Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
min1D.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
(* File: min1D.ml Copyright (C) 2007 Christophe Troestler email: Christophe.Troestler@umons.ac.be WWW: http://math.umons.ac.be/anum/software/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.1 or later as published by the Free Software Foundation, with the special exception on linking described in the file LICENSE. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the file LICENSE for more details. *) let eps = sqrt epsilon_float let gold = 0.5 *. (3. -. sqrt 5.) let gold' = 1. -. gold exception Found of (float * float) (* Exception used internally when a (good enough) minimum is found: [Found(x, fx)]. *) let default_tol = sqrt epsilon_float let golden_search ?(tol=default_tol) f a b c = (* Assume that [b] is between [a] and [c] and [f(a) > f(b)], [f(b) < f(c)]. Returns [(xmin, f xmin)]. *) let rec sort x1 x2 x3 f2 = if abs_float(x1 -. x3) > tol *. (abs_float x1 +. abs_float x3) then begin if abs_float(x1 -. x2) < abs_float(x2 -. x3) then let x = gold *. x1 +. gold' *. x3 in next x1 x2 x x3 f2 (f x) else let x = gold' *. x1 +. gold *. x3 in next x1 x x2 x3 (f x) f2 end else (x2, f2) and next x0 x1 x2 x3 f1 f2 = (* Assume that either x0 < x1 < x2 < x3 or x0 > x1 > x2 > x3 *) if (f1: float) < f2 then sort x0 x1 x2 f1 else sort x1 x2 x3 f2 in if not((a < b && b < c) || (a > b && b > c)) then invalid_arg "Min1D.golden_search: b must be (strictly) between a and c"; let fb = f b in if fb >= f a || fb >= f c then invalid_arg "Min1D.golden_search: f(b) must be lower than f(a) and f(c)"; sort a b c fb (* Based on http://www.netlib.org/c/brent.shar fminbr.c Algorithm G.Forsythe, M.Malcolm, C.Moler, Computer methods for mathematical computations. M., Mir, 1980, p.202 of the Russian edition The function makes use of the "gold section" procedure combined with the parabolic interpolation. At every step program operates three abscissae - x,v, and w. x - the last and the best approximation to the minimum location, i.e. f(x) <= f(a) or/and f(x) <= f(b) (if the function f has a local minimum in (a,b), then the both conditions are fulfiled after one or two steps). v,w are previous approximations to the minimum location. They may coincide with a, b, or x (although the algorithm tries to make all u, v, and w distinct). Points x, v, and w are used to construct interpolating parabola whose minimum will be treated as a new approximation to the minimum location if the former falls within [a,b] and reduces the range enveloping minimum more efficient than the gold section procedure. *) (* Assume [a < b]. *) let do_brent f a b tol = let v = ref(a +. gold *. (b -. a)) in let x = ref !v and w = ref !v in let fv = ref(f !v) in let fx = ref !fv and fw = ref !fv and a = ref a and b = ref b in try while true do let m = 0.5 *. (!a +. !b) and tol_act = eps *. abs_float !x +. tol /. 3. in if abs_float(!x -. m) +. 0.5 *. (!b -. !a) <= 2. *. tol_act then raise(Found(!x, !fx)); let gold_step = gold *. (if !x < m then !b -. !x else !a -. !x) in let new_step = if abs_float(!x -. !w) >= tol_act then (* x and w are distinct, interpolatiom may be tried. Interpolation step is calculated as p/q; division is delayed until last moment. *) let t = (!x -. !w) *. (!fx -. !fv) and q = (!x -. !v) *. (!fx -. !fw) in let p = ref((!x -. !v) *. q -. (!x -. !w) *. t) in let q = ref(2. *. (q -. t)) in if !q > 0. then p := -. !p else q := -. !q; (* If x+p/q falls in [a,b], not too close to a and b, and isn't too large it is accepted. *) if abs_float !p < abs_float(gold_step *. !q) && !p > !q *. (!a -. !x +. 2. *. tol_act) && !p < !q *. (!b -. !x -. 2. *. tol_act) then !p /. !q else gold_step else gold_step in (* Adjust the step to be not less than tolerance *) let new_step = if new_step > 0. then if new_step < tol_act then tol_act else new_step else if -. new_step < tol_act then -. tol_act else new_step in (* Obtain the next approximation to min and reduce the enveloping range *) let t = !x +. new_step in let ft = f t in if (ft: float) <= !fx then ( (* t is a better approximation *) if t < !x then b := !x else a := !x; v := !w; w := !x; x := t; fv := !fw; fw := !fx; fx := ft; ) else ( (* x remains the better approx *) if t < !x then a := t else b := t; if ft <= !fw || !w = !x then ( v := !w; w := t; fv := !fw; fw := ft; ) else if ft <= !fv || !v = !x || !v = !w then ( v := t; fv := ft; ) ) done; assert false with Found m -> m let brent ?(tol=default_tol) f a b = if tol <= 0. then invalid_arg("Min1D.brent: tol <= 0."); if (a:float) < b then do_brent f a b tol else if a > b then do_brent f b a tol else (a, f a) (* = b; seen as the limit case of a singleton *)