Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Orf.RFCSourcetrained Random Forests model
val train :
int ->
Random.State.t ->
metric ->
int ->
int_or_float ->
int ->
int_or_float ->
int ->
sample array ->
foresttrain ncores rng metric ntrees max_features card_features max_samples min_node_size training_set
(pred_label, pred_proba) = predict_one ncores rng trained_forest sample
val predict_one_margin :
int ->
Random.State.t ->
forest ->
sample ->
class_label * float * float(pred_label, pred_proba, pred_margin) = predict_one_margin ncores rng trained_forest sample
val predict_many :
int ->
Random.State.t ->
forest ->
sample array ->
(class_label * float) arraylike predict_one but for an array of samples
val predict_many_margin :
int ->
Random.State.t ->
forest ->
sample array ->
(class_label * float * float) arraylike predict_one_margin but for an array of samples
val predict_OOB :
Random.State.t ->
forest ->
sample array ->
(class_label * class_label) arrayuse a trained forest to predict on the Out Of Bag (OOB) training set of each tree. The training_set must be provided in the same order than when the model was trained. Can be used to get a reliable model performance estimate, even if you don't have a left out test set. truth_preds = predict_OOB rng forest training_set
Matthews Correlation Coefficient (MCC). mcc target_class_label truth_preds
Percentage of correct prediction accuracy truth_preds
ROC AUC roc_auc target_class_label preds true_labels
Save model to file (Marshal) OOB samples are dropped prior to saving the model.
The following are needed to implement RFR
val collect_non_constant_features :
(int Feature_vector.t * 'a) array ->
(int * IntSet.t) listval partition_samples :
int ->
int ->
(int Feature_vector.t * 'a) array ->
(int Feature_vector.t * 'a) array * (int Feature_vector.t * 'a) arrayval choose_min_cost :
Random.State.t ->
(float * 'b * 'c * ('d * 'e)) list ->
float * 'b * 'c * ('d * 'e)