#extension e | _ -> formatPrecedence (self#class_expr x) in source_map ~loc:x.pcl_loc itm method classExprLetsAndRest x = match x.pcl_desc with | Pcl_structure cs -> self#class_self_pattern_and_structure cs | Pcl_let (rf, l, ce) -> (* For "letList" bindings, the start/end isn't as simple as with * module value bindings. For "let lists", the sequences were formed * within braces {}. The parser relocates the first let binding to the * first brace. *) let binding = source_map ~loc:(self#bindingsLocationRange l) (self#bindings (rf, l)) in binding :: self#classExprLetsAndRest ce | Pcl_open (_, ce) -> self#classExprLetsAndRest ce | _ -> [ self#class_expr x ] method classExprOpens x = let rec gatherOpens acc opn = match opn.pcl_desc with | Pcl_open (md, ce) -> let li = md.popen_expr in gatherOpens (source_map ~loc:li.loc (label ~space:true (atom ("open" ^ override md.popen_override)) (self#longident_loc li)) :: acc) ce | _ -> List.rev acc, opn in gatherOpens [] x method class_expr x = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes x.pcl_attributes in (* We cannot handle the attributes here. Must handle them in each item *) if stdAttrs != [] then (* Do not need a "simple" attributes precedence wrapper. *) formatAttributed (self#simple_class_expr { x with pcl_attributes = [] }) (self#attributes stdAttrs) else match x.pcl_desc with | Pcl_fun _ -> (match self#curriedConstructorPatternsAndReturnVal x with | None, _ -> (* x just matched Pcl_fun, there is at least one parameter *) assert false | Some args, e -> label ~space:true (makeList ~postSpace:true [ label ~space:true (atom funToken) args; atom "=>" ]) (self#class_expr e)) | Pcl_apply _ -> formatAttachmentApplication applicationFinalWrapping None (self#classExpressionToFormattedApplicationItems x, None) | Pcl_constr (li, []) -> label ~space:true (atom "class") (self#longident_loc li) | Pcl_constr (li, l) -> label (makeList ~postSpace:true [ atom "class"; self#longident_loc li ]) (makeTup (List.map self#non_arrowed_non_simple_core_type l)) | Pcl_open _ | Pcl_constraint _ | Pcl_extension _ | Pcl_let _ | Pcl_structure _ -> self#simple_class_expr x method classStructure ?(forceBreak = false) ?(wrap = "", "") cs = let left, right = wrap in let fields_layout = self#class_self_pattern_and_structure cs in let pad = match fields_layout with [] -> false | _ :: _ -> true in makeList ~sep:(Layout.Sep ";") ~wrap:(left ^ "{", "}" ^ right) ~break:(if forceBreak then Layout.Always else Layout.IfNeed) ~postSpace:true ~pad:(pad, pad) ~inline:(true, false) fields_layout method signature signatureItems = match signatureItems with | [] -> atom "" | first :: _ as signatureItems -> let last = match List.rev signatureItems with | last :: _ -> last | [] -> assert false in let loc_start = first.psig_loc.loc_start in let loc_end = last.psig_loc.loc_end in let items = groupAndPrint ~xf:self#signature_item ~getLoc:(fun x -> x.psig_loc) ~comments:self#comments signatureItems in source_map ~loc:{ loc_start; loc_end; loc_ghost = false } (makeList ~postSpace:true ~break:Layout.Always_rec ~indent:0 ~inline:(true, false) ~sep:(SepFinal (";", ";")) items) method signature_item item : Layout.t = match item.psig_desc with | Psig_extension ((extension, PSig [ item ]), _attrs) -> (match item.psig_desc with (* In case of a value or `external`, the extension gets inlined `let%private a = 1` *) | Psig_value ({ pval_prim = [ _ ]; _ } as vd) -> self#primitive_declaration ~extension vd | Psig_value vd -> self#val_binding ~extension vd | Psig_module pmd -> self#psig_module ~extension pmd | Psig_recmodule pmd -> self#psig_recmodule ~extension pmd | Psig_open od -> self#psig_open ~extension od | Psig_type (rf, l) -> self#type_def_list ~extension rf l | Psig_typext te -> self#type_extension ~extension te | _ -> self#payload "%%" extension (PSig [ item ])) | _ -> self#signature_item' item method val_binding ?extension vd = let intro = add_extension_sugar "let" extension in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true vd.pval_attributes in let layout = self#attach_std_item_attrs stdAttrs (formatTypeConstraint (label ~space:true (atom intro) (source_map ~loc:vd.pval_name.loc (protectIdentifier vd.pval_name.txt))) (self#core_type vd.pval_type)) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:vd.pval_loc ~layout () method psig_module ?extension pmd = let layout = let prefix = add_extension_sugar "module" extension in match pmd.pmd_type.pmty_desc with | Pmty_alias alias -> label ~space:true (makeList ~postSpace:true [ atom prefix; atom (moduleIdent pmd.pmd_name); atom "=" ]) (self#longident_loc alias) | _ -> let letPattern = makeList [ makeList ~postSpace:true [ atom prefix; atom (moduleIdent pmd.pmd_name) ] ; atom ":" ] in self#module_type letPattern pmd.pmd_type in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true pmd.pmd_attributes in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:pmd.pmd_name.loc ~layout:(self#attach_std_item_attrs stdAttrs @@ layout) () method psig_recmodule ?extension decls = let items = List.mapi (fun i xx -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true xx.pmd_attributes in let letPattern = makeList [ makeList ~postSpace:true [ atom (if i == 0 then add_extension_sugar "module" extension ^ " rec" else "and") ; atom (moduleIdent xx.pmd_name) ] ; atom ":" ] in let layout = self#attach_std_item_attrs stdAttrs (self#module_type ~space:true letPattern xx.pmd_type) in let layoutWithDocAttrs = self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:xx.pmd_name.loc ~layout () in extractLocModDecl xx, layoutWithDocAttrs) decls in makeNonIndentedBreakingList (groupAndPrint ~xf:(fun (_, layout) -> layout) ~getLoc:(fun (loc, _) -> loc) ~comments:self#comments items) method psig_open ?extension od = let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true od.popen_attributes in let layout = let open_prefix = add_open_extension_sugar ~override:od.popen_override extension in self#attach_std_item_attrs stdAttrs @@ label ~space:true (atom open_prefix) (self#longident_loc od.popen_expr) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:od.popen_expr.loc ~layout () method modtype x ~delim = let name = atom (add_raw_identifier_prefix x.pmtd_name.txt) in let main = match x.pmtd_type with | None -> makeList ~postSpace:true [ atom "module type"; name ] | Some mt -> let letPattern = makeList ~postSpace:true [ atom "module type"; name; atom delim ] in self#module_type letPattern mt in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true x.pmtd_attributes in let layout = self#attach_std_item_attrs stdAttrs main in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:x.pmtd_name.loc ~layout () method signature_item' x : Layout.t = let item : Layout.t = match x.psig_desc with | Psig_type (rf, l) -> self#type_def_list rf l | Psig_value vd -> if vd.pval_prim != [] then self#primitive_declaration vd else self#val_binding vd | Psig_typext te -> self#type_extension te | Psig_exception ed -> self#exception_declaration { ed.ptyexn_constructor with pext_attributes = ed.ptyexn_attributes @ ed.ptyexn_constructor.pext_attributes } | Psig_class l -> let class_description ?(class_keyword = false) ({ pci_params = ls; pci_name = { txt; _ }; pci_loc; _ } as x) = let firstToken, pattern, patternAux = self#class_opening class_keyword txt x.pci_virt ls in let withColon = self#wrapCurriedFunctionBinding ~arrow:":" ~spaceBeforeArrow:false firstToken pattern patternAux ([ self#class_constructor_type x.pci_expr ], None) in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true x.pci_attributes in let layout = self#attach_std_item_attrs stdAttrs withColon in source_map ~loc:pci_loc (self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:x.pci_name.loc ~layout ()) in makeNonIndentedBreakingList (match l with | [] -> raise (NotPossible "No recursive class bindings") | [ x ] -> [ class_description ~class_keyword:true x ] | x :: xs -> class_description ~class_keyword:true x :: List.map class_description xs) | Psig_module pmd -> self#psig_module pmd | Psig_open od -> self#psig_open od | Psig_include incl -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true incl.pincl_attributes in let layout = self#attach_std_item_attrs stdAttrs @@ self#module_type (atom "include") incl.pincl_mod in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:incl.pincl_mod.pmty_loc ~layout () | Psig_modtype x -> self#modtype x ~delim:"=" | Psig_class_type l -> self#class_type_declaration_list l | Psig_recmodule decls -> self#psig_recmodule decls | Psig_attribute a -> self#floating_attribute a | Psig_extension ((({ loc; _ }, _) as ext), attrs) -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true attrs in let layout = self#attach_std_item_attrs stdAttrs (self#item_extension ext) in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc ~layout () | Psig_modsubst { pms_name; pms_manifest; pms_attributes; pms_loc } -> let name = atom pms_name.txt in let main = makeList ~postSpace:true [ atom "module" ; name ; atom ":=" ; self#longident_loc pms_manifest ] in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true pms_attributes in let layout = self#attach_std_item_attrs stdAttrs main in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:pms_loc ~layout () | Psig_typesubst l -> self#type_def_list ~eq_symbol:":=" Recursive l | Psig_modtypesubst x -> self#modtype x ~delim:":=" in source_map ~loc:x.psig_loc item method non_arrowed_module_type ?(space = true) letPattern x = match x.pmty_desc with | Pmty_alias li -> label ~space letPattern (formatPrecedence (label ~space:true (atom "module") (self#longident_loc li))) | Pmty_typeof me -> let labelWithoutFinalWrap = label ~space:true (label ~space:true letPattern (makeList ~inline:(false, false) ~wrap:("(", "") ~postSpace:true [ atom "module type of" ])) (self#module_expr me) in makeList ~wrap:("", ")") [ labelWithoutFinalWrap ] | _ -> self#simple_module_type ~space letPattern x method simple_module_type ?(space = true) letPattern x = match x.pmty_desc with | Pmty_ident li -> label ~space letPattern (self#longident_loc li) | Pmty_signature s -> let items = groupAndPrint ~xf:self#signature_item ~getLoc:(fun x -> x.psig_loc) ~comments:self#comments s in let shouldBreakLabel = match s with [] -> `Auto | _ -> `Always in label ~indent:0 ~break:shouldBreakLabel (makeList [ label ~break:shouldBreakLabel (makeList ~postSpace:true [ letPattern; atom "{" ]) (source_map ~loc:x.pmty_loc (makeList ~break:(match s with [] -> IfNeed | _ -> Always) ~inline:(true, true) ~postSpace:true ~sep:(SepFinal (";", ";")) items)) ]) (atom "}") | Pmty_extension (s, e) -> label ~space letPattern (self#payload "%" s e) | _ -> makeList ~break:IfNeed ~wrap:("", ")") [ self#module_type ~space:false (makeList ~pad:(false, true) ~wrap:("", "(") [ letPattern ]) x ] method module_type ?(space = true) letPattern x = let pmty = match x.pmty_desc with | Pmty_functor _ -> (* The segments that should be separated by arrows. *) let rec extract_args args xx = match xx.pmty_desc with | Pmty_functor (Unit, mt2) -> extract_args (`Unit :: args) mt2 | Pmty_functor (Named ({ txt = s; _ }, mt1), mt2) -> let arg = match s with | None -> self#module_type ~space:false (atom "") mt1 | Some s -> self#module_type ~space (makeList [ atom s; atom ":" ]) mt1 in extract_args (`Arg arg :: args) mt2 | _ -> let prepare_arg = function | `Unit -> atom "()" | `Arg x -> x in let args = match args with | [ `Unit ] -> [] | _ -> List.rev_map prepare_arg args in args, self#module_type (atom "") xx in let args, ret = extract_args [] x in label ~space letPattern (makeList ~break:IfNeed ~sep:(Sep "=>") ~preSpace:true ~inline:(true, true) [ makeTup args; ret ]) (* See comments in sugar_parser.mly about why WITH constraints aren't "non * arrowed" *) | Pmty_with (mt, l) -> let modSub atm li2 token = makeList ~postSpace:true [ atom "module"; atm; atom token; self#longident_loc li2 ] in let modtypeSub atm li modtype = label (makeList ~break:IfNeed ~sep:(Sep " ") [ atom "module type"; self#longident li; atm ]) (self#module_type (atom "") modtype) in let typeAtom = atom "type" in let eqAtom = atom "=" in let destrAtom = atom ":=" in let with_constraint = function | Pwith_type (li, td) -> self#formatOneTypeDef typeAtom (makeList ~preSpace:true [ self#longident_loc li ]) eqAtom td | Pwith_module (li, li2) -> modSub (self#longident_loc li) li2 "=" | Pwith_typesubst (_, td) -> self#formatOneTypeDef typeAtom (atom ~loc:td.ptype_name.loc td.ptype_name.txt) destrAtom td | Pwith_modsubst (s, li2) -> modSub (self#longident s.txt) li2 ":=" | Pwith_modtype (s, modtype) -> modtypeSub eqAtom s.txt modtype | Pwith_modtypesubst (s, modtype) -> modtypeSub destrAtom s.txt modtype in (match l with | [] -> self#module_type ~space letPattern mt | _ -> label ~space letPattern (label ~space:true (makeList ~preSpace:true [ self#module_type ~space:false (atom "") mt ; atom "with" ]) (makeList ~break:IfNeed ~inline:(true, true) ~sep:(Sep "and") ~postSpace:true ~preSpace:true (List.map with_constraint l)))) (* Seems like an infinite loop just waiting to happen. *) | _ -> self#non_arrowed_module_type ~space letPattern x in source_map ~loc:x.pmty_loc pmty method simple_module_expr ?(hug = false) x = match x.pmod_desc with | Pmod_unpack e -> let exprLayout = match e.pexp_desc with | Pexp_constraint (e, { ptyp_desc = Ptyp_package (lid, cstrs); _ }) -> formatTypeConstraint (makeList ~postSpace:true [ atom "val"; self#unparseExpr e ]) (self#typ_package ~mod_prefix:false lid cstrs) | _ -> makeList ~postSpace:true [ atom "val"; self#unparseExpr e ] in formatPrecedence exprLayout | Pmod_ident li -> ensureSingleTokenSticksToLabel (self#longident_loc li) | Pmod_constraint (unconstrainedRet, mt) -> let letPattern = makeList [ self#module_expr unconstrainedRet; atom ":" ] in formatPrecedence (self#module_type letPattern mt) | Pmod_structure s -> let wrap = if hug then if s = [] then "(", ")" else "({", "})" else "{", "}" in self#structure ~indent:None ~wrap s | _ -> (* For example, functor application will be wrapped. *) formatPrecedence ~wrap:("", "") (self#module_expr x) method module_expr x = match x.pmod_desc with | Pmod_functor _ -> let argsList, return = self#curriedFunctorPatternsAndReturnStruct x in (* See #19/20 in syntax.mls - cannot annotate return type at the moment. *) self#wrapCurriedFunctionBinding funToken ~sweet:true ~arrow:"=>" (makeTup argsList) [] ([ self#moduleExpressionToFormattedApplicationItems return ], None) | Pmod_apply _ | Pmod_apply_unit _ -> self#moduleExpressionToFormattedApplicationItems x | Pmod_extension (s, e) -> self#payload "%" s e | Pmod_unpack _ | Pmod_ident _ | Pmod_constraint _ | Pmod_structure _ -> self#simple_module_expr x method recmodule ?extension decls = let items = List.mapi (fun i xx -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true xx.pmb_attributes in let layout = self#attach_std_item_attrs stdAttrs @@ self#let_module_binding (if i == 0 then add_extension_sugar "module" extension ^ " rec" else "and") (atom (moduleIdent xx.pmb_name)) xx.pmb_expr in let layoutWithDocAttrs = self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:xx.pmb_name.loc ~layout () in extractLocModuleBinding xx, layoutWithDocAttrs) decls in makeNonIndentedBreakingList (groupAndPrint ~xf:(fun (_, layout) -> layout) ~getLoc:(fun (loc, _) -> loc) ~comments:self#comments items) method pstr_open ?extension od = let open_prefix = add_open_extension_sugar ~override:od.popen_override extension in self#attach_std_item_attrs od.popen_attributes @@ label ~space:true (atom open_prefix) (self#moduleExpressionToFormattedApplicationItems od.popen_expr) method structure ?(indent = Some 0) ?wrap structureItems = (* We don't have any way to know if an extension is placed at the top level by the parsetree while there's a difference syntactically (% for structure_items/expressons and %% for top_level). This small fn detects this particular case (structure > structure_item > extension > value) and prints with double % *) let structure_item item = match item.pstr_desc with | Pstr_extension ((extension, PStr [ item ]), attrs) -> (match item.pstr_desc with (* In case of a value or `external`, the extension gets inlined `let%private a = 1` *) | Pstr_value (rf, vb_list) -> self#bindings ~extension (rf, vb_list) | Pstr_primitive vd -> self#primitive_declaration ~extension vd | Pstr_module binding -> let bindingName = atom ~loc:binding.pmb_name.loc (moduleIdent binding.pmb_name) in let module_binding = let prefix = add_extension_sugar "module" (Some extension) in self#let_module_binding prefix bindingName binding.pmb_expr in self#attach_std_item_attrs binding.pmb_attributes module_binding | Pstr_recmodule decls -> self#recmodule ~extension decls | Pstr_open od -> self#pstr_open ~extension od | Pstr_type (rf, l) -> self#type_def_list ~extension rf l | Pstr_typext te -> self#type_extension ~extension te | Pstr_eval ( ({ pexp_desc = Pexp_constant (Pconst_string (i, _, Some delim)) ; pexp_attributes ; _ } as expr) , _ ) -> let { Reason_attributes.stylisticAttrs; _ } = Reason_attributes.partitionAttributes ~allowUncurry:(Reason_heuristics.bsExprCanBeUncurried expr) pexp_attributes in if Reason_attributes.has_quoted_extension_attrs stylisticAttrs then quoted_ext ~pct:"%%" extension i delim else self#attach_std_item_attrs attrs (self#payload "%%" extension (PStr [ item ])) | _ -> self#attach_std_item_attrs attrs (self#payload "%%" extension (PStr [ item ]))) | _ -> self#structure_item item in match structureItems with | [] -> makeList ?wrap [] | first :: _ as structureItems -> let last = match List.rev structureItems with | last :: _ -> last | [] -> assert false in let loc_start = first.pstr_loc.loc_start in let loc_end = last.pstr_loc.loc_end in let items = groupAndPrint ~xf:structure_item ~getLoc:(fun x -> x.pstr_loc) ~comments:self#comments structureItems in source_map ~loc:{ loc_start; loc_end; loc_ghost = false } (makeList ~postSpace:true ~break:Always_rec ?wrap ?indent ~inline:(true, false) ~sep:(SepFinal (";", ";")) items) (* How do modules become parsed? * let module (X: sig) = blah; * Will not parse! (Should just make it parse to let [X:sig =]). * let module X: sig = blah; * Becomes Pmod_constraint * let module X: sig = (blah:sig); * Becomes Pmod_constraint .. Pmod_constraint * let module X = blah:typ; * Becomes Pmod_constraint * let module X (Y:y) (Z:z):r => Q * Becomes Pmod_functor...=> Pmod_constraint * let module X (Y:y) (Z:z):r => (Q:r2) * Probably becomes Pmod_functor...=> (Pmod_constraint.. * Pmod_constraint) * let (module X) = * Is a *completely* different thing (unpacking/packing first class modules). * We should make sure this is very well distinguished. * - Just replace all "let module" with a new three letter keyword (mod)? * - Reserve let (module X) for unpacking first class modules. * See the notes about how Ppat_constraint become parsed and attempt to unify * those as well. *) method let_module_binding prefixText bindingName moduleExpr = let { Reason_attributes.stdAttrs; _ } = Reason_attributes.partitionAttributes moduleExpr.pmod_attributes in let argsList, return = self#curriedFunctorPatternsAndReturnStruct moduleExpr in match argsList, return.pmod_desc with (* Simple module with type constraint, no functor args. *) | [], Pmod_constraint (unconstrainedRetTerm, ct) -> let letPattern = makeList [ makeList ~postSpace:true [ atom prefixText; bindingName ] ; atom ":" ] in let typeConstraint = self#module_type letPattern ct in let includingEqual = makeList ~postSpace:true [ typeConstraint; atom "=" ] in formatAttachmentApplication applicationFinalWrapping (Some (true, includingEqual)) ( [ self#moduleExpressionToFormattedApplicationItems unconstrainedRetTerm |> self#attach_std_item_attrs stdAttrs ] , None ) (* Simple module with type no constraint, no functor args. *) | [], _ -> self#formatSimplePatternBinding prefixText bindingName None ( [ self#moduleExpressionToFormattedApplicationItems return |> self#attach_std_item_attrs stdAttrs ] , None ) | _, _ -> (* A functor *) let argsWithConstraint, actualReturn = match return.pmod_desc with (* A functor with constrained return type: * * let module X = (A) (B) : Ret => ... * *) | Pmod_constraint (me, ct) -> ( [ makeTup argsList ; self#non_arrowed_module_type (atom ":") ct ] , me ) | _ -> [ makeTup argsList ], return in self#wrapCurriedFunctionBinding prefixText ~arrow:"=>" (makeList [ bindingName; atom " =" ]) argsWithConstraint ( [ self#moduleExpressionToFormattedApplicationItems actualReturn |> self#attach_std_item_attrs stdAttrs ] , None ) method class_opening class_keyword name pci_virt ls = let name = add_raw_identifier_prefix name in let firstToken = if class_keyword then "class" else "and" in match pci_virt, ls with (* When no class params, it's a very simple formatting for the * opener - no breaking. *) | Virtual, [] -> firstToken, atom "virtual", [ atom name ] | Concrete, [] -> firstToken, atom name, [] | Virtual, _ :: _ -> firstToken, atom "virtual", [ atom name; self#class_params_def ls ] | Concrete, _ :: _ -> firstToken, atom name, [ self#class_params_def ls ] (* TODO: TODOATTRIBUTES: Structure items don't have attributes, but each pstr_desc *) method structure_item term = let item = match term.pstr_desc with | Pstr_eval (e, attrs) -> let { Reason_attributes.stdAttrs; jsxAttrs; uncurried; _ } = Reason_attributes.partitionAttributes attrs in if uncurried then Hashtbl.add uncurriedTable e.pexp_loc true; let layout = self#attach_std_item_attrs stdAttrs (self#unparseUnattributedExpr e) in (* If there was a JSX attribute BUT JSX component wasn't detected, that JSX attribute needs to be pretty printed so it doesn't get lost *) (match jsxAttrs with | [] -> layout | _ :: _ -> let jsxAttrNodes = List.map self#attribute jsxAttrs in makeList ~sep:(Sep " ") (jsxAttrNodes @ [ layout ])) | Pstr_type (_, []) -> assert false | Pstr_type (rf, l) -> self#type_def_list rf l | Pstr_value (rf, l) -> self#bindings (rf, l) | Pstr_typext te -> self#type_extension te | Pstr_exception ed -> self#exception_declaration { ed.ptyexn_constructor with pext_attributes = ed.ptyexn_attributes @ ed.ptyexn_constructor.pext_attributes } | Pstr_module binding -> let bindingName = atom ~loc:binding.pmb_name.loc (moduleIdent binding.pmb_name) in let module_binding = self#let_module_binding "module" bindingName binding.pmb_expr in self#attach_std_item_attrs binding.pmb_attributes module_binding | Pstr_open od -> self#pstr_open od | Pstr_modtype x -> let name = atom (add_raw_identifier_prefix x.pmtd_name.txt) in let main = match x.pmtd_type with | None -> makeList ~postSpace:true [ atom "module type"; name ] | Some mt -> let letPattern = makeList ~postSpace:true [ atom "module type"; name; atom "=" ] in self#module_type letPattern mt in self#attach_std_item_attrs x.pmtd_attributes main | Pstr_class l -> self#class_declaration_list l | Pstr_class_type l -> self#class_type_declaration_list l | Pstr_primitive vd -> self#primitive_declaration vd | Pstr_include incl -> self#attach_std_item_attrs incl.pincl_attributes @@ (* Kind of a hack *) let moduleExpr = incl.pincl_mod in self#moduleExpressionToFormattedApplicationItems ~prefix:"include" moduleExpr | Pstr_recmodule decls -> self#recmodule decls | Pstr_attribute a -> self#floating_attribute a | Pstr_extension (((_extension, PStr []) as extension), attrs) -> (* Extension with attributes and without PStr gets printed inline *) self#attach_std_attrs attrs (self#item_extension extension) | Pstr_extension ((extension, PStr [ item ]), attrs) -> (match item.pstr_desc with (* In case of a value, the extension gets inlined `let%lwt a = 1` *) | Pstr_value (rf, l) -> self#bindings ~extension (rf, l) | _ -> let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true attrs in let item = self#structure_item item in let layout = self#attach_std_item_attrs ~extension stdAttrs item in makeList (List.map self#attribute docAttrs @ [ layout ])) | Pstr_extension (e, a) -> (* Notice how extensions have attributes - but not every structure item does. *) self#attach_std_item_attrs a (self#item_extension e) in source_map ~loc:term.pstr_loc item method type_extension ?extension te = let formatOneTypeExtStandard prepend ({ ptyext_path; _ } as te) = let name = self#longident_loc ptyext_path in let item = self#formatOneTypeExt prepend name (atom "+=") te in let { Reason_attributes.stdAttrs; docAttrs; _ } = Reason_attributes.partitionAttributes ~partDoc:true te.ptyext_attributes in let layout = self#attach_std_item_attrs stdAttrs item in self#attachDocAttrsToLayout ~stdAttrs ~docAttrs ~loc:ptyext_path.loc ~layout () in let label = add_extension_sugar "type" extension in formatOneTypeExtStandard (atom label) te (* [allowUnguardedSequenceBodies] allows sequence expressions {} to the right of `=>` to not be guarded in `{}` braces. *) method case_list ?(allowUnguardedSequenceBodies = false) l = let rec appendLabelToLast items rhs = match items with | hd :: [] -> label ~indent:0 ~space:true hd rhs :: [] | hd :: tl -> hd :: appendLabelToLast tl rhs | [] -> raise (NotPossible "Cannot append to last of nothing") in let case_row { pc_lhs; pc_guard; pc_rhs } = let theOrs = orList pc_lhs in (* match x with *) (* | AnotherReallyLongVariantName (_, _, _) *) (* | AnotherReallyLongVariantName2 (_, _, _) when true => { *) (* } *) (*<sbi><X>match x with</X> *) (* <Y>everythingElse</Y> *) (*</sbi> *) (* ............................................................ * : each or segment has a spaced list <> that ties its : * : bar "|" to its pattern : * ...:..........................................................:..... * : : each or-patterned match is grouped in SpacedBreakableInline : * : : : : * v v v v * <sbi><>|<lb><A><> FirstThingStandalone t =></A></><B>t</B></lb></></sbi> * <sbi><>|<C> AnotherReallyLongVariantName (_, _, _)</C></> * ^ <>|<lb><><lb><D>AnotherReallyLongVariantNam2 (_, _, _)</D> (label the last in or ptn for or and label it again for arrow) * : ^ ^ ^ <E>when true<E></lb> =></><F>{ * : : : : </F>}</lb></sbi> ^ ^ * : : : : ^ ^ : : * : : : : : : : : * : : : :If there is :a WHERE : : * : : : :an extra :label is : : * : : : :inserted bef:ore the : : * : : : :arrow. : : : : * : : : :............:.....:...: : * : : : : : : * : : : : : : * : : : : : : * : : :The left side of:this final label: * : : :uses a list to :append the arrow: * : : :................:.....:..........: * : : : : * : : : : * : : : : * : :Final or segment is: : * : :wrapped in lbl that: : * : :partitions pattern : : * : :and arrow from : : * : :expression. : : * : : : : * : :...................: : * : [orsWithWhereAndArrowOnLast] : * : : * :..................................: * [row] *) let bar xx = makeList ~postSpace:true [ atom "|"; xx ] in let appendWhereAndArrow p = match pc_guard with | None -> makeList ~postSpace:true [ p; atom "=>" ] | Some g -> (* when x should break as a whole - extra list added around it to make it break as one *) let withWhen = label ~space:true p (makeList ~break:Layout.Never ~inline:(true, true) ~postSpace:true [ label ~space:true (atom "when") (self#unparseExpr g) ]) in makeList ~inline:(true, true) ~postSpace:true [ withWhen; atom "=>" ] in let rec appendWhereAndArrowToLastOr = function | [] -> [] | hd :: tl -> let formattedHd = self#pattern hd in let formattedHd = match hd.ppat_desc with | Ppat_constraint _ -> formatPrecedence formattedHd | _ -> formattedHd in let formattedHd = if tl == [] then appendWhereAndArrow formattedHd else formattedHd in formattedHd :: appendWhereAndArrowToLastOr tl in let orsWithWhereAndArrowOnLast = appendWhereAndArrowToLastOr theOrs in let rhs = if allowUnguardedSequenceBodies then match self#under_pipe#letList pc_rhs with (* TODO: Still render a list with located information here so that comments (eol) are interleaved *) | [ hd ] -> hd (* In this case, we don't need any additional indentation, because there aren't wrapping {} which would cause zero indentation to look strange. *) | lst -> makeUnguardedLetSequence lst else self#under_pipe#unparseExpr pc_rhs in source_map (* Fake shift the location to accommodate for the bar, to make sure * the wrong comments don't make their way past the next bar. *) ~loc: (expandLocation ~expand:(0, 0) { loc_start = pc_lhs.ppat_loc.loc_start ; loc_end = pc_rhs.pexp_loc.loc_end ; loc_ghost = false }) (makeList ~break:Always_rec ~inline:(true, true) (List.map bar (appendLabelToLast orsWithWhereAndArrowOnLast rhs))) in groupAndPrint ~xf:case_row ~getLoc:(fun { pc_lhs; pc_rhs; _ } -> { pc_lhs.ppat_loc with loc_end = pc_rhs.pexp_loc.loc_end }) ~comments:self#comments l (* Formats a list of a single expr param in such a way that the parens of the function or * (poly)-variant application and the wrapping of the param stick together when the layout breaks. * Example: `foo({a: 1, b: 2})` needs to be formatted as * foo({ * a: 1, * b: 2 * }) * when the line length dictates breaking. Notice how `({` and `})` 'hug'. * Also see "isSingleArgParenApplication" which determines if * this kind of formatting should happen. *) method singleArgParenApplication ?(wrap = "", "") ?(uncurried = false) es = let lwrap, rwrap = wrap in let lparen = lwrap ^ if uncurried then "(. " else "(" in let rparen = ")" ^ rwrap in match es with | [ { pexp_attributes = []; pexp_desc = Pexp_record (l, eo); _ } ] -> self#unparseRecord ~wrap:(lparen, rparen) l eo | [ { pexp_attributes = []; pexp_desc = Pexp_tuple l; _ } ] -> self#unparseSequence ~wrap:(lparen, rparen) ~construct:`Tuple l | [ { pexp_attributes = []; pexp_desc = Pexp_array l; _ } ] -> self#unparseSequence ~wrap:(lparen, rparen) ~construct:`Array l | [ { pexp_attributes = []; pexp_desc = Pexp_object cs; _ } ] -> self#classStructure ~wrap:(lparen, rparen) cs | [ { pexp_attributes = []; pexp_desc = Pexp_extension (s, p); _ } ] when s.txt = "mel.obj" -> self#formatMelObjExtensionSugar ~wrap:(lparen, rparen) p | [ ({ pexp_attributes = []; _ } as exp) ] when is_simple_list_expr exp -> (match view_expr exp with | `list xs -> self#unparseSequence ~construct:`List ~wrap:(lparen, rparen) xs | `cons xs -> self#unparseSequence ~construct:`ES6List ~wrap:(lparen, rparen) xs | _ -> assert false) | _ -> assert false method formatSingleArgLabelApplication labelTerm rightExpr = let layout_right = match rightExpr with | { pexp_desc = Pexp_let _; _ } -> makeLetSequence ~wrap:("({", "})") (self#letList rightExpr) | e when isSingleArgParenApplication [ rightExpr ] -> self#singleArgParenApplication [ e ] | { pexp_desc = Pexp_construct ({ txt = Lident "()"; _ }, _); _ } -> (* special case unit such that we don't end up with double parens *) self#simplifyUnparseExpr rightExpr | _ -> formatPrecedence (self#unparseExpr rightExpr) in label labelTerm layout_right method label_x_expression_param (l, e) = let term = self#unparseProtectedExpr e in let param = match l, e with | Nolabel, _ -> term | Labelled lbl, _ when Reason_heuristics.is_punned_labelled_expression e lbl -> makeList [ atom namedArgSym; term ] | Optional lbl, _ when Reason_heuristics.is_punned_labelled_expression e lbl -> makeList [ atom namedArgSym; label term (atom "?") ] | Labelled lbl, _ -> label (atom (namedArgSym ^ lbl ^ "=")) term | Optional lbl, _ -> label (atom (namedArgSym ^ lbl ^ "=?")) term in source_map ~loc:e.pexp_loc param method label_x_expression_params ?wrap ?(uncurried = false) xs = match xs with (* function applications with unit as only argument should be printed differently * e.g. print_newline(()) should be printed as print_newline() *) | [ ( Nolabel , { pexp_attributes = [] ; pexp_desc = Pexp_construct ({ txt = Lident "()"; _ }, None) ; _ } ) ] -> makeList ~break:Never ?wrap [ (if uncurried then atom "(.)" else atom "()") ] (* The following cases provide special formatting when there's only one expr_param that is a tuple/array/list/record etc. * e.g. foo({a: 1, b: 2}) * becomes -> * foo({ * a: 1, * b: 2, * }) * when the line-length indicates breaking. *) | [ (Nolabel, exp) ] when isSingleArgParenApplication [ exp ] -> self#singleArgParenApplication ?wrap ~uncurried [ exp ] | params -> makeTup ?wrap ~uncurried (List.map self#label_x_expression_param params) (* Prefix represents an optional layout. When passed it will be "prefixed" to * the funExpr. Example, given `bar(x, y)` with prefix `foo`, we get * foobar(x,y). When the arguments break, the closing `)` is nicely aligned * on the height of the prefix: * foobar( * x, * y, * ) --> notice how `)` sits on the height of `foo` instead of `bar` * * ~wrap -> represents optional "wrapping", might be useful in context of jsx * where braces are required: * prop={bar( -> `{` is formatted before the funExpr * x, * y, * )} -> notice how the closing brace hugs: `)}` *) method formatFunAppl ?(prefix = atom "") ?(wrap = "", "") ~jsxAttrs ~args ~funExpr ~applicationExpr ?(uncurried = false) () = let leftWrap, rightWrap = wrap in let uncurriedApplication = uncurried in (* If there was a JSX attribute BUT JSX component wasn't detected, that JSX attribute needs to be pretty printed so it doesn't get lost *) let maybeJSXAttr = List.map self#attribute jsxAttrs in let categorizeFunApplArgs args = let reverseArgs = List.rev args in match reverseArgs with | ((_, { pexp_desc = Pexp_function (_ :: _, _, _); _ }) as callback) :: args when [] == List.filter (fun (_, e) -> match e.pexp_desc with | Pexp_function (_ :: _, _, _) -> true | _ -> false) args (* default to normal formatting if there's more than one callback *) -> `LastArgIsCallback (callback, List.rev args) | _ -> `NormalFunAppl args in let formattedFunExpr = match funExpr.pexp_desc with (* pipe first chain or sharpop chain as funExpr, no parens needed, we know how to parse *) | Pexp_apply ({ pexp_desc = Pexp_ident { txt = Lident s; _ }; _ }, _) when requireNoSpaceFor s -> self#unparseExpr funExpr | Pexp_field _ -> self#unparseExpr funExpr | _ -> self#simplifyUnparseExpr funExpr in let formattedFunExpr = makeList [ prefix; atom leftWrap; formattedFunExpr ] in match categorizeFunApplArgs args with | `LastArgIsCallback (callbackArg, args) -> (* This is the following case: * Thing.map(foo, bar, baz, (abc, z) => * MyModuleBlah.toList(argument) *) let argLbl, cb = callbackArg in let { Reason_attributes.stdAttrs; uncurried; _ } = Reason_attributes.partitionAttributes cb.pexp_attributes in let cbAttrs = stdAttrs in if uncurried then Hashtbl.add uncurriedTable cb.pexp_loc true; let cbArgs, retCb = self#curriedPatternsAndReturnVal { cb with pexp_attributes = [] } in let cbArgs = if cbAttrs != [] then makeList ~break:IfNeed ~inline:(true, true) ~postSpace:true (List.map self#attribute cbAttrs @ cbArgs) else makeList cbArgs in let retCb, cbArgs = match retCb.pexp_desc with | Pexp_constraint (a, t) -> a, makeList [ cbArgs; atom ": "; self#core_type t ] | _ -> retCb, cbArgs in let theCallbackArg = match argLbl with | Optional s -> makeList ([ atom namedArgSym; atom s; atom "=?" ] @ [ cbArgs ]) | Labelled s -> makeList ([ atom namedArgSym; atom s; atom "=" ] @ [ cbArgs ]) | Nolabel -> cbArgs in let theFunc = source_map ~loc:funExpr.pexp_loc (makeList ~wrap:("", if uncurriedApplication then "(." else "(") [ formattedFunExpr ]) in let formattedFunAppl = match self#letList retCb with | [ x ] -> (* force breaks for test assertion style callbacks, e.g. * describe("App", () => test("math", () => Expect.expect(1 + 2) |> toBe(3))); * should always break for readability of the tests: * describe("App", () => * test("math", () => * Expect.expect(1 + 2) |> toBe(3) * ) * ); *) let forceBreak = match funExpr.pexp_desc with | Pexp_ident ident when let lastIdent = Longident.last_exn ident.txt in List.mem lastIdent [ "test"; "describe"; "it"; "expect" ] -> true | _ -> false in let ((leftWrap, rightWrap) as wrap) = "=> ", ")" ^ rightWrap in let wrap = if self#should_preserve_requested_braces retCb then leftWrap ^ "{", "}" ^ rightWrap else wrap in let returnValueCallback = makeList ~break:(if forceBreak then Always else IfNeed) ~wrap [ x ] in let argsWithCallbackArgs = List.concat [ List.map self#label_x_expression_param args ; [ theCallbackArg ] ] in let left = label theFunc (makeList ~pad:(uncurriedApplication, false) ~wrap:("", " ") ~break:IfNeed ~inline:(true, true) ~sep:(Sep ",") ~postSpace:true argsWithCallbackArgs) in label left returnValueCallback | xs -> let printWidthExceeded = Reason_heuristics.funAppCallbackExceedsWidth ~printWidth:settings.width ~args ~funExpr () in if not printWidthExceeded then (* Thing.map(foo, bar, baz, (abc, z) => * MyModuleBlah.toList(argument) * ) * * To get this kind of formatting we need to construct the following tree: * <Label> * <left>Thing.map(foo, bar, baz, (abc, z)</left><right>=> * MyModuleBlah.toList(argument) * )</right> * </Label> * * where left is * <Label><left>Thing.map(</left></right>foo, bar, baz, (abc, z) </right></Label> * * The <right> part of that label could be a <List> with wrap:("", " ") break:IfNeed inline:(true, true) * with items: "foo", "bar", "baz", "(abc, z)", separated by commas. * * this is also necessary to achieve the following formatting where }) hugs : * test("my test", () => { * let x = a + b; * let y = z + c; * x + y * }); *) let ((leftWrap, rightWrap) as wrap) = "=> ", ")" ^ rightWrap in let wrap = match ( self#should_preserve_requested_braces retCb , self#isSeriesOfOpensFollowedByNonSequencyExpression { retCb with pexp_attributes = [] } ) with | true, _ | _, false -> leftWrap ^ "{", "}" ^ rightWrap | _ -> wrap in let right = source_map ~loc:retCb.pexp_loc (makeList ~break:Always_rec ~wrap ~sep:(SepFinal (";", ";")) xs) in let argsWithCallbackArgs = List.map self#label_x_expression_param args @ [ theCallbackArg ] in let left = label theFunc (makeList ~wrap:("", " ") ~break:IfNeed ~inline:(true, true) ~sep:(Sep ",") ~postSpace:true argsWithCallbackArgs) in label left right else (* Since the heuristic says the line length is exceeded in this case, * we conveniently format everything as * <label><left>Thing.map(</left><right><list> * foo, * bar, * baz, * <label> <left>(abc) =></left> <right><list> { * let x = 1; * let y = 2; * x + y * }</list></right></label> * )</list></right></label> *) let args = makeList ~break:Always ~wrap:("", ")" ^ rightWrap) ~sep:commaTrail (List.map self#label_x_expression_param args @ [ label ~space:true (makeList ~wrap:("", " =>") [ theCallbackArg ]) (source_map ~loc:retCb.pexp_loc (makeLetSequence xs)) ]) in (* This will need to be (theFunc, args) *) label theFunc args in maybeJSXAttr @ [ formattedFunAppl ] | `NormalFunAppl args -> let theFunc = source_map ~loc:funExpr.pexp_loc formattedFunExpr in (* reset here only because [function,match,try,sequence] are lower priority *) (* The "expression location" might be different than the location of the actual * function application because things like surrounding { } expand the * parsed location (in body of while loop for example). * We recover the most meaningful function application location we can.*) let syntheticApplicationLocation, syntheticArgLoc = match args with | [] -> funExpr.pexp_loc, funExpr.pexp_loc | _ :: _ -> ( { funExpr.pexp_loc with loc_end = applicationExpr.pexp_loc.loc_end } , { funExpr.pexp_loc with loc_start = funExpr.pexp_loc.loc_end ; loc_end = applicationExpr.pexp_loc.loc_end } ) in let theArgs = self#reset#label_x_expression_params ~wrap:("", rightWrap) ~uncurried args in maybeJSXAttr @ [ source_map ~loc:syntheticApplicationLocation (label theFunc (source_map ~loc:syntheticArgLoc theArgs)) ] end let toplevel_phrase ppf x = match x with | Ptop_def s -> format_layout ppf (printer#structure s) | Ptop_dir _ -> print_string "(* top directives not supported *)" let case_list ppf x = List.iter (format_layout ppf) (printer#case_list x) (* Convert a Longident to a list of strings. E.g. M.Constructor will be ["Constructor"; "M.Constructor"] Also support ".Constructor" to specify access without a path. *) let longident_for_arity lid = let rec toplevel = function | Lident s -> [ s ] | Ldot (lid, s) -> let append_s x = x ^ "." ^ s in s :: List.map append_s (toplevel lid) | Lapply (_, s) -> toplevel s in match lid with Lident s -> ("." ^ s) :: toplevel lid | _ -> toplevel lid (* add expilcit_arity to a list of attributes *) let add_explicit_arity loc attributes = { attr_name = { txt = "explicit_arity"; loc } ; attr_payload = PStr [] ; attr_loc = loc } :: Reason_syntax_util.normalized_attributes "explicit_arity" attributes (* explicit_arity_exists check if expilcit_arity exists *) let explicit_arity_not_exists attributes = not (Reason_syntax_util.attribute_exists "explicit_arity" attributes) (* wrap_expr_with_tuple wraps an expression * with tuple as a sole argument. *) let wrap_expr_with_tuple exp = { exp with pexp_desc = Pexp_tuple [ exp ] } (* wrap_pat_with_tuple wraps an pattern * with tuple as a sole argument. *) let wrap_pat_with_tuple pat = { pat with ppat_desc = Ppat_tuple [ pat ] } (* explicit_arity_constructors is a set of constructors that are known to have * multiple arguments * *) module StringSet = Stdlib.Set.Make (String) let built_in_explicit_arity_constructors = [ "Some"; "Assert_failure"; "Match_failure" ] let explicit_arity_constructors = StringSet.of_list (built_in_explicit_arity_constructors @ !configuredSettings.constructorLists) let preprocessing_mapper = let escape_slashes = new Reason_syntax_util.escape_stars_slashes_mapper in object inherit Ast_traverse.map as super method! expression expr = let expr = match expr with | { pexp_desc = Pexp_construct (lid, Some sp) ; pexp_loc ; pexp_attributes ; _ } when List.exists (fun c -> StringSet.mem c explicit_arity_constructors) (longident_for_arity lid.txt) && explicit_arity_not_exists pexp_attributes -> { pexp_desc = Pexp_construct (lid, Some (wrap_expr_with_tuple sp)) ; pexp_loc ; pexp_attributes = add_explicit_arity pexp_loc pexp_attributes ; pexp_loc_stack = [] } | x -> x in escape_slashes#expression (super#expression expr) method! pattern pat = let pat = match pat with | { ppat_desc = Ppat_construct (lid, Some (x, sp)) ; ppat_loc ; ppat_attributes ; _ } when List.exists (fun c -> StringSet.mem c explicit_arity_constructors) (longident_for_arity lid.txt) && explicit_arity_not_exists ppat_attributes -> { ppat_desc = Ppat_construct (lid, Some (x, wrap_pat_with_tuple sp)) ; ppat_loc ; ppat_attributes = add_explicit_arity ppat_loc ppat_attributes ; ppat_loc_stack = [] } | x -> x in escape_slashes#pattern (super#pattern pat) end let ml_to_reason_swap_operator_mapper = new Reason_syntax_util.ml_to_reason_swap_operator_mapper let preprocessing_mapper f a = a |> f ml_to_reason_swap_operator_mapper |> f preprocessing_mapper let core_type ppf x = format_layout ppf (printer#core_type (preprocessing_mapper Reason_syntax_util.apply_mapper_to_type x)) let pattern ppf x = format_layout ppf (printer#pattern (preprocessing_mapper Reason_syntax_util.apply_mapper_to_pattern x)) let signature (comments : Comment.t list) ppf x = List.iter (fun comment -> printer#trackComment comment) comments; format_layout ppf ~comments (printer#signature (preprocessing_mapper Reason_syntax_util.apply_mapper_to_signature x)) let structure (comments : Comment.t list) ppf x = List.iter (fun comment -> printer#trackComment comment) comments; format_layout ppf ~comments (printer#structure (preprocessing_mapper Reason_syntax_util.apply_mapper_to_structure x)) let expression ppf x = format_layout ppf (printer#unparseExpr (preprocessing_mapper Reason_syntax_util.apply_mapper_to_expr x)) let case_list = case_list end in object method core_type = Formatter.core_type method pattern = Formatter.pattern method signature = Formatter.signature method structure = Formatter.structure (* For merlin-destruct *) method toplevel_phrase = Formatter.toplevel_phrase method expression = Formatter.expression method case_list = Formatter.case_list end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>