package owl
Owl - An OCaml Numerical Library
Install
dune-project
Dependency
Authors
Maintainers
Sources
owl-base-0.3.7.tbz
sha256=28d6c909f8f91cd8fd61fd1079b2f0e4bf8917bf33e2da96607caf63c73d0a39
md5=16454681ed82d527edf25eaee668c88a
doc/owl/Owl_dense_ndarray_d/index.html
Module Owl_dense_ndarray_d
type arr = (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
Create N-dimensional array
val empty : int array -> arr
val zeros : int array -> arr
val ones : int array -> arr
val bernoulli : ?p:float -> int array -> arr
Obtain basic properties
val shape : arr -> int array
val num_dims : arr -> int
val nth_dim : arr -> int -> int
val numel : arr -> int
val nnz : arr -> int
val density : arr -> float
val size_in_bytes : arr -> int
val strides : arr -> int array
val slice_size : arr -> int array
val ind : arr -> int -> int array
val i1d : arr -> int array -> int
Manipulate a N-dimensional array
val get_fancy : Owl_types.index list -> arr -> arr
val set_fancy : Owl_types.index list -> arr -> arr -> unit
val reset : arr -> unit
val top : arr -> int -> int array array
val bottom : arr -> int -> int array array
val mmap : Unix.file_descr -> ?pos:int64 -> bool -> int array -> arr
Iterate array elements
Examine array elements or compare two arrays
val is_zero : arr -> bool
val is_positive : arr -> bool
val is_negative : arr -> bool
val is_nonpositive : arr -> bool
val is_nonnegative : arr -> bool
val is_normal : arr -> bool
val not_nan : arr -> bool
val not_inf : arr -> bool
Input/Output functions
val save : arr -> string -> unit
val load : string -> arr
Unary mathematical operations
val log_sum_exp' : arr -> float
Binary mathematical operations
Neural network related functions
val conv1d : ?padding:Owl_types.padding -> arr -> arr -> int array -> arr
val conv2d : ?padding:Owl_types.padding -> arr -> arr -> int array -> arr
val conv3d : ?padding:Owl_types.padding -> arr -> arr -> int array -> arr
val max_pool1d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val max_pool2d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val max_pool3d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool1d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool2d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool3d :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr
val max_pool2d_argmax :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr * (int64, Bigarray.int64_elt, Bigarray.c_layout) Bigarray.Genarray.t
val max_pool1d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val max_pool2d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val max_pool3d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool1d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool2d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool3d_backward :
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
arr
Tensor Calculus
Experimental functions
Fucntions of in-place modification
val sort_ : arr -> unit
val conj_ : arr -> unit
val abs_ : arr -> unit
val neg_ : arr -> unit
val reci_ : arr -> unit
val signum_ : arr -> unit
val sqr_ : arr -> unit
val sqrt_ : arr -> unit
val cbrt_ : arr -> unit
val exp_ : arr -> unit
val exp2_ : arr -> unit
val exp10_ : arr -> unit
val expm1_ : arr -> unit
val log_ : arr -> unit
val log2_ : arr -> unit
val log10_ : arr -> unit
val log1p_ : arr -> unit
val sin_ : arr -> unit
val cos_ : arr -> unit
val tan_ : arr -> unit
val asin_ : arr -> unit
val acos_ : arr -> unit
val atan_ : arr -> unit
val sinh_ : arr -> unit
val cosh_ : arr -> unit
val tanh_ : arr -> unit
val asinh_ : arr -> unit
val acosh_ : arr -> unit
val atanh_ : arr -> unit
val floor_ : arr -> unit
val ceil_ : arr -> unit
val round_ : arr -> unit
val trunc_ : arr -> unit
val fix_ : arr -> unit
val erf_ : arr -> unit
val erfc_ : arr -> unit
val relu_ : arr -> unit
val softplus_ : arr -> unit
val softsign_ : arr -> unit
val sigmoid_ : arr -> unit
val softmax_ : arr -> unit
val cumsum_ : ?axis:int -> arr -> unit
val cumprod_ : ?axis:int -> arr -> unit
val cummin_ : ?axis:int -> arr -> unit
val cummax_ : ?axis:int -> arr -> unit
val dropout_ : ?rate:float -> arr -> unit
Matrix functions
val row_num : arr -> int
val col_num : arr -> int
Stats & distribution functions
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
- Create N-dimensional array
- Obtain basic properties
- Manipulate a N-dimensional array
- Iterate array elements
- Examine array elements or compare two arrays
- Input/Output functions
- Unary mathematical operations
- Binary mathematical operations
- Neural network related functions
- Tensor Calculus
- Experimental functions
- Fucntions of in-place modification
- Matrix functions
- Stats & distribution functions