package rdbg
RDBG: a reactive programs debugger.
Install
dune-project
Dependency
Authors
Maintainers
Sources
rdbg.1.175.tgz
sha256=09c202b85ca70e00ccf85afb31a165fcb212fc804becc33f1942de6839bfe608
md5=0df4a0287c76d0bc69bda9de4b0f1610
doc/src/rdbg-plugin.rdbg/tagcov.ml.html
Source file tagcov.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
(* Time-stamp: <modified the 27/09/2017 (at 14:18) by Erwan Jahier> *) type label = string type uniq_id = string type node_call = label * uniq_id type wire = label type rank = int (* used to display clocks *) type port = In of int | Out of int | Clk type link = node_call * port * wire type call_graph = link list type clock = string * Data.v (* name , value *) open Event type call_tbl = (node_call, link list * var list * var list * var list * src_info) Hashtbl.t let call_tbl:call_tbl = Hashtbl.create 0 let verbose = ref false let log_file = "callgraph.log" let log = open_out log_file (*********************************************************************************) type caller_tbl = (node_call, node_call) Hashtbl.t let caller_tbl:caller_tbl = Hashtbl.create 0 let top ="top","top" (* the father of all fathers *) let (caller : node_call -> node_call) = fun nc -> try Hashtbl.find caller_tbl nc with Not_found -> top let (caller_update : node_call -> node_call -> unit) = fun caller called -> Hashtbl.replace caller_tbl called caller (*********************************************************************************) type tag = int module Tags = Set.Make(struct type t = tag let compare = compare end) (* the give (unique) names to tags *) type tag_tbl = (node_call * wire, tag) Hashtbl.t (* associer les valeurs et le tags a un wire+le nodecall appelant ? *) (* type tags_tbl = (link, rtags) Hashtbl.t *) let tag_cpt = ref 0 let tag_tbl:tag_tbl = Hashtbl.create 0 let :tags_tbl = Hashtbl.create 0 (* The only spot where tags are created are: - top-level inputs - local vars - constants *) let (make_tag: node_call -> wire -> unit) = fun nc wire -> try ignore (Hashtbl.find tag_tbl (nc, wire)) with Not_found -> let tag = !tag_cpt in incr tag_cpt; if !verbose then Printf.printf "Add (%s,%s) -> %d\n" (snd nc) wire tag; Hashtbl.add tag_tbl (nc,wire) (tag); Hashtbl.add tags_tbl (nc,wire) (Data.U, Tag(Tags.singleton tag)); () (* also returns the entry in the tags_ref tbl that contains the real tags *) let rec ( : node_call -> wire -> node_call * wire * Data.v * tags) = fun nc wire -> (match Hashtbl.find tags_tbl (nc,wire) with | v, Tag -> nc, wire, v, tags | _, Ref (nc2,w2) -> assert ((nc2,w2) <> (nc,wire)); get_tags nc2 w2) (* create a tag if necessary (this first time a tag site is encountered) *) let ( : node_call -> wire -> node_call * wire * Data.v * tags) = fun nc wire -> try get_tags nc wire with _ -> make_tag nc wire; try get_tags nc wire with Not_found -> assert false (* used to make node params reference towards node args *) let (make_tag_ref: node_call -> node_call -> wire -> wire -> unit) = fun nc ncf wire_arg wire_par -> try ignore (Hashtbl.find tag_tbl (nc, wire_par)) (* the ref already exist; we are cool *) with Not_found -> let ncr,wr,_,_ = get_tags_nf ncf wire_arg in let tag_ref = Ref (ncr, wr) in Hashtbl.add tag_tbl (nc,wire_par) (-2); Hashtbl.add tags_tbl (nc,wire_par) (Data.U,tag_ref); () let (get_tag : node_call -> wire -> tag) = fun nc wire -> (* nc is the caller *) try (Hashtbl.find tag_tbl (nc,wire)) with Not_found -> (* Printf.printf "Cannot find the tag for (%s,%s)\n" (snd nc) wire; *) -1 (*********************************************************************************) (* pack list of elt into list of list of size n (at most) *) let (pack: 'a list -> int -> 'a list list) = fun l n -> let rec aux acc cpt l = match l,acc with | _,[] -> assert false | [],_ -> acc | elt::tail, acc0::acc_tail -> if cpt=0 then aux ([elt]::acc) n tail else aux ((elt::acc0)::acc_tail) (cpt-1) tail in aux [[]] n l let (int_list_to_str : int list -> string list) = fun il -> assert (il<>[]); let inter2str l h = if l=h then string_of_int l else Printf.sprintf "%d-%d" l h in let rec aux (l,h) acc il = match il with | [] -> (inter2str l h)::acc | x::t -> if x = h+1 then aux (l,x) acc t else aux (x,x) ((inter2str l h)::acc) t in let f = List.hd il in aux (f,f) [] (List.tl il) let _ = assert (int_list_to_str [1;2;3;4;5;7;8;9;11] = (List.rev ["1-5";"7-9";"11"])) let = let tagl = Tags.fold (fun tag acc -> tag::acc) tags [] in let tagl = List.rev tagl in let = int_list_to_str tagl in let = pack tagstrl 10 in let l = List.map (fun tagl -> String.concat "," tagl) tagstrll in "{"^(String.concat ",\n" l)^"}" let = function | Tag -> tags2str tags | Ref (nc,w) -> "" let val_to_string v = match Data.val_to_string string_of_float v with | "Lustre::true" -> "t" | "Lustre::false" -> "f" | s -> s let d () = Hashtbl.iter (fun ((lbl,uid),w) (v,) -> Printf.printf "(%s,%s),%s: %s (%s)\n" lbl uid w (tags_ref2str tags) (val_to_string v)) tags_tbl let (get_link_val : link -> Data.v) = fun (nc,_,wire) -> let _,_,v,_ = get_tags_nf (caller nc) wire in v (* raises Not_found the first time it is called in get_link. *) let ( : link -> tags) = fun (nc,_,wire) -> let _,_,_, = get_tags_nf (caller nc) wire in tags (* replace add (vith Tags.union) tags to the tags pointed by (nc, wire) *) let ( : node_call -> wire -> tags -> unit) = fun nc wire -> try let nc,wire,v, = get_tags_nf nc wire in let = Tags.union ptags tags in if !verbose then Printf.printf "(%s,%s) -> Some tags [update_tags]\n" (snd nc) wire; Hashtbl.replace tags_tbl (nc,wire) (v, Tag tags) with Not_found -> make_tag nc wire; let v,_ = Hashtbl.find tags_tbl (nc,wire) in if !verbose then Printf.printf "(%s,%s) -> Some tags [update_tags 1]\n" (snd nc) wire; Hashtbl.replace tags_tbl (nc,wire) (v,Tag tags) let (update_val : node_call -> wire -> Data.v -> unit) = fun ncf (* meant to be the caller *) wire v -> try let nc,w,_v, = get_tags_nf ncf wire in if !verbose then Printf.printf "(%s,%s) -> Some tags [update_val]\n" (snd nc) wire; Hashtbl.replace tags_tbl (nc,w) (v, Tag tags) with _ -> make_tag ncf wire; let nc,w,_v, = get_tags_nf ncf wire in if !verbose then Printf.printf "(%s,%s) -> Some tags [update_val 1]\n" (snd nc) wire; Hashtbl.replace tags_tbl (nc,w) (v, Tag tags) (*********************************************************************************) open Event exception NoSourceInfo let (get_src : Event.t -> src_info) = fun e -> match e.sinfo with | None -> raise NoSourceInfo | Some si -> si () (*********************************************************************************) (* to merge pre.set and pre.get in the same node *) type src_info_select = (string * (int * int) * (int * int) * src_info_atom option) list (* pre.set and pre.get shares this information *) let cpt = ref 0 let pre_tbl = Hashtbl.create 0 (* We don't want to create new node instances from one step to another, hence we tabulate it using src_info as a key, which is wrong for nodes that are called via meta-operators !!! Indeed, each node call has the exact same src_info (same line numbers, same stack, etc.). Arf. *) let node_tbl = Hashtbl.create 0 let (get_nodecall: Event.t -> node_call) = fun e -> let name = e.name in let si = get_src e in let label = try (List.hd si.atoms).str with _ -> name in match name with | "Lustre::pre.set" -> let key = List.map (fun a -> a.file, a.line, a.char, a.stack) si.atoms in let label, uniq = (try Hashtbl.find pre_tbl key with Not_found -> (* should only occur when pre.set is the first event*) ("pre","pre")) in label, uniq | "Lustre::pre.get" -> ( let key = List.map (fun a -> a.file, a.line, a.char, a.stack) si.atoms in try Hashtbl.find pre_tbl key with Not_found -> let label, uniq = "pre", Printf.sprintf "%s_%d" "pre" !cpt in Hashtbl.add pre_tbl key (label, uniq); incr cpt; label, uniq ) | _ -> ( let key = name, List.map (fun a -> a.file, a.line, a.char, a.stack) si.atoms in try Hashtbl.find node_tbl key with Not_found -> let uniq = Printf.sprintf "%s_%d" name !cpt in incr cpt; Hashtbl.add node_tbl key (label, uniq); label, uniq ) (*********************************************************************************) let (get_val : var -> Data.subst list -> Data.v) = fun (v,_) s -> try List.assoc v s with Not_found -> failwith ("can't find the value of " ^ v) let link2str ((_,id),port,label) = Printf.sprintf "%s -> %s" id label (*********************************************************************************) let (get_links : Event.t -> node_call -> node_call -> clock list -> link list) = fun e ncf ncc clks -> (* returns the link corresponding to ncc I/O, and the clock links *) assert(e.kind = Exit); let si = get_src e in let make_link is_input i (arg,par) = let wire_arg = fst arg in let wire_par = fst par in let v = get_val par e.data in let link = ncc, (if is_input then In i else Out i), wire_arg in update_val ncf wire_arg v; link in let in_links = List.mapi (make_link true) si.in_subst in (* *) let out_links = List.mapi (make_link false) si.out_subst in (* *) let clk_links = List.map (fun (c,cval) -> ncc, Clk, c) clks in List.iter2 (fun (nc,_,w) (_,cval) -> update_val ncf w cval) clk_links clks; in_links@out_links@clk_links (*********************************************************************************) let pdf_viewer = ref "xpdf -remote " let get_url str = Printf.sprintf "%s.pdf" str (*********************************************************************************) let (gen_dot: var list -> var list -> var list -> Event.src_info -> node_call -> bool -> bool -> call_graph -> unit) = fun inputs outputs locs si nc full view ll -> let lbl,uid = nc in let interface = fst (List.split (inputs @ outputs)) in let dot = uid^".dot" in let ps = uid ^".ps" in let pdf = uid ^".pdf" in let oc = open_out dot in let dl link = let (node_call,io,wire) = link in let f,t = snd node_call, wire in let f,t,shape = match io with | In _ -> t, f, "" | Out _ -> f, t, "" | Clk -> t, f, "headport=n; arrowhead=dot" in let v = get_link_val link in Printf.fprintf oc "\"%s\" -> \"%s\" [%s label=\"%s\"]\n" f t shape (val_to_string v) in let locals, newvars = List.fold_left (fun (loc,nv) (_,_,l) -> if l.[0]='_' then if (List.mem l nv) then (loc,nv) else (loc,l::nv) else if (List.mem l loc) then (loc,nv) else (l::loc,nv) ) ([],[]) ll in let nodes = List.fold_left (fun acc (nc,_,_) -> if List.mem nc acc then acc else nc::acc) [] ll in let ll1,ll2= List.partition (fun (_,_,label) -> List.mem label interface) ll in let tooltip = "" in output_string oc "digraph G { rankdir=LR; node [shape = rect]; {\n"; let var_list = ref [] in (* used to collect used vars (useful to know which array or struct access should be shown) *) let pr_var opt var = if not (List.mem var !var_list) then var_list := var:: !var_list; let _,_,v, = get_tags_nf nc var in let tag = get_tag nc var in let = if tag<0 then "" else string_of_int tag in let color = if v=Data.U then ";color=tomato1; fontcolor=tomato1" else "" in Printf.fprintf oc "\"%s\" [label=\"%s\n%s %s\" %s %s]\n" var var tagstr (tags2str tags) opt color in List.iter (pr_var "shape=diamond") newvars; List.iter (pr_var "shape=ellipse") locals; List.iter (fun (label,id) -> let links,_,_,_,_= Hashtbl.find call_tbl (label,id) in if links = [] then Printf.fprintf oc "\"%s\" [label=\"%s\" tooltip=\"%s\"]\n" id label tooltip else Printf.fprintf oc "\"%s\" [label=\"%s\" URL=\"%s\" tooltip=\"%s\"]\n" id label (get_url id) tooltip ) nodes; if ll <> [] then ( List.iter (pr_var "style=filled fillcolor=lightblue shape=ellipse") (fst (List.split inputs)); List.iter (pr_var "style=filled fillcolor=red shape=ellipse") (fst (List.split outputs)); ); Printf.fprintf oc "}\n subgraph cluster1 { \nlabel=\"%s\"; \n" (List.hd si.atoms).str; if ll <> [] then ( List.iter dl ll2; output_string oc "}\n"; List.iter dl ll1; ) else ( (* List.iter *) (* (fun (v,_) -> Printf.fprintf oc "\"%s\" [style=filled fillcolor=lightblue]\n" v) *) (* e.inputs; *) (* List.iter *) (* (fun (v,_) -> Printf.fprintf oc "\"%s\" [style=filled fillcolor=red]\n" v) *) (* e.outputs; *) (* output_string oc "}\n"; *) (* List.iter dl_outter oll; *) ); output_string oc "}\n"; flush oc; close_out oc; let cmd = if full then if view then Printf.sprintf "dot %s -Tps2 > %s && ps2pdf %s&& %s %s %s &\n" dot ps ps !pdf_viewer pdf pdf else Printf.sprintf "dot %s -Tps2 > %s && ps2pdf %s &\n" dot ps ps else if view then Printf.sprintf "dot %s -Tpdf > %s&& %s %s %s & \n" dot pdf !pdf_viewer pdf pdf else Printf.sprintf "dot %s -Tpdf > %s \n" dot pdf in output_string log cmd; flush log; ignore(Sys.command cmd) (*********************************************************************************) open Data let clk_stack: clock list ref = ref [] let nc_stack : node_call list ref = ref [] let lk_stack : link list list ref = ref [[]] (* previous event number to prevent time travel during callgraph computation *) let pre_enb = ref 0 (* since pre is split into get and set, we need to store its inputs at set events to be able to propagate the tags at get events *) let pre_input_tbl = Hashtbl.create 0 (* we know at call events if an arrow is at its first step; therefore we store this info at call(arrow) step and use it at exit(arrow) step *) let last_arrow_first = ref true (* [add_tags l t] add the tags t *) let (: node_call -> link list -> tags -> unit) = fun nc ol t -> let = List.map tags_of_link ol in let = List.map (Tags.union t) otags in List.iter2 (fun (_,_,w) ntag -> update_tags nc w ntag) ol otags let boolred_do min max ncf il ol = (* there are 3 cases: (1) | I={i | xi }| < min in this case we return the intersection of tag_i forall i *not* in I (2) | I={i | xi }| > max in this case we return the intersection of tag_i forall i in I (3) | I={i | xi }| in [min,max] in this case we return the union of tag_i forall i in I *) let vals = List.map get_link_val il in let = List.map tags_of_link il in let n = List.fold_left (fun acc v -> if v=B true then acc+1 else acc) 0 vals in let t = if n < min then (* case 1 *) List.fold_left2 (fun acc t v -> if v = B false then Tags.inter acc t else acc) Tags.empty tags vals else if n>max then (* case 2 *) List.fold_left2 (fun acc t v -> if v = B true then Tags.inter acc t else acc) Tags.empty tags vals else (* n=1, case 3 *) List.fold_left2 (fun acc t v -> if v = B true then Tags.union acc t else acc) Tags.empty tags vals in add_tags ncf ol t let ncc ncf e il cl ol = match e.name with | "Lustre::if" -> ( let c, i1, i2 = match il with [c;i1;i2] -> c,i1,i2 | _ -> assert false in let tc, t1, t2 = tags_of_link c, tags_of_link i1, tags_of_link i2 in match get_link_val c with | B true -> add_tags ncf ol (Tags.union tc t1) | B false -> add_tags ncf ol (Tags.union tc t2) | U -> () | _ -> assert false ) | "Lustre::and" -> ( let i1, i2 = match il with [i1;i2] -> i1,i2 | _ -> assert false in let t1, t2 = tags_of_link i1, tags_of_link i2 in match get_link_val i1, get_link_val i2 with | B true, B true -> add_tags ncf ol (Tags.union t1 t2) | B true, B false -> add_tags ncf ol t2 | B false, B true -> add_tags ncf ol t1 | B false, B false -> add_tags ncf ol (Tags.inter t1 t2) | U,_ | _,U -> () | _ -> assert false ) | "Lustre::or" -> ( let i1, i2 = match il with [i1;i2] -> i1,i2 | _ -> assert false in let t1, t2 = tags_of_link i1, tags_of_link i2 in match get_link_val i1, get_link_val i2 with | B true, B true -> add_tags ncf ol (Tags.inter t1 t2) | B true, B false -> add_tags ncf ol t1 | B false, B true -> add_tags ncf ol t2 | B false, B false -> add_tags ncf ol (Tags.union t1 t2) | U,_ | _,U -> () | _ -> assert false ) | "Lustre::impl"-> ( let i1, i2 = match il with [i1;i2] -> i1,i2 | _ -> assert false in let t1, t2 = tags_of_link i1, tags_of_link i2 in match get_link_val i1, get_link_val i2 with | B true, B true -> add_tags ncf ol t1 | B true, B false -> add_tags ncf ol (Tags.union t1 t2) | B false, B true -> add_tags ncf ol (Tags.inter t1 t2) | B false, B false -> add_tags ncf ol t2 | U,_ | _,U -> () | _ -> assert false ) | "Lustre::xor" -> (* boolred_do 1 1 ncf il ol *) (* there are 3 cases: (1) forall i, not(xi) in this case we take the intersection of all tag_i (2) | I={i | xi }| >= 2 in this case we take the intersection of all { tag_i | i in I} (3) exist a unique i st xi (i.e.,forall j<>i, not xj) in this case we return tag_i *) let vals = List.map get_link_val il in let = List.map tags_of_link il in let n = List.fold_left (fun acc v -> if v=B true then acc+1 else acc) 0 vals in let t = if n = 0 then (* case 1 *) List.fold_left (fun acc t -> Tags.inter acc t) Tags.empty tags else if n>1 then (* case 2 *) List.fold_left2 (fun acc t v -> if v = B true then Tags.inter acc t else acc) Tags.empty tags vals else (* n=1, case 3 *) List.fold_left2 (fun acc t v -> if v = B true then t else acc) Tags.empty tags vals in add_tags ncf ol t | "Lustre::nor" -> boolred_do 0 0 ncf il ol | "Lustre::current" -> assert false (* sno *) | "Lustre::diese" -> ( boolred_do 0 1 ncf il ol ) | "Assign" -> ( let i = match il with [i] -> i | _ -> assert false in let t = tags_of_link i in add_tags ncf ol t ) | "Lustre::arrow" -> ( let i1, i2 = match il with [i1;i2] -> i1,i2 | _ -> assert false in let t = if !last_arrow_first then tags_of_link i1 else tags_of_link i2 in add_tags ncf ol t ) | "Lustre::pre.set" -> ( (* XXX useless??? *) let i = match il with [i1] -> i1 | _ -> assert false in Printf.printf "Store the input of %s\n" (snd ncc) ; Hashtbl.replace pre_input_tbl ncc i ) | "Lustre::pre.get" -> ( (* XXX useless??? *) try let i = Hashtbl.find pre_input_tbl ncc in let t = tags_of_link i in Printf.printf "Got the input of %s\n" (snd ncc) ; add_tags ncf ol t with Not_found -> () ) | n -> (* by default, we propagate all tags *) if (il = []) then Printf.printf "Warning: %s has no input!\n" n else let = List.map tags_of_link il in let itag = List.fold_left Tags.union (List.hd itags) (List.tl itags) in add_tags ncf ol itag let (: node_call -> node_call -> Event.t -> link list -> link list -> clock list -> unit)= fun nc ncf e sub_links links clks -> let il, ol = List.partition (fun (_,io,_) -> match io with Out _ -> false | _ -> true) links in let cl, il = List.partition (fun (_,io,_) -> match io with Clk -> true | _ -> false) il in let = List.map tags_of_link cl in let = List.fold_left (fun acc t -> Tags.union acc t) Tags.empty clock_tags in add_tags ncf ol clock_tags; (* Printf.printf "il=%s\ncl=%s\nol=%s\nsub_links=%s\n" *) (* (String.concat ", \n\t" (List.map link2str il)) *) (* (String.concat ", \n\t" (List.map link2str cl)) *) (* (String.concat ", \n\t" (List.map link2str ol)) *) (* (String.concat ", \n\t" (List.map link2str sub_links)) *) (* ; *) if sub_links = [] then propagate_tags_predef nc ncf e il cl ol else ( ) (* the core of the work *) let rec (update_tagcov: Event.t -> unit) = fun e -> if not (e.nb <> !pre_enb || e.nb <> !pre_enb +1 ) then failwith "cannot skip event or move backwards when computing tag coverage"; if not (e.lang="lustre") then print_string "Not a Lustre node\n" else ( pre_enb := e.nb; match e.kind, e.name, !lk_stack with | Call,"when", _ -> ( let si = get_src e in let carg,cpar = List.hd si.in_subst in let clk = (fst carg), get_val cpar e.data in clk_stack := clk :: !clk_stack ) | Exit, "when", _ -> clk_stack := List.tl !clk_stack | Call, _ , lstk -> ( let nc = get_nodecall e in let caller = if !nc_stack = [] then top else List.hd !nc_stack in let si = get_src e in caller_update caller nc; nc_stack := nc :: !nc_stack; lk_stack := []::lstk; if e.name = "Lustre::arrow" then ( let first = try List.assoc "_memory" e.data with Not_found -> assert false in last_arrow_first := (first = B true) ) else ( (* lustre::arrow has a local var (_memory), but it is (currently) not traced and is necessary covered anywayrd *) let vars = if e.depth=2 then (e.inputs @ e.outputs @ e.locals) else (e.locals) in (* let vars = (e.inputs @ e.outputs @ e.locals) in *) let wires = fst (List.split vars) in List.iter (fun w -> make_tag nc w) wires ); List.iter (fun ((arg,_),(par,_)) -> make_tag_ref nc caller arg par) si.in_subst; List.iter (fun ((arg,_),(par,_)) -> make_tag_ref nc caller arg par) si.out_subst; ) | Exit, n, sub_links::links::lstk -> ( let nc,nc_father = match !nc_stack with | nc1::nc2::_ -> nc1,nc2 | [nc] -> nc,top | [] -> assert false in let nlinks = get_links e nc_father nc !clk_stack in let si = get_src e in propagate_out_tags nc nc_father e sub_links nlinks !clk_stack; Hashtbl.replace call_tbl nc (sub_links, e.inputs, e.outputs, e.locals, si); lk_stack := (links @ nlinks)::lstk; nc_stack := try List.tl !nc_stack with _ -> assert false; ) | Ltop, _ , _ -> lk_stack := [[]]; clk_stack := []; nc_stack := [] | MicroStep _, _, _ -> assert false | Exit, _, _::[] -> assert false | Exit, _, [] -> assert false ) let (next : Event.t -> Event.t) = fun e -> let e = RdbgStdLib.next e in update_tagcov e; e let rec (nexti : Event.t -> int -> Event.t) = fun e i -> if i=0 then e else nexti (next e) (i-1) let dump_call_tbl () = Hashtbl.iter (fun (label,uniq) (links,_,_,_,_) -> if links <> [] then let strl = List.map (fun ((_,id),port,label) -> Printf.sprintf "%s %s" id label) links in let str = String.concat "\n\t" strl in Printf.printf "'%s-%s' \n\t%s\n" label uniq str ) call_tbl;; let gen_all_dot event = Hashtbl.iter (fun (label,uniq) (links,inputs, outputs, locals, si) -> if links <> [] then let view = (get_nodecall event = (label,uniq)) in gen_dot inputs outputs locals si (label,uniq) true view links ) call_tbl let gen_one_dot event = let (label,uniq) = get_nodecall event in let links,inputs,locals, outputs,si = Hashtbl.find call_tbl (label,uniq) in gen_dot inputs outputs locals si (label,uniq) false true links let init () = Hashtbl.clear call_tbl; Hashtbl.clear tags_tbl; Hashtbl.clear tag_tbl; Hashtbl.clear pre_tbl; cpt := 0; tag_cpt := 0; pre_enb :=0; clk_stack := []; nc_stack := [] ; lk_stack := [[]] (* add_hook "tagcov" Tagcov.update_tagcov;; e:= RdbgStdLib.next !e;; update_tagcov !e;; let tc () = update_tagcov !e; e := next !e; while (!e.kind <> Ltop) do e := next !e done;; e := next !e;; let c () = gen_call_graph !e;; let cf () = gen_call_graph_full !e;; let d () = display_call_graph !e;; *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>