package owl-base
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
An OCaml Numerical Library
Install
dune-project
Dependency
Authors
Maintainers
Sources
owl-base-0.3.7.tbz
sha256=28d6c909f8f91cd8fd61fd1079b2f0e4bf8917bf33e2da96607caf63c73d0a39
md5=16454681ed82d527edf25eaee668c88a
doc/index.html
owl-base
API
Library owl-base
Owl_algodiff_genericOwl_algodiff_generic_sigOwl_baseOwl_base_complexOwl_base_dense_commonOwl_base_dense_ndarrayNdarray: module aliasesOwl_base_dense_ndarray_dOwl_base_dense_ndarray_genericN-dimensional array module: including creation, manipulation, and various vectorised mathematical operations.Owl_base_dense_ndarray_sOwl_base_linalg_genericOwl_base_mathsMaths: fundamental and advanced mathematical functions.Owl_base_slicingOwl_base_statsStatistics: random number generators, PDF and CDF functions, and hypothesis tests. The module also includes some basic statistical functions such as mean, variance, skew, and etc.Owl_base_stats_dist_bernoulliOwl_base_stats_dist_cauchyOwl_base_stats_dist_exponentialOwl_base_stats_dist_gammaOwl_base_stats_dist_gaussianOwl_base_stats_dist_gumbel1Owl_base_stats_dist_gumbel2Owl_base_stats_dist_uniformOwl_base_stats_prngOwl_constMetric system: CGS, MKS, SI, and physical constants.Owl_exceptionOwl_graphGraph module supports basic operations on DAG.Owl_lazyLazy module The module is used to construct a computation graph explicitly for evaluation. The module can be used to simulate the lazy evaluation atop of OCaml. It can also be used for dataflow programming and supports incremental computation. If a variable is updated, only the subgraph depending on such variable will be evaluated.Owl_logLog module provides logging functionality.Owl_maths_interpolateInterpolation and ExtrapolationOwl_maths_quadratureNumerical IntegrationOwl_maths_rootRoot finding algorithms for nonlinear functionsOwl_neural_genericFunctor to create neural networks of different precision.Owl_neural_graphNeural network: Graphical neural networkOwl_neural_graph_sigOwl_neural_neuronNeural network: Neuron definitionsOwl_neural_neuron_sigOwl_numdiff_genericOwl_numdiff_generic_sigNumdiff: numerical differentiation moduleOwl_operatorOwl_optimise_genericOptimisation engineOwl_optimise_generic_sigOwl_prettyPretty print the n-dimensional arrayOwl_typesThis module defines the types shared by various sub-libraries in Owl. Note that they just wrappers, to find the exact module signature, please refer to the definition in the corresponding module.Owl_types_commonOwl_types_maths_basicOwl_types_ndarray_algodiffOwl_types_ndarray_basicOwl_types_ndarray_compareOwl_types_ndarray_mutableOwl_types_ndarray_numdiffOwl_types_operatorOperator definitions such as add, sub, mul, and div. This signature defines the functions need to be implemented.Owl_types_stats_basicOwl_types_stats_distOwl_utilsHelper functions used in the libraryOwl_utils_arrayOwl_utils_convOwl_utils_ndarrayOwl_utils_stackOwl_viewView module This module is used to create views atop of an ndarray. The view creation is very light-weighted and avoids copying actual data. You can further create views atop of existing views using slicing functions.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page