package prom

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
include Map.S with type key := float
type !+'a t

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

Test whether a map is empty or not.

val mem : float -> 'a t -> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val add : float -> 'a -> 'a t -> 'a t

add key data m returns a map containing the same bindings as m, plus a binding of key to data. If key was already bound in m to a value that is physically equal to data, m is returned unchanged (the result of the function is then physically equal to m). Otherwise, the previous binding of key in m disappears.

  • before 4.03

    Physical equality was not ensured.

val singleton : float -> 'a -> 'a t

singleton x y returns the one-element map that contains a binding y for x.

  • since 3.12.0
val remove : float -> 'a t -> 'a t

remove x m returns a map containing the same bindings as m, except for x which is unbound in the returned map. If x was not in m, m is returned unchanged (the result of the function is then physically equal to m).

  • before 4.03

    Physical equality was not ensured.

val merge : (float -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t

merge f m1 m2 computes a map whose keys are a subset of the keys of m1 and of m2. The presence of each such binding, and the corresponding value, is determined with the function f. In terms of the find_opt operation, we have find_opt x (merge f m1 m2) = f x (find_opt x m1) (find_opt x m2) for any key x, provided that f x None None = None.

  • since 3.12.0
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

Total ordering between maps. The first argument is a total ordering used to compare data associated with equal keys in the two maps.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data. cmp is the equality predicate used to compare the data associated with the keys.

val iter : (float -> 'a -> unit) -> 'a t -> unit

iter f m applies f to all bindings in map m. f receives the key as first argument, and the associated value as second argument. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val fold : (float -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

fold f m init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

val for_all : (float -> 'a -> bool) -> 'a t -> bool

for_all f m checks if all the bindings of the map satisfy the predicate f.

  • since 3.12.0
val exists : (float -> 'a -> bool) -> 'a t -> bool

exists f m checks if at least one binding of the map satisfies the predicate f.

  • since 3.12.0
val filter : (float -> 'a -> bool) -> 'a t -> 'a t

filter f m returns the map with all the bindings in m that satisfy predicate p. If every binding in m satisfies f, m is returned unchanged (the result of the function is then physically equal to m)

  • since 3.12.0
  • before 4.03

    Physical equality was not ensured.

val filter_map : (float -> 'a -> 'b option) -> 'a t -> 'b t

filter_map f m applies the function f to every binding of m, and builds a map from the results. For each binding (k, v) in the input map:

  • if f k v is None then k is not in the result,
  • if f k v is Some v' then the binding (k, v') is in the output map.

For example, the following function on maps whose values are lists

filter_map
  (fun _k li -> match li with [] -> None | _::tl -> Some tl)
  m

drops all bindings of m whose value is an empty list, and pops the first element of each value that is non-empty.

  • since 4.11.0
val partition : (float -> 'a -> bool) -> 'a t -> 'a t * 'a t

partition f m returns a pair of maps (m1, m2), where m1 contains all the bindings of m that satisfy the predicate f, and m2 is the map with all the bindings of m that do not satisfy f.

  • since 3.12.0
val cardinal : 'a t -> int

Return the number of bindings of a map.

  • since 3.12.0
val bindings : 'a t -> (float * 'a) list

Return the list of all bindings of the given map. The returned list is sorted in increasing order of keys with respect to the ordering Ord.compare, where Ord is the argument given to Stdlib.Map.Make.

  • since 3.12.0
val min_binding : 'a t -> float * 'a

Return the binding with the smallest key in a given map (with respect to the Ord.compare ordering), or raise Not_found if the map is empty.

  • since 3.12.0
val max_binding : 'a t -> float * 'a

Same as min_binding, but returns the binding with the largest key in the given map.

  • since 3.12.0
val choose : 'a t -> float * 'a

Return one binding of the given map, or raise Not_found if the map is empty. Which binding is chosen is unspecified, but equal bindings will be chosen for equal maps.

  • since 3.12.0
val split : float -> 'a t -> 'a t * 'a option * 'a t

split x m returns a triple (l, data, r), where l is the map with all the bindings of m whose key is strictly less than x; r is the map with all the bindings of m whose key is strictly greater than x; data is None if m contains no binding for x, or Some v if m binds v to x.

  • since 3.12.0
val find : float -> 'a t -> 'a

find x m returns the current value of x in m, or raises Not_found if no binding for x exists.

val find_last : (float -> bool) -> 'a t -> float * 'a

find_last f m, where f is a monotonically decreasing function, returns the binding of m with the highest key k such that f k, or raises Not_found if no such key exists.

  • since 4.05
val find_last_opt : (float -> bool) -> 'a t -> (float * 'a) option

find_last_opt f m, where f is a monotonically decreasing function, returns an option containing the binding of m with the highest key k such that f k, or None if no such key exists.

  • since 4.05
val map : ('a -> 'b) -> 'a t -> 'b t

map f m returns a map with same domain as m, where the associated value a of all bindings of m has been replaced by the result of the application of f to a. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

val mapi : (float -> 'a -> 'b) -> 'a t -> 'b t

Same as map, but the function receives as arguments both the key and the associated value for each binding of the map.

Maps and Sequences

val to_rev_seq : 'a t -> (float * 'a) Seq.t

Iterate on the whole map, in descending order of keys

  • since 4.12
val to_seq_from : float -> 'a t -> (float * 'a) Seq.t

to_seq_from k m iterates on a subset of the bindings of m, in ascending order of keys, from key k or above.

  • since 4.07
val get : float -> 'a t -> 'a option

Safe version of find.

val get_or : float -> 'a t -> default:'a -> 'a

get_or k m ~default returns the value associated to k if present, and returns default otherwise (if k doesn't belong in m).

  • since 0.16
val update : float -> ('a option -> 'a option) -> 'a t -> 'a t

update k f m calls f (Some v) if find k m = v, otherwise it calls f None. In any case, if the result is None k is removed from m, and if the result is Some v' then add k v' m is returned.

val choose_opt : 'a t -> (float * 'a) option

Safe version of choose.

  • since 1.5
val min_binding_opt : 'a t -> (float * 'a) option

Safe version of min_binding.

  • since 1.5
val max_binding_opt : 'a t -> (float * 'a) option

Safe version of max_binding.

  • since 1.5
val find_opt : float -> 'a t -> 'a option

Safe version of find.

  • since 1.5
val find_first : (float -> bool) -> 'a t -> float * 'a

Find smallest binding satisfying the monotonic predicate. See Map.S.find_first.

  • since 1.5
val find_first_opt : (float -> bool) -> 'a t -> (float * 'a) option

Safe version of find_first.

  • since 1.5
val merge_safe : f:(float -> [ `Left of 'a | `Right of 'b | `Both of 'a * 'b ] -> 'c option) -> 'a t -> 'b t -> 'c t

merge_safe ~f a b merges the maps a and b together.

  • since 0.17
val union : (float -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t

Union of both maps, using the function to combine bindings that belong to both inputs.

  • since 1.4
val add_std_seq : 'a t -> (float * 'a) Seq.t -> 'a t

Like add_list.

  • since 2.8
val of_std_seq : (float * 'a) Seq.t -> 'a t

Like of_list.

  • since 2.8
val add_iter : 'a t -> (float * 'a) CCMap.iter -> 'a t

Like add_list.

  • since 2.8
val of_iter : (float * 'a) CCMap.iter -> 'a t

Like of_list.

  • since 2.8
val to_iter : 'a t -> (float * 'a) CCMap.iter

Like to_list.

  • since 2.8
val of_seq : (float * 'a) CCMap.sequence -> 'a t
  • deprecated use of_iter instead
val add_seq : 'a t -> (float * 'a) CCMap.sequence -> 'a t
  • deprecated use add_iter instead
val to_seq : 'a t -> (float * 'a) CCMap.sequence
  • deprecated use to_iter instead
val of_list : (float * 'a) list -> 'a t

Build a map from the given list of bindings k_i -> v_i, added in order using add. If a key occurs several times, only its last binding will be present in the result.

val add_list : 'a t -> (float * 'a) list -> 'a t
  • since 0.14
val keys : _ t -> float CCMap.iter

Iterate on keys only.

  • since 0.15
val values : 'a t -> 'a CCMap.iter

Iterate on values only.

  • since 0.15
val to_list : 'a t -> (float * 'a) list
val pp : ?start:string -> ?stop:string -> ?arrow:string -> ?sep:string -> float CCMap.printer -> 'a CCMap.printer -> 'a t CCMap.printer
OCaml

Innovation. Community. Security.