package owl
- Overview
- No Docs
You can search for identifiers within the package.
in-package search v0.2.0
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
OCaml Scientific and Engineering Computing
Install
dune-project
Dependency
Authors
Maintainers
Sources
owl-1.0.0.tbz
sha256=d91ba09488edd602dad845f68db1f980a601bdbb55d9516e3b59681eca20debe
sha512=9b31c3474a94c3b11d1dedba00639e770737e61f2e724a1288066ed976e4d0f8afe891a430e17ecf525fbca92e433d71d1b66d3ba17d4e299a4f8fdc3b902461
doc/owl/Owl_regression_generic/Make/argument-1-Optimise/index.html
Parameter Make.Optimise
module Algodiff : Owl_algodiff_generic_sig.Sigmodule Utils : sig ... endUtils module
module Learning_Rate : sig ... endStrategies for learning rate update
module Batch : sig ... endBatch module
module Loss : sig ... endLoss module
module Gradient : sig ... endGradient module
module Momentum : sig ... endMomentum module
module Regularisation : sig ... endRegularisation module
module Clipping : sig ... endClipping module
module Stopping : sig ... endStopping module
module Checkpoint : sig ... endCheckpoint module
module Params : sig ... endParams module
Core functions
val minimise_weight :
?state:Checkpoint.state ->
Params.typ ->
(Algodiff.t -> Algodiff.t -> Algodiff.t) ->
Algodiff.t ->
Algodiff.t ->
Algodiff.t ->
Checkpoint.state * Algodiff.tThis function minimises the weight ``w`` of passed-in function ``f``.
* ``f`` is a function ``f : w -> x -> y``. * ``w`` is a row vector but ``y`` can have any shape.
val minimise_network :
?state:Checkpoint.state ->
Params.typ ->
(Algodiff.t -> Algodiff.t * Algodiff.t array array) ->
(Algodiff.t -> Algodiff.t array array * Algodiff.t array array) ->
(Algodiff.t array array -> unit) ->
(string -> unit) ->
Algodiff.t ->
Algodiff.t ->
Checkpoint.stateThis function is specifically designed for minimising the weights in a neural network of graph structure. In Owl's earlier versions, the functions in the regression module were actually implemented using this function.
val minimise_fun :
?state:Checkpoint.state ->
Params.typ ->
(Algodiff.t -> Algodiff.t) ->
Algodiff.t ->
Checkpoint.state * Algodiff.tThis function minimises ``f : x -> y`` w.r.t ``x``.
``x`` is an ndarray; and ``y`` is an scalar value.
val minimise_compiled_network :
?state:Checkpoint.state ->
Params.typ ->
(Algodiff.t -> Algodiff.t -> Algodiff.t) ->
(unit -> unit) ->
(string -> unit) ->
Algodiff.t ->
Algodiff.t ->
Checkpoint.stateTODO
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page